καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
: τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
στίχῳ : τὸ δ ' αὐτὸ διάστημα ἐν τῷ κάτω στίχῳ εἰς ιεʹ ὥρας τοῦ τελείου ὅρου : ἔστι δὲ | ||
στίχου μονάδος ὑπερέχει δυάδι : καὶ ἔστιν ἐν τῷ δευτέρῳ στίχῳ μεταξὺ τῶν γ καὶ τῆς μονάδος ὁ β . |
αὐτὸ μέρος τοῦ τῶν γωνιῶν κανόνος ἐπισκεψόμεθα τὰς παρακειμένας τῷ ἀριθμῷ τῶν ὡρῶν μοίρας , ἐὰν μὲν πρὸ τοῦ μεσημβρινοῦ | ||
διαφέρον : τὸ οὖν γένος κατηγορεῖται κατὰ πολλῶν διαφερόντων τῷ ἀριθμῷ καὶ τῷ εἴδει . ἐδείχθη οὖν ὅτι μόνον τὸ |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
μὴ ἐξισταμένη δὲ τῆς ἑαυτῆς φύσεως μηδ ' ἐν τῷ πολλαπλασιασμῷ : ἔτι , εἰ μὴ καὶ ἐντελεχείᾳ , ἀλλὰ | ||
ἀποκατάστασις σφαῖραν γράφει . καὶ ἀριθμοὶ δὴ οἱ ἐν τῷ πολλαπλασιασμῷ ἐφ ' ἑαυτοὺς καταλήγοντες κυκλικοί τε καλοῦνται καὶ σφαιροειδεῖς |
, οὗ δὲ βραχύτης , ἐνταῦθα τάχος , τῷ δὲ περιττῷ σαφήνειαν , χάριν δὲ οὗ σεμνότης , οὗ δὲ | ||
κρατοῦσι . ῥώμῃ δὲ καὶ ἰσχύι καὶ τόνῳ καὶ τῷ περιττῷ καὶ πολυσχηματίστῳ παρηυδοκίμησε Θουκυδίδης : ἡδονῇ δὲ καὶ πειθοῖ |
Καὶ αὗταί εἰσιν αἱ τέσσαρες ἀρχαὶ τοῦ παρυφισταμένου ἐν τῷ διαγράμματι : ἐπεὶ δὲ τὸ παρυφιστάμενον εἴπομεν ἔχειν τόπους τρεῖς | ||
κεῖνται καὶ οὐκέτι αἱ ἀντιφάσεις χωρὶς ὡς ἐν τῷ α διαγράμματι . ἐν οἷς ἐστι καὶ δεύτερον διάγραμμα . ἀπορεῖ |
τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
καὶ τῆς ἰδίου οὐσίας δηλωτικὸν ἢ καὶ τὸν αὐτὸν τῷ προσκειμένῳ : οὕτως γὰρ αὐτῷ ὑπάρξει ὁ μείζων ἄκρος . | ||
δυνα - τόν . Ἀλλ ' ὅταν μὲν ἐν τῷ προσκειμένῳ τῶν ἀντικειμένων τι ἐνυπάρχῃ . τὸν κανόνα παραδίδωσιν λοιπὸν |
ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
ἔϲτι δὲ ὁ κύαθοϲ κοτύληϲ τὸ Ϛʹʹ . Ἡ κοτύλη μέτρῳ μὲν ἔχει κυάθουϲ Ϛʹ , ϲταθμῷ δὲ ⋖ ξʹ | ||
ἄγει σταθμῷ # β . ὅτι δὲ τὸ ὀξύβαφον ἐν μέτρῳ κατὰ σταθμὸν ἔχει γρα . ιβ , ὅ ἐστι |
ἰξυόθεν κατιόντων . τοῦ γὰρ νοτιωτέρου τῶν ἡγουμένων ἐν τῷ πλινθίῳ εἷς μόνος προηγεῖται λαμπρὸς ἀστήρ , ὁ νῦν ἐν | ||
τὸ σχῆμα , Ἀφροδίτης ἐστὶν ἐν αὐτῇ ναὸς καλούμενος ἐν πλινθίῳ καὶ ἄγαλμα λίθου . στήλαις δὲ ἐπειργασμένοι τῇ μὲν |
