, ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
, Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
τὰ ἄκρα τῆς Ἰνδικῆς . , πάντα δὲ ταῦτα λέγει γεωμετρικῶς , ἐλέγχων οὐ πιθανῶς . ταῦτα δὲ καὶ αὐτὸς | ||
, οὕτω καὶ τούτων ἀκροᾶται : εἰ μὲν γὰρ ἤχθη γεωμετρικῶς , δῆλον ὅτι τραφεὶς κατὰ γεωμετρικὴν λεπτουργίαν ἀπαιτήσει τὸν |
τοῖς πάθεσιν αὐτοῖς ἀλλὰ καὶ ἐν τοῖς περὶ τὰ πάθη μεσότητές εἰσι , καθάπερ ἐπὶ τῆς αἰδοῦς φαίνεται . καὶ | ||
ἐπανιτέον δὲ ἐπὶ τὸν τῶν ἀναλογιῶν καὶ μεσοτήτων λόγον . μεσότητές εἰσι πλείονες , γεωμετρικὴ ἀριθμητικὴ ἁρμονικὴ ὑπεναντία πέμπτη ἕκτη |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων , | ||
σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
μεσότητα ἐμβάλλω εἰς τοὺς προκειμένους ἀρτίους ὅρους , τὰ τῆς γεωμετρικῆς ἰδιώματα ἀνακύπτει , ἐξαπόλλυνται δὲ τὰ τῆς ἀριθμητικῆς : | ||
. παραινεῖ τε πρῶτον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς , ἔπειτα γεωμετρικῆς , τρίτον δὲ στερεομετρίας , τέταρτον ἀστρονομίας , ἥν |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες : | ||
' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη |
ἴσως κωλύει τρέφειν ἀλεκτρυόνας ἢ κυβεύειν : οὐδὲν γὰρ ἡ ἀστρονομία ἐμποδών ἐστι τὸ μὴ τὰ δέοντα ποιεῖν : καὶ | ||
καταγίνεται καὶ περὶ τὰ σχήματα τῆς γῆς , ἡ δὲ ἀστρονομία περὶ κινούμενον μέγεθος , οὐ μόνον δὲ κινούμενον ἀλλ |
τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ | ||
γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος |
προνοίας εἴη ἂν λόγων οἰκειότερον καὶ θεολογικῆς θεωρίας ἐχόμενον : ἠθικὴ δὲ ἡ προκειμένη πραγματεία , καὶ ὅσον κατ ' | ||
τῇ φρονήσει ἕπεται καὶ ἡ σωφροσύνη , ὅτι καὶ πᾶσα ἠθικὴ ἀρετή , ὁ δὲ σώφρων οὐ δύναται ἐγκρατὴς εἶναι |
] ὥσπερ ἐν στροφῇ καὶ ἀντιστρόφῳ στροφὴ καὶ ἀντίστροφος καὶ ἐπῳδὸς συστήματα μέτρων ἐστὶν ἐν κωμικοῖς καὶ τραγικοῖς καὶ λυρικοῖς | ||
μονοστροφικῷ : ἐκ γʹ γὰρ περιόδων ἐστὶ τῶν αὐτῶν , ἐπῳδὸς δὲ οὐκ ἔστιν . Αὕτη ἡ ᾠδὴ ἐν μὲν |
