λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
: τεταρταίου δὲ καὶ τῷ κύβῳ παραπεμφθέντος διὰ τὴν πανταχόθεν ἑδραιότητα κἀκ τῶν ἓξ βάσεων τετραγώνων εὐσταθὲς αʹ καὶ δʹ | ||
: τεταρταίου δὲ καὶ τῷ κύβῳ παραπεμφθέντος διὰ τὴν πανταχόθεν ἑδραιότητα κἀκ τῶν ἓξ βάσεων τετραγώνων εὐσταθὲς αʹ καὶ δʹ |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ | ||
καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ |
καὶ ὕστεροι αὐτῶν ἔσονται ; τὸ γὰρ συμπέρασμα τῆς αὐτὸ περαινούσης ἀποδείξεως ὕστερον . ἀλλ ' οὐδὲ ἅμα ἄμφω , | ||
πέφυκε . Συνέστηκε δὲ φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ |
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
. οὐ γὰρ ἀσκόπως πτηνὰ μὲν ἐπτίλωσε , λογικὰ δὲ περισσαῖς καὶ ἀκριβεστέραις αἰσθήσεσιν ἐκόσμησε , τετραπόδων δὲ τὰ μὲν | ||
ὅταν ξενισθῇς ἐν πόλει πρὸς τὸν φίλον , ἐν ταῖς περισσαῖς καὶ πυκναῖς ὁμιλίαις , ἐὰν μεγίστην ὁ φίλος λέγῃ |
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
τοῦ Σκορπίου ἀπεχούσης πρὸς δυσμὰς ὥρας ἰσημερινὰς δ , πανταχῇ μεσουρανοῦσιν ὑπὲρ γῆν αἱ τοῦ Τοξότου [ ἐστὶν ] μοῖραι | ||
ἀρχῆς ἀπεχούσης τοῦ μεσημβρινοῦ πρὸς ἀνατολὰς ὥραν ἰσημερινὴν α , μεσουρανοῦσιν αἱ τοῦ Λέοντος μοῖραι ιδ μ , ἐν αὐτῷ |
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
ῥαφή : ἀντὶ τοῦ παραλογίζεται , ὡς καὶ ἐν εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ | ||
συνώνυμον θεὶς τὸ ἀλύειν τῷ πλανᾶσθαι . κεῖται ἐν τετάρτῳ Ἐπιδημιῶν καὶ ἐν αʹ Γυναικείων καὶ ἐν Ἀφορισμοῖς . ἀπεδείξαμεν |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
πρὸ αὐτῆς ὁ δύο πλείων [ τοῦ αʹ ] τοῦ ὑπόπροσθεν ὑπάρχει , καὶ ῥίζα γε τῆς πυθμενικῆς τοῦ μείζονος | ||
δὲ μεταξὺ ἀμφοῖν ἴση [ τῷ αʹ βʹ ] τοῖς ὑπόπροσθεν [ ἤγουν ἐστὶ γʹ ] : εἰδοποιὸς ἄρα μεσότητος |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
κατὰ βρέγματος ἐπὶ ἰνίον , εἶτα μετωπιαία . Κεφ . κστʹ . Ἡ μεσότης τῷ ἰνίῳ ἐντιθέσθω τὰ εἰλήματα , | ||
πρὶν ἀλείψασθαι . ἐπὶ ἡμέρας κʹ . ἀφανίζονται . [ κστʹ . Πρὸς τὸ κοιλίαν , ἢ ὑποχόνδριον , ἢ |
οἱ τὰς πολιτείας αὐτὰς ἐφ ' ἑαυτῶν διηγησάμενοι οὔτε ταῖς χρονικαῖς παραπλήσιον ἃς ἐξέδωκαν οἱ τὰς Ἀτθίδας πραγματευσάμενοι : μονοειδεῖς | ||