τοῖς καλοῖς τὰ χείρονα προσμιγνύντων : ἐν Κύκλωπος γὰρ δράματι λεγομένῳ οὕτω φησὶ πρὸς Ὀδυσσέα Πολύφημος . Αἲξ Σκυρία : | ||
σοῦ . αὐδωμένῳ ] ἤγουν τῷ Πολυνείκει . αὐδωμένῳ ] λεγομένῳ . Ξ αὐδωμένῳ ] φημιζομένῳ . αὐδωμένῳ ] ὑβριζομένῳ |
ὀψοποιοὺς ἀνέπειθον ἐμβαλεῖν δηλητήρια φάρμακα . οὐ ῥᾳδίως δὲ αὐτῶν οὐδετέρῳ προεχώρει , ἐπειδὴ μετὰ πολλῆς ἐπιμελείας καὶ φρουρᾶς διῃτῶντο | ||
ἐνεῖναι ὑπαινιττό - μενος , ἀλλ ' ὅμως δύο ποιήσας οὐδετέρῳ χρῆται ἐν ταῖς ἀρχαῖς : οὔτε τὸ κατὰ διαίρεσιν |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
. γίνεται δὲ ἐν ὀστρείῳ τινὶ παραπλησίῳ ταῖς πίνναις πλὴν ἐλάττονι : μέγεθος δὲ ἡλίκον ἰχθύος ὀφθαλμὸς εὐμεγέθης , φέρει | ||
τῷ ΚΟΛ [ ] τμήματι γωνία : ἡ γὰρ ἐν ἐλάττονι τμήματι γωνία . . μείζων : ἡ δὲ πρὸς |
, πάντα δὲ ἄρτιον ἀριθμὸν ἐνδέχεται ἢ ὑπὸ μόνου ἀρτίου μετρεῖσθαι ἢ ὑπὸ ἀρτίου καὶ περιττοῦ , τὸν δὲ περιττὸν | ||
ποτὲ μὲν τοῖς παίωσι καθαροῖς , ποτὲ δὲ τοῖς κρητικοῖς μετρεῖσθαι : αὔξεται δὲ μέχρι τετραμέτρου : τινὲς δὲ καὶ |
ὢν τοῦ Σκορπίου μοίρας κ νη : τοῦτο γὰρ ἡμῖν προαπεδείχθη διὰ τῶν περὶ τὰς μεγίστας ἀποστάσεις ἐφωδευμένων : φανερόν | ||
ἐστι , καὶ εὑρίσκω τὸν γ ἀριθμόν , ἐξ ὧν προαπεδείχθη , πρῶτον καὶ ἀσύνθετον : ἑτερώνυμον γὰρ μόριον οὐκ |
ἑαυτῆς πολλαπλασιαζομένης , οἷον ὁ θ : ἓν γάρ ἐστιν ἑτερώνυμον : τρὶς γὰρ γ θ : ὁ γ οὖν | ||
ἀριθμόν , ἐξ ὧν προαπεδείχθη , πρῶτον καὶ ἀσύνθετον : ἑτερώνυμον γὰρ μόριον οὐκ ἔχει , ἀλλὰ μόνον τὸ ἑαυτῷ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
, δεινὸν ἡγησάμενοί τινες , εἰ οἱ νόμοι παρὰ τῷ ἡμίσει τμήματι τοῦ γένους ἀνθρώπων ἐξετασθήσονται μόνῳ τῷ βαρβαρικῷ , | ||
: οὐ γὰρ τὸ μὲν ἥμισυ τοῦ Σωκράτους ἐν τῷ ἡμίσει , τὸ δὲ ἥμισυ αὖθις ἐν τῷ ἡμίσει , |
, δύο δὲ ἀποφάσεις κοινωνούσας μὲν κατὰ τὸ συμπλέκειν τῷ κατηγορουμένῳ τὸν οὐ πᾶς προσδιορισμὸν διαφερούσας δὲ κατὰ τοὺς συντεταγμένους | ||
κατηγορούμενον εἰλημμένον , καὶ ὅταν μετὰ προσθήκης τινὸς ἐπικατηγορουμένου τῷ κατηγορουμένῳ συντεταγμένου , ὡς ἐδείξαμεν ἐν τοῖς τὸ ἐπαναδιπλούμενον προσκατηγορούμενον |