, καὶ ξύμπας ἀριθμὸς ταὐτὸν πέπονθε τούτῳ . ἀλλὰ μὴν λογιστική τε καὶ ἀριθμητικὴ περὶ ἀριθμὸν πᾶσα : ταῦτα δὲ | ||
τοῦ μὲν πρακτικοῦ νοῦ δύναμις ἥ τε δοξαστικὴ καὶ ἡ λογιστική , τοῦ δὲ θεωρητικοῦ ἥ τε νοητικὴ καὶ ἡ |
] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ | ||
πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
τίνα ἐστὶ καὶ ἐν τίσιν , νῦν καὶ τοὺς τόπους παραδείξομεν , ἀφ ' ὧν αἱ χάριτες . ἦσαν δὲ | ||
ἐφαρμόζεται σφαίρας , ἐπειδὰν καὶ τοὺς ἀστρονομίας ἐκθώμεθα λόγους , παραδείξομεν . νυνὶ δ ' ἐπανέλθωμεν ἐπὶ τὸν τῶν [ |
. εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
. Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
ἐπειδὴ λόγος μέν ἐστι δύο μεγεθῶν ἡ πρὸς ἄλληλα ποιὰ σχέσις : γίνεται δ ' αὕτη καὶ ἐν διαφόροις καὶ | ||
ἔστιν , ἐὰν δὲ προστεθῇ ἕτερος ὅρος , γίνεται μία σχέσις , ἐπειδὴ εἷς ἦν ὅρος ὁ προκείμενος . πάλιν |
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
διαλαβεῖν : κοινὸν γὰρ τοῦτο τὸ βιβλίον γεωμετρίας τε καὶ ἀριθμητικῆς καὶ μουσικῆς καὶ πάσης ἁπλῶς τῆς μαθηματικῆς ἐπιστήμης . | ||
Ϛʹ τοῦ εʹ : κοινὸν τὸ θεώρημα γεωμετρικῆς ἀναλογίας καὶ ἀριθμητικῆς . Ἐν τῷ λόγῳ ἄρα εἰσὶ τῆς ἀριθμητικῆς ἀναλογίας |
ἀντίστροφος , ἡ ὁριστική : χρῆται γὰρ καὶ ὁρισμοῖς ἡ μαθηματική , καὶ τούτους δι ' ἀκριβείας ποιεῖται . τρόπος | ||
' ἐκείνην ἡ περὶ τῶν φυσικῶν , καὶ οὕτως ἡ μαθηματική , καὶ ἐσχάτης ἐπὶ τούτοις ἀντιληψόμεθα τῆς θεολογίας . |
σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
. ἀλλ ' ἐπεὶ καὶ τῶν ἐν τοῖς σώμασι διαστημάτων τριττή τις ἡ φύσις , ἡ μὲν ἀρχηγέτις ἐφ ' | ||
λόγον τῶν εἰσιόντων [ . . ] . Μεμαθήκαμεν ὅτι τριττή ἐστιν ἡ πέψις : ἔστι γὰρ πρώτη ἡ χυλοποίησις |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
. καὶ ἐν ἐνίοις δὲ τῶν ἀντιγράφων ἕτερός τις φέρεται πρόλογος , πεζὸς πάνυ καὶ οὐ πρέπων Εὐριπίδῃ : καὶ | ||
παρέχων , ὥσπερ καὶ πρὸς τὸν δʹ τοῦ αὐτοῦ λόγου πρόλογος ἦν : τῇ δὲ κατὰ τὴν διαφορὰν ποσότητι διοίσει |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