εζ περιφέρεια , ἥτις ἐστὶ λέοντος , ἀνενεχθήσεται ἐν μοίραις χρονικαῖς λεʹ : διὰ τὰ αὐτὰ δὴ καὶ ἡ βγ |
κεφαλαῖς τῶν Διδύμων , πρὸς μεσημβρίαν δὲ τῆς νοτίου διεῖχεν τριτημορίῳ σελήνης ἔλασσον ἢ διπλάσιον , οὗ αἱ κεφαλαὶ διεστήκασιν | ||
εἰς τὰ τῆς ὅλης ἐπισκοτήσεως ἐπιβάλλει , τῷ δὲ ἐφεξῆς τριτημορίῳ τὸ τρίτον , τῷ δὲ λοιπῷ τὸ ἕκτον : |
ἀπὸ μονάδος πρῶτος τέλειός ἐστιν ἰσούμενος τοῖς ἑαυτοῦ μέρεσι καὶ συμπληρούμενος ἐξ αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ | ||
οὕτως ἐκ τούτου κἀκείνων ὁ τοῦ προκειμένου γένους ὁρισμὸς εὑρεθήσεται συμπληρούμενος . οἷον εἰ γραμμὴ εἴη τὸ γένος τὸ εἰς |
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
πλεονεξίας καὶ ἀμφιβολίας , τὸ δὲ δʹ περὶ μεγάλου πράγματος τελεσιουργίας , τὸ δὲ εʹ περὶ πράγματος οὐ μικροῦ , | ||
μέσον ὡς σαρκός τι καὶ αἵματος σύστρεμμα ἴσχειν , δηλονότι τελεσιουργίας τυχὸν διὰ τὴν τοῦ κηʹ τελείαν φύσιν ἢ διὰ |
ταύρειον αἷμά φησι Πραξαγόρας πινόμενον πήγνυσθαι ἐν τῷ στήθει καὶ θρομβοῦσθαι , ἔπειτα συνέχον τὸ πνεῦμα θνήσκειν ποιεῖ , οὐ | ||
χυλὸν τῆς περδικιάδος χλιάνας ἔγχει . Ἄλλο , ὥστε μὴ θρομβοῦσθαι τὸ αἷμα ἐν τοῖς ὠσίν : πρασίου χυλὸν καὶ |
καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
: τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
δὲ εἶδος οὐ παρέργως ἐπισκεπτέον . τὸ μὲν δὴ δεύτερον ἐμφανεστάτην ἔχει προνομίαν : αἰεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος | ||
: ἀλλ ' ὅσα μὲν ἥμερα καὶ ἄγρια λέγεται ταύτην ἐμφανεστάτην καὶ μεγίστην ἔχει διαφοράν , οἷον συκῆ ἐρινεός , |
χυλοῖσι καὶ ζωμοῖσιν ὑγιὴς ἐγένετο . Ξυνέβη δὲ τελευτῶντος τοῦ μετοπωρινοῦ καιροῦ . Ὁ παρὰ Ἁρπαλίδῃ ἀλείπτης , ἀκρατέστερος σκελέων | ||
ἤδη ταῦτα γίγνηται πάνταἡ τοῦ καύματος ἐλάττωσις , ἡ τοῦ μετοπωρινοῦ ὄμβρου φορά , ἡ τῶν σωμάτων τῶν ἀνθρωπίνων ἀνάψυξις |
πλείονας ἔχει : ἔχει γὰρ καὶ ἄλλο τέταρτον ἡμέρας καὶ ἑκατοστὸν μέρος , καθ ' ἣν καὶ τὸ βίσεξτον ἀπαντᾷ | ||
ἄχρι τοῦ τὸ εἰκοστὸν μέρος αὐτοῦ ἀφεψηθῆναι , γύψου τὸ ἑκατοστὸν προσεμβάλλοντες . Λακεδαιμόνιοι δὲ ἕως τοσούτου εἰς τὸ πῦρ |
Ἰνδίαϲ οἷον ἄνθη τινὰ δένδρου καρφοειδῆ μέλανα , ὅϲον δακτύλου ϲύνεγγυϲ τὸ μῆκοϲ , φέρεται ἀρωματίζοντα καὶ δριμέα , ὑπόπικρα | ||