καὶ ἑνικῷ καὶ ὀνοματικῷ προσαρμοττόμενον σῴζει τὴν ἀκολουθίαν οὔτε τῷ πληθυντικῷ καὶ οὐδετέρῳ καὶ κατὰ τὴν αἰτιατικὴν ἐσχηματισμένῳ πτῶσιν . | ||
' ὄπιν . [ σημείωσαι , ] ὅτι τῷ δαπάναι πληθυντικῷ ἐπέζευξεν ἑνικὸν τὸ ἔκνιζεν : Ἐν γυιοδάμαις . ἢ |
ἡμῶν χρόνῳ , ὅσῳ σχεδὸν ἐν τῷ πρὸς τὸν ἰσημερινὸν πλάτει δια - φέρουσιν αἱ δύο # μοῖραι τοῦ διὰ | ||
ὁπόταν κατὰ τὰς τοῦ παραδείγματος συμμετρίας τις ἐν μήκει καὶ πλάτει καὶ βάθει , καὶ πρὸς τούτοις ἔτι χρώματα ἀποδιδοὺς |
τῷ ζητουμένῳ καὶ τῷ προστιθεμένῳ , τῷ γῳ καὶ τῷ βῳ τετραγώνοις , τὸν δὲ δὶς ὑπ ' αὐτῶν τὸν | ||
καὶ λαβόντες γένωνται ἴσοι . Ἐπιτετάχθω δὴ τὸν αον τῷ βῳ διδόναι τὸ εον καὶ ἔτι Μο Ϛ : τὸν |
κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά , | ||
γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ |
, Γ στερεὸν ἴσον ἐστὶ τῷ ἀπὸ τῆς Β στερεῷ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἐκκείσθω στερεὰ | ||
στερεὸν παραλληλεπίπεδον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης στερεῷ παραλληλεπιπέδῳ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἔστωσαν τρεῖς |
ὡς εἴρηται , ὡς εἶναι καὶ τοῦτο τῷ τῆς εὐδαιμονίας ὁρισμῷ συνῳδόν . τὸ δὲ σχεδὸν τέθειται δι ' εὐλάβειαν | ||
εἶναι ὁρισμός : οὐδὲ γάρ , ὡς εἴρηται , ἐν ὁρισμῷ εἰώθασιν οἱ φιλόσοφοι τῇ διαλλήλῳ δείξει κεχρῆσθαι . λείπεται |
] ? [ ἴσον ] ἰσάκις γίγνεσθαι [ ] τῶι τετραγώνωι [ ] ? τὸ σχῆμα ? ? ἀπεικάσαντες ? | ||
[ τῶι ] ποδιείωι [ ] ? ? [ ] τετραγώνωι [ ] ? [ , τὰ ] δὲ κατὰ |
τῷ βῳ διδόναι τὸ γον , τὸν δὲ βον τῷ γῳ τὸ δον , τὸν δὲ γον τῷ δῳ τὸ | ||
ἐπεὶ θέλω τὸν μέγιστον τοῦ μέσου ὑπερέχειν τῷ τοῦ ἐλαχίστου γῳ μέρει , ἐὰν προσθῶ τῷ μέσῳ τὸ τοῦ ἐλαχίστου |
ΚΞ τεταρτημόρια ἀλλήλοις . ὅσαι ἄρα εἰσὶν ἐν τῷ ΒΕ τεταρτημορίῳ πλευραὶ τοῦ πολυγώνου , τοσαῦταί εἰσι καὶ ἐν τοῖς | ||
ἕκαστον τῆς γῆς τόπον τῶν ἐν τῷ καθ ' ἡμᾶς τεταρτημορίῳ τεταγμένων , λέγω δὲ τῶν ἀπὸ τοῦ ἰσημερινοῦ μέχρι |
στοιχεῖα ἐξ ὧν συνέστηκε τὸ ἡμέτερον σῶμα , ἑνὶ ἑκάστῳ στοιχείῳ ἔτος α : δηλοῖ δὲ ὅτι μόνα τὰ τέσσαρα | ||
τῶν κατὰ συμβεβηκὸς διαλέγεται ἡμῖν ὁ φιλόσοφος ἐν τῷ Ε στοιχείῳ πολυπραγμονῶν αὐτὰ καὶ πολυειδῶς ἐξετάζων , περὶ δὲ τῶν |