μοναχῶς ἢ τριχῶς κατασκευάζεται , τὰ δ ' ἐν μέρει τετραχῶς ἢ ἑξαχῶς , εὐεπιχειρητότερα τὰ μερικὰ τῶν καθόλου πρὸς | ||
ἅπαντος τοῦ κατὰ τὰ μεσοπλεύρια . ἐθεάσω δ ' αὐτὸ τετραχῶς δεικνύμενον ὑφ ' ἡμῶν , ἅπαξ μὲν ἐπὶ ταῖς |
πρὸς ἄλληλα : καὶ αὖθις αὖ ἐὰν ὑποθῇ εἰ ἔστιν ὁμοιότης ἢ εἰ μὴ ἔστιν , τί ἐφ ' ἑκατέρας | ||
ὦ θαυμάσιε καὶ αὐτοδίδακτε ποιητά , οὐχ ἡ τῶν τεχνῶν ὁμοιότης τὸν κότον ποιεῖ καὶ τὴν ἔριν , ἀλλ ' |
. ἀρεταὶ δὲ διηγήσεως τρεῖς , σαφήνεια , συντομία , πιθανότης . ιζʹ . Σαφήνεια μὲν οὖν λέγεται , ὅταν | ||
ἡ τούτου ὕπαρξις . “ καὶ ἔστιν ἡ τῆς συνερωτήσεως πιθανότης προῦπτος . πάσης γὰρ φύσεως καὶ ψυχῆς ἡ καταρχὴ |
μέσον κοινός , διάζευξις δ ' ὅταν δύο τετραχόρδων ἑξῆς μελῳδουμένων ὁμοίων κατὰ σχῆμα τόνος ᾖ ἀνὰ μέσον . ὅτι | ||
τὸν δὲ τόνον ἐπόγδοον . τῶν δὴ παρὰ τοῖς κιθαρῳδοῖς μελῳδουμένων τετραχόρδων πεποιήσθω πρῶτον τὸ ἀπὸ νήτης μέχρι παραμέσης διὰ |
οὔτε γὰρ πάντων τῶν παρὰ ποιηταῖς λεγομένων δύναται εἶναι τέχνη γραμματικὴ οὔτε τινῶν . καὶ πάντων μὲν αὐτόθεν ἀδύνατον , | ||
καὶ ὅλως ἐπιστήμη πρὸς τινὰ ἐπιστήμην ; Οὐ γὰρ ἡ γραμματικὴ ὕστερον τῆς τινος γραμματικῆς , ἀλλὰ μᾶλλον οὔσης γραμματικῆς |
αὑτὴν τὰς αἰτίας . Οὐκοῦν , ὦ Σίμων , ἡ παρασιτικὴ τέχνη ἐστί ; Τέχνη γάρ , κἀγὼ ταύτης δημιουργός | ||
ἔχοι τοιοῦτον εἰπεῖν . Οὐκοῦν εἰ μήτε ἀτεχνία ἐστὶν ἡ παρασιτικὴ μήτε δύναμις , σύστημα δέ τι ἐκ καταλήψεων γεγυμνασμένων |
χιτώνἙκτορείου χιτῶνος , ἐμὸς φίλοςἐμοῦ φίλου πρόδηλός ἐστιν ἡ ἑξῆς ἀκολουθία . τοιοῦτόν ἐστι τὸ πατὴρ δ ' ἐμὸς αὐτίκ | ||
; ἡ τοῦ ἑξῆς ὁδήγησις , τουτέστιν ἡ τοῦ νοήματος ἀκολουθία . Τί ἔστι κατὰ τοὺς ἐνυπάρχοντας ποιητικοὺς τρόπους ; |
τοῦτ ' ἔστι κοινὴν ἔννοιαν : χαρακτηρίζει γὰρ τὴν αἵρεσιν συμφωνία μετὰ διαφωνίας , καὶ οὐκ ἐν τοῖς τυχοῦσιν ἀνθρώποις | ||
ὑπ ' αὐτῶν λόγον . καθόλου γὰρ ἡ διὰ πασῶν συμφωνία , τῶν ποιούντων αὐτὴν φθόγγων ἀδιαφορούντων κατὰ τὴν δύναμιν |
ἑλληνισμός , σαφήνεια , συντομία , πρέπον , κατασκευή . ἑλληνισμὸς μὲν οὖν ἐστι φράσις ἀδιάπτωτος ἐν τῇ τεχνικῇ καὶ | ||