θερμαίνει μὲν κατὰ τὴν δευτέραν τάξιν ἐπιτεταμένην , ξηραίνει δὲ ϲύνεγγυϲ : ὅπερ ἑψόμενον ἐν ἐλαίῳ διαφορητικόν τε καὶ ἀνώδυνον |
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
, στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
εἰ μὴ κικίννους ἀξίους λίτραιν δυοῖν . σὺν δὲ τῇ λίτρᾳ καὶ ἄλλα ὠνόμασε νομισμάτων ὀνόματα Ἐπίχαρμος ἐν Ἁρπαγαῖς ὥσπερ | ||
γὰρ ια καὶ ιγ # τοῦ ἐλαίου μίξειϲ τότε τῇ λίτρᾳ τοῦ κηροῦ . Ἐν ταῖϲ ἑψήϲεϲι τῶν φαρμάκων ἡ |
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
ἐναρίξατο : ἔσφαζεν . φῶτας : ἀνθρώπους . Βαλίους : ἰταλικούς . Μόθοισιν . τοῖς ἐν σταδίοις μόθοις . Οἰνείδης | ||
γλεύκους ἀμιναίας σταφυλῆς τοῦτ ' ἔστι στυφούσης λευκῆς ξε ρνʹ ἰταλικούς , ἑλενίου λι ιβʹ , ἀσπαλά - θου λι |
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
ἐπαναφερομένων τῇ ὡροσκοπούσῃ , καὶ ταύταις ταῖς λ μοίραις δεξιὰς ἑξαγώνους μὲν τὰς τοῦ ιαʹ τόπου ὃν καὶ ἀγαθὸν δαίμονά | ||
μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις δεξιὰς ἑξαγώνους τὰς τοῦ ἀγαθοῦ δαίμονος καὶ τετραγώνους τοῦ ὑπὲρ γῆν |
δὲ τῇ εʹ κατὰ τὴν λʹ μάλιστα καὶ πέμπτην ἡμέραν διαπλάττεσθαι ἐν μέσῳ αὐτοῦ μελίττης μὲν μεγέθει ἐοικὸς τὸ βρέφος | ||
καὶ ποιήσαντες τὸν τριακονταπέντε καθ ' ὅν φασι τὰ ἑπτάμηνα διαπλάττεσθαι , εἰ κατὰ τὸν ἓξ πολυπλασιάσαιμεν αὐτόν , ποιήσαιμεν |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
βαλανείοις καὶ αἰώραις καὶ γυμνασίαις ταῖς διὰ τῶν χειρῶν : ἀνυπερβάτως γὰρ σώζονται . τινὲς δὲ ἐπὶ αὐτῆς τῆς □ | ||
σοι φανήσεται ἢ τὸ τῆς μήνιγγος ἀποθέμενοι , σώζονται οὗτοι ἀνυπερβάτως . ἐὰν δὲ ἀπὸ τῆς ☍ ἐπὶ τὸ μεῖζον |
Συναγ . . , . : Τὰ Εὐκλείδου βιβλία δ Κωνικῶν Ἀπολλώνιος ἀναπλώσας καὶ προσθεὶς ἕτερα δ παρέδωκεν η Κωνικῶν | ||
σκοπεῖν , ἔξεστι ταῦτα παρατιθέντι τοῖς ἐν τῷ πρώτῳ τῶν Κωνικῶν εἰρημένοις αὐτῷ δι ' αὑτοῦ βεβαιῶσαι τὸ προκείμενον : |
πάντα θκις . δεῖ καὶ τῷ λ προσθεῖναί τι μόριον τετραγωνικὸν καὶ ποιεῖν τὸν ὅλον ⃞ον . ἔστω τὸ προστιθέμενον | ||
τὰ τρία πρώτη ποιησαμένη πρόσοδον : ἡ δὲ δευτέρα πρώτη τετραγωνικὸν ἔσχεν εἶδος ἀπὸ περιττοῦ τῆς τριάδος αὐτὴν γεννησάσης . |
ἀπὸ ΝΞ . καὶ εἰσὶν ἀμφότεραι ἄκρον καὶ μέσον λόγον τετμημέναι : διὰ τὸ ἐν ἀρχῇ τοίνυν ἐστὶν ὡς ἡ | ||