ἀφαιροῦμεν ἐκ τῶν ἀριθμῶν τῶν τριῶν καὶ μονάδων ξ , μονάδας ξ καὶ ἐκ τοῦ ἀριθμοῦ τοῦ ἑνὸς καὶ μονάδων | ||
καὶ ἀπὸ τῶν β ἀριθμῶν καὶ τῶν μ μονάδων ὁμοίως μονάδας μ : ] λοιποὶ ʂ β ἴσοι Μο ξ |
τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν | ||
' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας : |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
ὁ λόγος : ἕκαστον γὰρ τῶν μορίων συμφέρεται τῷ ἰδίῳ συντάγματι . ἀλλ ' ὁπηνίκα τὸ ἄρθρον ἐμπεριλαμβάνει τὸ ἐπίρρημα | ||
δὲ ἀναγράφει αὐτῶν γένη ὁ Κλέαρχος ἐν τῷ περὶ γρίφων συντάγματι . γρῖφοι δὲ λέγεται τὰ ἐν τοῖς συμποσίοις προβαλλόμενα |
Κρόνου , νυκτὸς δὲ Ἑρμοῦ . κεῖται δὲ ἐν τῷ κλίματι τῷ τῆς Αἰγύπτου ἀπομεμερισμένον ἀνέμῳ Λιβί . κυριεύει δὲ | ||
πῆξιν τοῦ ἀναφορικοῦ : ὡς εἶναι ἐν μὲν τῷ πρώτῳ κλίματι ἀπὸ Καρκίνου ἕως Τοξότου ἀναφορὰς σιʹ , ἐν δὲ |
τῷ τί ἐστι κατηγορεῖσθαι , διὰ τοῦτο συντιθεμένην αὐτὴν τῷ τεμνομένῳ ἕν τι εἶπε γίνεσθαι καὶ οὕτως ὡς ἐν τῷ | ||
, ἥ τε παρὰ τοῦ τέμνοντος ἥ τε ἐν τῷ τεμνομένῳ , μία , ἀλλὰ τὸ τέμνειν ἕτερον καὶ τὸ |
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
μετὰ συναμφοτέρου ποιεῖν Μο η . τὸ δὴ ἐν τῇ ἀορίστῳ τοιοῦτόν ἐστιν , ἵνα τὸν ʂ , ὅσων ἄν | ||
, ἂν μή τι προστεθῇ : ἐὰν γὰρ ἢ τῷ ἀορίστῳ ὀνόματι ῥῆμά τι προσθῶμεν , ἢ τῷ κατὰ τὸ |
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
ἡμέραις θέρους μεσοῦντος ἤδη καὶ ἡ λοιμώδης νόσος παντὶ τῷ θέματι Θρᾴκης τε καὶ Μακεδονίας ἐνέσκηψεν ἀρξαμένη μὲν ἀπὸ Θετταλίας | ||
κεκακωμένος ᾖ τοῖς δυσὶ καιροῖς , ἐπίκεντρος δὲ ὑπάρχει τῷ θέματι τῆς ἐναλλαγῆς καὶ κακωθῇ ὑπὸ τοῦ ἀστέρος ἀπὸ τετραγώνου |
παραλήγοιτο ἔχουσα τὸ ρ , τρέπει αὐτὸ ἐν τῷ παθητικῷ παρακειμένῳ εἰς α , ὡς ἐν τῷ τέτραμμαι τέθραμμαι . | ||
ΕΖ , ΒΓ , ΕΒ . ἔχομεν δὲ ἐν τῷ παρακειμένῳ τῷ λϚʹ θεωρήματι , ὅτι πασῶν τῶν διὰ τοῦ |
διατελεῖς , μὴ διαφθείρῃς πολλὰς καὶ λαμπρὰς εὐεργεσίας ἐν τῷ τελευταίῳ , μηδ ' , ἂν ἐγὼ τὰ βελτίω διηγῶμαι | ||
δεκάδι τὴν μονάδα προστίθεσθαι ῥητέον . καὶ μὴν οὐδὲ τῷ τελευταίῳ μέρει τῆς δεκάδος , ἐπεὶ οὐκ αὐξηθήσεται ἡ δεκὰς |