τε καὶ αὐτὴν τὴν μεγαλοπρέπειαν . ὁ γὰρ τῶν ὀνομάτων ἑλληνισμὸς καὶ τῶν λέξεων ἐργάτης τῆς σαφηνείας ἐστίν . περὶ |
προσειληφυίᾳ καὶ θέσιν : τοιοῦτον δὲ ἡ στιγμή : καὶ στερεομετρία ἀκριβεστέρα ἀστρολογίας : ἡ μὲν γὰρ ἁπλῶς σῶμα λαμβάνει | ||
διατρίβειν περὶ τὸ γινόμενον καὶ ἀπολλύμενον . Καὶ μὴν ἡ στερεομετρία χρησιμωτάτη : μετὰ γὰρ τὴν δευτέραν αὔξησιν ἀκόλουθος ἡ |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
τὰς δύο βραχείας ἴσον τι ἔχει . κατὰ δάκτυλον δὲ ῥυθμός ἐστιν ὁ ἐν ἴσῳ λόγῳ . ὁ δὲ ἐνόπλιος | ||
πρῶτος , εἶπεν , ἐκληρώθην . ἀντὶ τοῦ ἐξιέναι . ῥυθμός ἐστι Κρητικός . γαλῆ εἶδος ἰχθύος . ἀπὸ τῶν |
οἷον ῥίζῃ τῆς ἀπάτης : μία γὰρ ὁμολογουμένως αὕτη καὶ ὡρισμένη : ἀπατώμεθα μὲν γὰρ τὸ ἀγαθὸν καὶ βλαβερὸν ἢ | ||
αἴτιον ὡς ἀρχή : θέλει γὰρ ἡ ἀρχὴ τοῦ πράγματος ὡρισμένη εἶναι , τὸ δ ' ὡρίσθαι πέρατός ἐστι . |
εὔρυθμος μέν ἐστιν , ἐπειδὴ διαπεποίκιλταί τισιν ῥυθμοῖς , οὐκ ἔρρυθμος δέ , ἐπειδὴ οὐχὶ τοῖς αὐτοῖς οὐδὲ κατὰ τὸ | ||
: τριῶν γὰρ λαμβανομένων λόγων ἐν τοῖς ἑπτὰ οὐδείς ἐστιν ἔρρυθμος : ὧν εἷς μέν ἐστιν ὁ τοῦ ἐπιτρίτου , |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
ζωοῦντος . διὸ καὶ ἀποροῦσί τινες ὅτι εἰ ἡ δικαιοσύνη ἁρμονία ἐστὶ τῶν ἄλλων καὶ ἕπεται αὐταῖς , πῶς συναριθμεῖται | ||
τὸ εὐάρμοστον καὶ ἀνάρμοστον ὡσαύτως , εἴπερ ῥυθμός γε καὶ ἁρμονία λόγῳ , ὥσπερ ἄρτι ἐλέγετο , ἀλλὰ μὴ λόγος |
. εὔχρηστος δὲ καὶ ἡ τῶν συμπτωμάτων συνεδρευόντων τοῖς πάθεσιν ἐπίγνωσις : ἀπὸ γὰρ τῆς τούτων συνελεύσεως , ἣν συνδρομὴν | ||
αἰτιῶν συμπροσπίπτει ἐπίγνωσις . μᾶλλον δ ' ἡ τῶν βλαπτόντων ἐπίγνωσις αἰτιῶν ἐστι κατάληψις . πάλιν δὲ αὐτὰ τὰ βλάπτοντα |
τοῦ Ἑρμοῦ ἡ τῶν ἐκ τῆς λοξώσεως κατὰ πλάτος παρόδων παράθεσις , τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν | ||
πρώτην θέσιν ἐπαγγελλομένη τῶν προσώπων , ἡ δὲ τῶν ἄρθρων παράθεσις ἐν δευτέρᾳ τάξει παραλαμβάνεται ὑποταγέντων ταῖς ἀντωνυμίαις , ἐγὼ |