, ἀρτία καὶ περιττή , ἡ μὲν ἀρτία ἐν λόγῳ διπλασίῳ , πρῶτος γὰρ τῶν ἀρτίων ὁ βʹ καὶ αὐτὸς | ||
διὰ πέντε ἐν ἡμιολίῳ , τοὺς δὲ διὰ πασῶν ἐν διπλασίῳ , καὶ τοὺς μὲν διὰ πασῶν καὶ διὰ τεσσάρων |
ἁπλοῦς εἰκὼς τῷ τῶν προβραχέος ἀπὸ μονάδος παντοίων ἀναλόγων ἐκθέσεων ἰδιώματι , ἐν ᾧ κύβων μὲν ἅμα καὶ τετραγώνων ἡ | ||
ἀντιτυποῦν σῶμα οὐκέτι νοεῖται σῶμα : σὺν γὰρ τῷ ἀντιτύπῳ ἰδιώματι ἐνοεῖτο τὸ σῶμα , καθό ἐστι σῶμα . ὅθεν |
ταῖς Ϛʹ τοῦ Τοξότου παράκειται Καρκίνος : ἐν Καρκίνῳ τῷ ὡροσκοποῦντι εὗρον περὶ τὴν αὐτὴν Ϛʹ μοῖραν . ὁμοίως ταῖς | ||
ἐν Καρκίνῳ Ϛʹ παράκειται Παρθένος . Παρθένον ἐν Καρκίνῳ τῷ ὡροσκοποῦντι εὗρον περὶ μοίρας κʹ : τὰ μεταξὺ σελίδια εʹ |
δ ὀρθαὶ τξ , τοιούτων α να , ἃ καὶ παραθήσομεν ἐν τῷ γʹ σελιδίῳ τοῦ τοῦ Διὸς κανονίου κατὰ | ||
παραφέρων ἀγαθῶν ἁμάξας ὅτι δέ σοι παρὰ τοῦτο κάνδαυλόν τινα παραθήσομεν . κάνδαυλον ; οὐκ ἐδήδοκα οὐδ ' ἀκήκο ' |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ μέρη αὐτῆς πάντα . | ||
' ἡμῶν λεχθεῖσαν ἰδιότητα . ἐπεὶ γὰρ αὕτη οὐ μόνον ἀρτιοπερίσσου τῆς μονάδος ἐναργές ἐστι πρὸ τῶν ἄλλων ὁμοίωμα , |
, ὅσα ἐνδέχεται ἐν αὐτῷ εἶναι , μέρη συναχθέντα καὶ συγκεφαλαιωθέντα ἐν συγκρίσει τῆ πρὸς ἑαυτὸν ἔχων μήτε ὑπερβάλλῃ τῷ | ||
, ἅπερ εἰσὶ γ , β , α , ἅπερ συγκεφαλαιωθέντα ὁμοῦ καὶ γενόμενα Ϛ ἶσα τῷ ἐξ ἀρχῆς ὑπάρχει |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
γίνεται τ . σύνθες τοὺς ἄκρους , γίνονται ν : παράβαλε τὸν τ πρὸς τὸν συντεθέντα , γίνεται Ϛ : | ||
τὴν δὲ ψυχὴν ὥσπερ δυνάστην ; θέασαι τοίνυν , καὶ παράβαλε τὴν εἰκόνα . Ὁ δῆμος πλέον ἢ ὁ ἄρχων |
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
, στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
πλατυνομένης , καὶ τοῦ μὲν μήκους ἐπὶ παραλλήλου τινὸς τῷ ἰσημερινῷ γραφομένου , τοῦ δὲ πλάτους ἐπὶ μεσημβρινοῦ , δεῖ | ||
ἡμέραν , μείζονα μέντοι τῆς νυκτός , μέχρι πελάσῃ τῷ ἰσημερινῷ , διαμένουσαν . Ἐπὰν δὲ τούτου ἐφαψάμενος φθινοπωρινὴν ἰσημερίαν |
ἐπιδεχόμενον , διὰ τῶν καθ ' ἕκαστα καὶ καθόλου τῷ ὁριστῷ τὸν ὁρισμὸν ὑπάρχειν δεικνύομεν , πρῶτον μὲν τοῦτο ἀδύνατον | ||
μὲν γὰρ ἀληθεῖ ὁρισμῷ καὶ πάντα συνᾴδει τὰ προσόντα τῷ ὁριστῷ καὶ διὰ τοῦτο καὶ τἄλλα τὰ λεγόμενα περὶ αὐ |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
λέγω , ὅτι ἴσον ἐστὶ τὸ ΓΜ στερεὸν τῷ ΓΝ στερεῷ . Ἐκβεβλήσθωσαν γὰρ αἱ ΝΚ , ΔΘ καὶ συμπιπτέτωσαν | ||
εὐθεῖαν . αἰτιῶνται δὲ αὐτοῦ τινες ὡς οὐ δεόντως χρησαμένου στερεῷ προβλήματι . . . . . . . . |
καὶ οὐκ ἐκ παντὶ ποσῷ : οὐ γὰρ ἐν τῷ διωρισμένῳ , ἀλλ ' ἐν τῷ συνεχεῖ , καὶ ἐν | ||
διωρισμένον εἶδος τοῦ ποσοῦ , δεύτερον δὲ τὸ ἀντικείμενον τῷ διωρισμένῳ , ὅ ἐστι συνεχές , τοῦτ ' ἔστι γραμμή |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
κατὰ τὸ αὐτὸ πρὸς ἀλλήλους τε καὶ τοὺς ἐν τῷ ζῳδιακῷ . ἐπὶ μὲν τοίνυν τῶν κατὰ τὸν Καρκῖνον ἀστέρων | ||
δὲ ἐφ ' ἑκάστου καὶ τό τε μεσουρανοῦν ἐν τῷ ζῳδιακῷ κύκλῳ ζῴδιον καὶ τὴν μοῖραν αὐτοῦ , πρὸς δὲ |
τζʹ , γίγνονται τμʹ νεʹ . ταύτας εὗρον ἐν τῷ ἐγκλίματι περὶ τὴν κθʹ τοῦ Ὑδροχόου καὶ προσέθηκα τὰς ηʹ | ||
φῶς πλῆρες καὶ ἡ ὥρα ἡ δʹ πλήρης ψηφισθεῖσα σὺν ἐγκλίματι ἤνεγκεν ὡροσκόπον Ταύρῳ μοίρᾳ κθʹ . κατὰ δὲ τὸ |
ἐν ὀκτὼ τούτοις φησὶ θεωρεῖσθαι , ἐννοίᾳ λέξει μεθόδῳ σχήματι κώλῳ συνθήκῃ ἀναπαύσει ῥυθμῷ . [ , ] διαιρήσει τοίνυν | ||
τινά , καὶ προηγεῖται τοῦ ὀνόματος ἅπαξ ἐν τῷ αὐτῷ κώλῳ , καὶ ἕπεται ἀεί . ἕπεται μέν , ὡς |
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
τῶν δυναμένων ἡγεῖσθαι . τοῖς μὲν δὴ μείνασι χιλιαρχίας καὶ ταξιαρχίας ἔδωκεν , τοὺς δὲ ἀναχωρήσαντας ἐκέλευσε τούτοις ἕπεσθαι . | ||
ιϚ , πεντακοσιαρχίας δὲ λβ , συνταγματαρχίας δὲ ξδ , ταξιαρχίας δὲ ρκη , τετραρχίας δὲ σνϚ , διλοχίας δὲ |
ἐφάνη τὸ συνεχές , ὅπερ ἐστὶ πηλίκον , ἀντιπάσχον τῷ διῃρημένῳ , τουτέστι ποσῷ , κέχρηται δὲ ἤδη τὸ πρότερον | ||
καὶ εὑρεθῇ ἐν τῷ διορύγματι τουτέστιν ἐν τῷ τετρημένῳ καὶ διῃρημένῳ , ὃς τὸν ἴδιον νοῦν ἐνεργοῦντα οἶδεν , ἀλλ |
γίνεσθαι ἐν Καρκίνῳ , ἐπείπερ αἱ θεριναὶ τροπαὶ ἐν τῷ προειρημένῳ ζῳδίῳ γίνονται , μεγίστας δὲ νύκτας εἶναι ἐν Αἰγόκερῳ | ||
στερεὰ τοῦ σώματος μόρια . ἕπεται δὲ ὡς ἐπίπαν τῷ προειρημένῳ πυρετῷ : μηκυνθεὶς γὰρ οὗτος καὶ καταναλώσας τὴν ἐν |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