εἰδητικοῦ ἑνός τε καὶ πλήθους ἡ μία σχέσις τε καὶ σύμφυσις ἀφανεστέρα διὰ τὸ μὴ πάνυ συννεύειν πρὸς ἄλληλα , | ||
. Δύο δ ' οὖν ὄντα συμπέφυκε , καὶ ἡ σύμφυσις πρὸ τῆς διαφυῆς : καθὸ μὲν δὴ συμπέφυκεν , |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
. δευτέραν δέ , ὅτι εἰσαγωγὴ οὖσα φιλοσοφίας ἡ παροῦσα πραγματεία , τῆς τεχνούσης τὰς ἄλλας τέχνας καὶ ἐπιστήμας , | ||
γὰρ αὐτῇ γνῶσις ὡς ὀφθαλμοῖς βλέψις καὶ εὐνομία ὡς ζωῆς πραγματεία . καὶ εἶδες ἂν περὶ μηδὲν ἄλλο τὴν νεάζουσαν |
καὶ τἀποβαῖνον : ὀξὺ τὸ περίκομμ ' , ἄφες . ἁρμονικός , οὐ μάγειρος . ἐπίτεινον τὸ πῦρ . ὁμαλιζέτω | ||
τὰς αἰτίας καὶ τἀποβαῖνον ὀξὺ τὸ περίκομμ ' ἄφες . ἁρμονικός , οὐ μάγειρος . ἐπίτεινον τὸ πῦρ . ὁμαλιζέτω |
ἑξῆς ἡμερῶν γίνεται περιόδοις , τεταγμένη τις ἂν ὧδε ῥηθείη ἀνωμαλία . Εἰ δὲ τυχὸν ἐφεξῆς μὲν δυοῖν ἡμέραιν τὰ | ||
ὀσμώδεσιν εἰς τὸ μηδὲν ἐνδείκνυσθαι σαφὲς ὑπὲρ τῆς κράσεως ἡ ἀνωμαλία τῆς φύσεώς ἐστιν , ὑπὲρ ἧς εἴρηται πολλάκις ἤδη |
ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
τῷ τέλει παράγραφος . † ὦ βαθυζώνων : σύστημα ἕτερον ἐπιφθεγματικὸν ὀνομαζόμενον ἐν ἐκθέσει στίχων τροχαικῶν τετραμέτρων καταληκτικῶν δʹ : | ||
ἀποθέσεσι παράγραφος , ἐπὶ δὲ τῶι τέλει κορωνίς . σύστημα ἐπιφθεγματικὸν στίχων ιʹ . προσγελᾶι ] θέλγει , προσέρχεται . |
γ . λέγω , ὅτι καὶ ὁ β τοῦ α ἐπιμόριός ἐστι κατὰ τὸ ὁμώνυμον μόριον τοῦ γ ἐναλλάξ , | ||
μέτρου . ἄφελε ἴσον τῷ Θ τὸν ΗΖ καὶ ἐπεὶ ἐπιμόριός ἐστιν ὁ ΔΖ τοῦ Θ , ἡ ὑπεροχὴ ὁ |
σελήνης κύκλος νεύων εἰς τὴν ἡμετέραν ὄψιν , καὶ αὐτῷ ἀδιάφορος ὁ παρὰ τὸν διορίζοντα μέγιστος κύκλος , ὅταν ἄρα | ||
δευτέρων καὶ τρίτων συζυγιῶν κατὰ τὸ δεύτερον πρόσωπον διαφορουμένων , ἀδιάφορος ἡ πρώτη ἐστίν , ἐπειδὴ τὰ βραχέα φωνήεντα μετὰ |
ὁρᾶται : φανερὸν δέ , καθ ' ἃ ἠναντίωται τῇ ἁρμονικῇ : τῶν γὰρ αὐτῶν ἄκρων ἀμφοτέραις ὑπαρχόντων καὶ ἐν | ||
Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι καί , μονάδων |
τὸ δεύτερον “ . Ἔτι χρὴ γινώσκειν , ὅτι τῶν ἀναποδείκτων οἱ μέν εἰσιν ἁπλοῖ , οἱ δὲ οὐχ ἁπλοῖ | ||
γὰρ ἡ δι ' ὁρισμῶν θεωρία καὶ ἡ λῆψις τῶν ἀναποδείκτων ἀρχῶν ἐπιστῆμαι καλοῦνται κυρίως : ἀλλ ' ὅτι γε |
εἴ σε ἐγὼ ἐροίμην εἰ τῇ αὐτῇ τέχνῃ γιγνώσκομεν τῇ ἀριθμητικῇ τὰ αὐτὰ ἐγώ τε καὶ σὺ ἢ ἄλλῃ , | ||
εὑρίσκονται , δείκνυσιν ὁ γεωμέτρης . ὅτι δὲ ἐν τῇ ἀριθμητικῇ οὐ δύναται εὑρεθῆναι , δῆλον ἐκεῖθεν : ἔστωσαν γὰρ |
τέμνεται τὸ τεμνόμενον οἷον τὸ τέμνον τέμνει ; Φαίνεται . Συλλήβδην δὴ ὅρα εἰ ὁμολογεῖς , ὃ ἄρτι ἔλεγον , | ||
ἀκοῶν ἀκούει καὶ τῶν μὴ ἀκοῶν ; Οὐδὲ τοῦτο . Συλλήβδην δὴ σκόπει περὶ πασῶν τῶν αἰσθήσεων εἴ τίς σοι |
ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
καὶ ἡ ἀόριστος δυάς , ἧς κατὰ μετοχὴν αἱ ὡρισμέναι δυάδες εἰσὶ δυάδες . Καὶ ὅτι ταῖς ἀληθείαις αὗταί εἰσι | ||
καὶ ἡ ἀόριστος δυάς , ἧς κατὰ μετοχὴν αἱ ὡρισμέναι δυάδες εἰσὶ δυάδες . πρὸς δὲ τούτοις ἔτι μᾶλλον αἱ |
καθ ' ἕκαστον . ὅτι δὲ οὐδενὸς τούτων ἔστιν ἐπιστήμη διαιρετική , ῥᾴδιον ἴσως ἐπελθεῖν . ιηʹ περὶ τῆς ὀνόματος | ||
δ ' ἄλλη παρὰ τὴν ἀποδεικτικήν τε καὶ συλλογιστικὴν ἡ διαιρετική ἐστι , καὶ ὅτι ἥδε οὐ συλλογίζεσθαι πέφυκε , |
γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
βραχύνοντας τοὺς φθόγγους , ἡ γὰρ ἔμμονος αὐτῶν καὶ ἐπιμηκεστέρα ἐκφώνησις ἀκριβεστέραν τῇ ἀκοῇ χαρίζεται τὴν κρίσιν . ⊢ Γ | ||
τάξιν ” φησὶν ὁ Διονύσιος . ἀλλ ' ἡ μὲν ἐκφώνησις οὐκ ἂν λέγοιτο σύμβολον εἶναι τοῦ ὀνόματος , ἀλλὰ |
ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
διθυραμβικὸς νομικὸς τραγικός . ὁ μὲν οὖν νομικὸς τρόπος ἐστὶ νητοειδής , ὁ δὲ διθυραμβικὸς μεσοειδής , ὁ δὲ τραγικὸς | ||
ὑπερβολαίων . Τόποι φωνῆς τέσσαρες : ὑπατοειδής , μεσοειδής , νητοειδής , ὑπερβολοειδής . ἐν μὲν οὖν τῷ πρώτῳ τίθεται |
ἔχει προνομίαν : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε | ||
καὶ τετράγωνοί εἰσι , δῆλον οὕτως . ἐν μὲν τοῖς διπλασίοις , κειμένων πλειόνων ἀριθμῶν οἷον αʹ βʹ γʹ δʹ |
διηγήμασι μετὰ πολλῶν ἑτέρων καὶ ἡ κατ ' εὐθεῖαν πτῶσιν ἀπαγγελία : εὔγνωστον γὰρ [ ἐν ] ταῖς συνεχέσιν ἀναπαύσεσι | ||