ἓν καὶ τὰ πολλὰ τῶν ὁμωνύμων στοιχείων , ἐν τῷ μικτῷ προϋποτίθεμεν ἄλλο τι , καὶ πρὸ τοῦ μικτοῦ τὰς | ||
ἐπ ' ἄπειρον γὰρ ἐκβαλλόμενον οὐ παύεται : τῷ δὲ μικτῷ τὸ ἐκ τούτων μικτόν . καὶ μέντοι καὶ Ἀριστοτέλης |
. Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ | ||
τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα |
προβλήματι ] τῷ φύλακι . Ξ προβλήματι ] σκεπάσματι . προβλήματι ] φυλακῇ . θ οὕτω γὰρ ἐμεμηχάνητο ἡ Σφὶγξ | ||
αἴτιον λαμβάνεται , ὃ καὶ ὁρισμὸς ἦν τοῦ ἐν τῷ προβλήματι κατηγορουμένου . καὶ τίνες μὲν ἀντιστρέφουσι τῶν ὑποκειμένων τῷ |
, τήν τε ἀριθμητικήν , ἣ τῷ ἰσαρίθμῳ ὑπερέχει καὶ ὑπερέχεται , οἷον ἐπὶ τοῦ ἓν καὶ δύο καὶ τρία | ||
δὲ πάντες οἱ τὴν μείζονα μερικὴν ἔχοντες : ἐπεὶ γὰρ ὑπερέχεται τὸ Α ὑπὸ τοῦ Β , ὑπερεχέσθω τὸ Α |
, πρόσθησον ἄλλα ἐννέα καὶ τέλειον πάλιν ἀριθμὸν καὶ πάλιν ἑνδεκάδα : εἰ βάλλεις ἄλλα ἕνδεκα , γίνονται ἑξήντα τρία | ||
Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ |
τὰς δύο καταφάσεις , ἐπεὶ ἄτοπον ἕψε - ται τῷ κανόνι τῷ φάσκοντι μίαν μιᾶς ἀπόφασιν εἶναι εἴπερ δύο ἀποφάσεις | ||
καιρὸς νῦν ἐπεξιέναι εἰρηκότι πρότερον ἐν τῷ περὶ τῶν οὔρων κανόνι οὐ μόνον περὶ συμμέτρου καὶ κατὰ φύσιν χρώματος , |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
ὁ βραχίων ἀσφαλιζέσθω πρὸς τὸν ἄξονα , καὶ τότε τῷ πήχει βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω , οὗ | ||
βραχίων ἀσφαλιζέσθω βρόχῳ πρὸς τὴν ὑπερκειμένην φλιάν , τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , |
ἀπορία γάρ ἐστιν ὅταν ἡ διάνοια οὐ βούληται ἐμμένειν τῷ συμπεράσματι , ᾧ συγκατέθετο , οἷον ὅτι ὁ λίθος ὁρᾷ | ||
ἀποφαινόμεθα , καθὰ καὶ παραδέδωκεν ἡμῖν ὁ Ἀριστοτέλης ἐν τῷ συμπεράσματι τοῦ πρώ - του τμήματος τοῦδε τοῦ βιβλίου τῆς |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
ἐν τῷ θʹ βιβλίῳ καλῶν αὐτὸν μήτε ἀρτιάκις ἄρτιον μήτε ἀρτιοπερισσόν , τῇ ἀποφάσει τῶν δύο ἄκρων αὐτὸν σημαίνων , | ||
ἐν τῷ θʹ βιβλίῳ καλῶν αὐτὸν μήτε ἀρτιάκις ἄρτιον μήτε ἀρτιοπερισσόν , τῇ ἀποφάσει τῶν δύο ἄκρων αὐτὸν σημαίνων , |
ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων , στοιχεῖν λέγεται εἴ | ||
αὐτὸς νόμους θέμενος , ὥστε φανερῶς συγγίνεσθαι αὐταῖς καὶ μιᾷ στοιχεῖν , καὶ σχεδὸν εὑρὼν τὰς δύο φύσεις , τοῦ |
ἀλλὰ καὶ τοῖς ὑπαλλήλοις γένεσιν : ὡς γὰρ ἁρμόζει τῷ γενικωτάτῳ ὁ ὅρος ὁ λέγων τὸ κατὰ πλειόνων καὶ διαφερόντων | ||
εἴποις ἂν δεξιώτατον βιαζόμενος τὴν συνήθειαν , καὶ ἀναλογεῖ τῷ γενικωτάτῳ , ὁ δὲ ἀριστερός , ὃν εἴποις ἂν ἀριστερώτατον |
ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
μάλιστα ἀλλήλοις : τοῦτο γάρ ἐστι τὸ τὴν ἰσχὺν τῷ τάγματι παρεχόμενον , ἵνα μὴ μόνον ἐν μετώπῳ , ἀλλὰ | ||
' εὐθέως κατὰ τοῦ νώτου ἱσταμένων ἔρχεσθαι ἅμα τῷ ἑτέρῳ τάγματι : εἰ δὲ κονδότερον , εὐθέως ἐκ τοῦ μέρους |
ἐπιφορά . δοθέντος ἄρα τοῦ εἶναι ἀπόδειξιν ἀληθοῦς ἐν τῷ διεζευγμένῳ , ἀκολουθήσει ἡ τοῦ λόγου ἐπιφορά . ὁ δὲ | ||
ἀναποδείκτου . ἤτοι γὰρ πρόδηλόν ἐστιν , ὅτι ἐν τῷ διεζευγμένῳ τὸ μὲν ἀληθές ἐστι τὸ δὲ ψεῦδος μετὰ μάχης |
ἀρτιάκις ἄρτιοι , οἱ δὲ περιττάκις ἄρτιοι , οἱ δὲ ἀρτιοπέριττοι . ἀρτιάκις μὲν ἄρτιοι [ τὸ σημεῖον τοῦτό ἐστιν | ||
δὲ αὐτὸς λόγος καὶ ἐπὶ τῶν λοιπῶν ὁμοίως ἀριθμῶν . ἀρτιοπέριττοι δέ εἰσιν οἱ ὑπὸ δυάδος καὶ περιττοῦ οὑτινοσοῦν μετρούμενοι |
ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
, ἀριθμῷ εἴτ ' οὖν εἴδει . εἰ μὲν γὰρ εἴδει μία ἑκάστη τῶν ἀρχῶν , ἀριθμῷ δὲ πολλαί , | ||
, τὰ δὲ στερεὰ καὶ προμήκη καὶ ἀλλήλοις ἀντεμπλεκόμενα ἁλύσεως εἴδει δακτύλιοι καὶ δάκτυλοι . ἐρεῖς δὲ κημοὶ καὶ φιμοί |
καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
δον μέρος τοῦ ἀποκαταστατικοῦ χρόνου ἀποτελέσει τινὰ ἀριθμόν , ὃς προστεθεὶς μὲν τῇ μέσῃ κινήσει ποιήσει τινὰ ἀριθμὸν μείζονα μὲν | ||
δὲ περιάμματι αὐτῷ αἱ γυναῖκες χρῶνται : δοκεῖ δὲ δένδρεσι προστεθεὶς καρποφορίας ἐμποιεῖν . Λίθος σάπφειρος μετὰ γάλακτος ποθεὶς λεῖος |
, καὶ ἡνωμένη πάσχει τι ὅμως διακρινόμενον , τῷ μὲν ἡνωμένῳ καὶ μένοντι τὸ ὅλον οὖσα , τῷ δὲ διακρινομένῳ | ||
τόδε καὶ τοδί , ἀλλ ' ὡς ἐν τῷ πάντη ἡνωμένῳ τὸ πληθοειδὲς ἐμφαντάζεται διὰ τὴν ἁπλότητα τοῦ πρώτου μικτοῦ |