μὲν γάρ ἐστι σύντομος ἀπόκρισις , πεῦσις δὲ μακρᾶς πράξεως ἀπαγγελία , ἀνάκρισις δὲ δευτέρων ἐξέτασις . ἔσται τοῦ γενήσεται |
ἐξετάζων κατὰ θεωρίαν δείξει δηλαδή : ἀλλ ' ἥ γε διαίρεσις ἀπαιτεῖ , θαυμαστὸν δὲ οὐδέν , εἰ παρεῖται , | ||
. Τάχα δ ' ἐκείνη πρός γε τὰ νῦν ἡ διαίρεσις ὅτι τὴν πέψιν τιθέμεθα χρώμασι καὶ χυλοῖς καὶ πυκνότητι |
τι εἰς τὸ εἶναι ἀπόδειξιν οἱ δογματικοί , καθὼς ἤδη ὑπεμνήσαμεν : συνάγει γὰρ τὸ μὴ εἶναι ἀπόδειξιν , καὶ | ||
ἀγαθῶν αὐτῷ παρόντων καὶ τῶν κακῶν , ἐν τοῖς ἔμπροσθεν ὑπεμνήσαμεν . λεκτέον οὖν , ὅτι εἰ μήτε ἡ τῶν |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
, ὅτι ἀμετάθετος καὶ ἀμετάβλητός ἐστιν ὁ καθ ' ἕκαστα διορισμὸς ἐξ ἀιδίων χρόνων : Κλωθὼ δέ , ὅτι ἡ | ||
. Τίς μὲν οὖν ὀρθότης ἦν τῆς παρούσης ἐρωτήσεως καὶ διορισμὸς αὐτῆς , πῶς ἀδύνατος καὶ πῶς δυνατὴ γίγνεσθαι , |
ὁμογενής ὁμόγονος , ὁμοειδής , ὁμομήτωρ ὁμοπάτωρ , ὁμοθυμαδόν , ὁμολογία : ὁ γὰρ ὁμόλογος βίαιόν τε ὁμοῦ καὶ εὐτελές | ||
καὶ ὅτι τοῦτό ἐστιν * * * . ἐπὶ τέλει ὁμολογία τῆς ἀληθινῆς ἐπιβολῆς : ἀλλ ' , Ἀχιλεῦ , |
ἀπὸ οὐσίας καὶ ἰδιότητος . οὐσία δὲ τὸ κοινῶς καὶ γενικῶς θεωρούμενον , οἷον τί φόνος ; τί ἱεροσυλία ; | ||
, ὥστε ἐκεῖνο τὸ μέρος μέτωπον γίνεσθαι . Πᾶσι δὲ γενικῶς παραγγεῖλαι τὴν δευτέραν τάξιν μηδένα θαρσῆσαι παρελθεῖν , κἂν |
κατηγορούμενον , δι ' ὧν δὲ προσεχῶς παρεδίδου καὶ ὡς προσκατηγορούμενον , προτίθεται διὰ τούτων διδάξαι ἡμᾶς ὅτι καὶ ἐπὶ | ||
ἄλλως τε τὸ κῦρος ἐν ταῖς τοιαύταις προτάσεσιν τὸ τρίτον προσκατηγορούμενον ἔχει , διὸ καὶ ἐξ αὐτῶν ὀνομάζεται τὸ ὅλον |
δεῖξαι . Αἱ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες καὶ πολυγώνους ἔχουσαι βάσεις πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις . | ||
ἐφεξῆς ἀπὸ μονάδος ἀριθμούς , οὕτως καὶ πυραμίδων τοὺς ἐφεξῆς πολυγώνους καθ ' ἕκαστον . ἀνάλογος δ ' ἔσται καὶ |
λόγον εἶναί φησιν : αὕτη δὲ ἐν Συρακούσαις κρήνη , ὑποτέτακται δὲ ἡ Καμάρινα ταῖς Συρακούσαις . Ἔχει δὲ ἡ | ||
ἐστιν : ἐκθοῦ σύστημα μονάδων ἢ ἄρτιον ἢ περιττὸν ὡς ὑποτέτακται : α , β , δ , η , |
προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον ἐνδέχεσθαι λαμβάνηται πρότασις , ἀεὶ γίνεται συλλογισμός , πλὴν ὁτὲ μὲν ἐξ | ||
εἶναι ἀπόφασις . φανερὸν ἄρα γέγονεν ὅτι μιᾷ προτάσει μία πρότασις ἀντιφατικῶς μάχεται . ἐν οἷς τὸ πρῶτον κεφάλαιον . |
βοῶν καὶ ζευγνύντος αὐτούς , ἐμπέπηγε δὲ σφηνωθὲν διά τινων σφηνισκῶν . εἰ μὲν οὖν ἓν ᾖ ξύλον τὸ ὅλον | ||
βοῶν καὶ ζευγνύντος αὐτούς , ἐμπέπηγε δὲ σφηνωθὲν διά τινων σφηνισκῶν . εἰ μὲν οὖν ἓν ᾖ ξύλον τὸ ὅλον |
ἔν τε μικροῖς καὶ μεγάλοις . παρέπεται δὲ τῇ σωφροσύνῃ εὐταξία : εὐκοσμία : αἰδώς : εὐλάβεια . Ἐγκράτεια δέ | ||
οὐχ ἥκιστα δὲ κἀν ταῖς μελίσσαις : ἥ τε γὰρ εὐταξία καὶ πρὸς τὰς ἡγουμένας τῆς ἐν αὑταῖς πολιτείας εὐπείθεια |
καὶ ταῦτα σοφὸς ὤν , ἀλλὰ λέληθέν σε ὅτι ἡ ἰσότης ἡ γεωμετρικὴ καὶ ἐν θεοῖς καὶ ἐν ἀνθρώποις μέγα | ||
ὅταν ἀνάλογον ᾖ τῶν πλευρῶν πρὸς ἀλλήλας καὶ τῶν γωνιῶν ἰσότης τοῦδε τοῦ σχήματος πρὸς τόδε : ἐπὶ δὲ τῶν |
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν | ||
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα |
τρισὶ συμφωνίαις ὑφεστάναι , τῇ διὰ τεσσάρων , ἥτις ἐν ἐπιτρίτῳ κεῖται λόγῳ , τῇ διὰ πέντε ἐν ἡμιολίῳ , | ||
μικρὰν ἡ ὀκτὼ πρὸς μὲν τὴν τὰ ἓξ ἔχουσαν ἐν ἐπιτρίτῳ ἦν , πρὸς δὲ τὴν τὰ δώδεκα ἐν ἡμιολίῳ |
ὁμοίωσις , εἰκών , παράδειγμα , παραβολή , χαρακτηρισμός , εἰκασμός , συντομία , βραχύτης , σύλληψις , ἐπανάληψις , | ||
ὡς γένος εἴδους : ἡ μὲν γὰρ εἰκὼν οὐκ εὐθέως εἰκασμός , ὁ δὲ εἰκασμὸς πάντως εἰκών . Συντομία ἐστὶ |
ψεῦδος : οὕτω γὰρ ἂν κατάφασις ὑπῆρχεν ἢ ἀπό - φασις , ἀλλ ' ἐὰν προστεθῇ τι , δῆλον ὅτι | ||
δίκαιος οὐκ ἔστιν . ἡ μὲν γὰρ ἁπλῆ ἀπό - φασις , ὡς εἴρηται , ἁρμόζει καὶ ἐπὶ τῶν λίθων |
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
ἀριθμητικὴ δὲ ἡ τῷ αὐτῷ ἀριθμῷ τῶν ἄκρων ὑπερέχουσα καὶ ὑπερεχομένη , ἁρμονικὴ δὲ ἡ τῷ αὐτῷ μέρει τῶν ἄκρων | ||
μεσότης ἡ ταὐτῷ μέρει τῶν ἄκρων αὐτῶν ὑπερέχουσά τε καὶ ὑπερεχομένη , ὅπερ ἄλλῃ οὐ συμβέβηκεν : ἐπί τε γὰρ |