μὲν ἰϲχυροτέροιϲι αἱ ῥίζαι ἐϲ μέγεθοϲ ἄμηϲ ἢ ὀλίγον ἁδρότερον τετμημέναι : ξὺν χόνδρῳ τε πλυτῷ ἢ φακῷ ἡ δόϲιϲ |
σφαῖραι Πτολεμαίωι μέν , ὡς εἰκός , ἔν τισιν , Ἀράτωι δὲ κατὰ τὸ πλεῖστον οὐ συμφωνοῦσιν , ὥστε τῶν | ||
συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν εἶναι τῶι Ἀράτωι ἄρχοντος ἀνατέλλειν τοῦ ζωιδιακοῦ , οἳ δὲ μεσοῦντος , |
ἐν τοῖς μέσοις συναναβλαστάνοντα καὶ ἐπιφυόμενα τῶν βλαβερῶν ἀναγκαίως ἂν τέμνοιτο τοῦ μὴ ζημιοῦσθαι τὰ ἀμείνω χάριν . ἢ οὐκ | ||
συγκαταθετέον , διὰ γὰρ τῆς δριμυφαγίας εἰ καὶ τὸ πάχος τέμνοιτο τοῦ γάλακτος , ἡ ποιότης αὐτοῦ φθαρεῖσα καὶ δηκτικὴ |
τε τῶν χμʹ καὶ ὁ τῶν χμηʹ καὶ ὁ τῶν χλʹ . ὡς ἔχουσιν αἱ καταγραφαί . Ὅτι δὲ οὐ | ||
στάδια ͵ατʹ : Κῶ περίμετρος στάδια φνʹ : Σάμου στάδια χλʹ . Ἰκαρία δὲ ἐστὶ μακρὰ , τραχεῖα , μῆκος |
πολλοὺϲ οἶδα τελέωϲ αὐτοῦ ἀπαλλαγένταϲ ἐπὶ τοῖϲ ἐμέτοιϲ . Περὶ ἡμιτριταίου . ὁ ἡμιτριταῖοϲ προϲαγορευόμενοϲ πυρετὸϲ μιχθέντοϲ τοῦ ϲηπομένου φλέγματοϲ | ||
διὰ τοὺς παρεμπίπτοντας παροξυσμοὺς , ἀγνοοῦσιν ὅτι τοῦτο ἐστὶ τοῦ ἡμιτριταίου ἴδιον : καὶ γὰρ περὶ τὰς ἕξ που ἢ |
, Γ στερεὸν ἴσον ἐστὶ τῷ ἀπὸ τῆς Β στερεῷ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἐκκείσθω στερεὰ | ||
στερεὸν παραλληλεπίπεδον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης στερεῷ παραλληλεπιπέδῳ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἔστωσαν τρεῖς |
μδʹ γοʹʹ [ Ἀρτάβρων ] Ἀρτάβρων λιμὴν εʹ γʹʹ μεʹ Νέριον ἀκρωτήριον εʹ δʹʹ μεʹ Ϛʹʹ Ἡ δὲ ἀρκτικὴ πλευρὰ | ||
τοῦ ἱεροῦ ἀκρωτηρίου μέχρι τῆς πρὸς Ἀρτάβροις ἄκρας ἣν καλοῦσι Νέριον : τέταρτον δὲ τὸ ἐνθένδε μέχρι τῶν βορείων ἄκρων |
ἤδη ϲεϲηπυίαϲ . Πόϲαι διαφοραὶ τῶν ἐλαιωδῶν οὔρων καὶ τί ϲημαίνουϲιν . εἴωθεν ὁ πυρετὸϲ πρότερον τὴν πιμελὴν ἐκτήκειν , | ||
. Ἀλγήματα περὶ λαγόναϲ ἀνώμαλοί τε φρῖκαι καὶ πυρετοὶ ἄτακτοι ϲημαίνουϲιν ἀπόϲταϲιν ἐν νεφροῖϲ , τὴν δὲ κατὰ κύϲτιν πρὸϲ |
καταλαμβάνω κζʹ περὶ τοῦ παντὶ λόγῳ λόγον ἴσον ἀντικεῖσθαι κηʹ παραπήγματα περὶ τῶν σκεπτικῶν φωνῶν κθʹ εἰ ἡ σκεπτικὴ ὁδός | ||
ἐπὶ τὸ τεῖχος δι ' αὐτοῦ . Ἔχει δὲ καὶ παραπήγματα ἐξ ἑκατέρου μέρους ὁ κριὸς , † ἐπειδὴ τὰ |
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ | ||
ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ |
ῥεῖ κατ ' Ἀκούτειαν πόλιν τῶν Ὀυακκαίων ἔχων διάβασιν , Καλλαϊκοὶ δ ' ὕστατοι , τῆς ὀρεινῆς ἐπέχοντες πολλήν : | ||
Μινίου καὶ τοῦ Δορίου ποταμοῦ τὰ μὲν ἐπὶ θαλάσσῃ κατέχουσι Καλλαϊκοὶ οἱ Βρακάριοι , ἐν οἷς πόλεις αἵδε : Βρακαραυγούστα |
ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , | ||
ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , |
ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν | ||
ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν |
καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
. σφῶν : τῶν Λακεδαιμονίων . εἰρημένον : ἀντὶ τοῦ ὁρισθέντος . κύριον : κεκυρωμένον , βέβαιον Κορίνθιοι : τὸ | ||
ὅσον κατὰ τὴν τοῦ ὁρισμοῦ ἀπόδοσιν ἔστιν ἐρωτᾶν περὶ τοῦ ὁρισθέντος , διὰ τί ἐστι , καὶ διὰ τί τοῦτ |
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
εἰς τοὐπίσω προανηνεγμένον τῆς ὡροσκοπούσης μοίρας μέχρι τῶν λοιπῶν καὶ ἐπαναφερομένων μοιρῶν κε ταύτῃ ὡροσκοπούσῃ καὶ ταύταις ταῖς λ μοίραις | ||
μοιρῶν τῶν προαναφερομένων αὐτοῦ τοῦ ὁρίζοντος μέχρι τῶν λοιπῶν καὶ ἐπαναφερομένων μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις |
ἡ νόσος καὶ ἐν τῇ καταρχῇ , ἀπὸ κραιπάλης καὶ περιφορῶν καὶ πλήθους καὶ ἔσονται στεγνοὶ πυρετοὶ καὶ τῶν ὑποχονδρίων | ||
. ιϚʹ Ἐὰν δὲ μὴ ᾖ ὁ ἐνιαυτὸς ἐξ ὅλων περιφορῶν ἡλίου , ἀλλ ' ἐπίῃ ἐφ ' ὅλαις περιφοραῖς |
διὰ τοῦ ἁπλῆ πασῶν αὐτὸ τῶν τε διπλῶν καὶ τῶν τριπλῶν προτάσεων ἐχώρισε , προσθεὶς δὲ τὸ ῥητορική τῶν τε | ||
τῷ Ε μονάδες , ὁμωνύμων τῷ Ζ ἀριθμῷ , τουτέστιν τριπλῶν μυριάδων ͵βωπʹ . [ μία γὰρ μυριὰς ὁμώνυμος τῷ |
' ἑτέρων συζυγιῶν ἀναπεπληρῶσθαι , πῶς οὐχὶ γέλοιον τοσαύτας φωνὰς συζύγως κατὰ τύχην σεσιγῆσθαι ; τούτου οὖν ἐν μηδενὶ μέρει | ||
ὧν ἐστὶ καὶ ὁ Ἅβρων , θέμα ἐστίν , ὃ συζύγως οἱ αὐτοί φασι τῇ μὲν ἐγών τὴν ἱών , |
τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε | ||
ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε |
καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
, οὐκ αὐτόθεν τοῦτο προτείνομεν , ἀλλὰ πλαγίως οὕτω καὶ παραβολικῶς ἐρωτῶμεν , καὶ οὐ δι ' αὐτὸ ἀλλ ' | ||
ἄκρον τὸ ἐντεθει - μένον τῇ χοινικίδι χνόη καλεῖται . παραβολικῶς οὖν τὸ συνεχὲς κίνημα τῶν ποδῶν χνόην εἴρηκεν . |
τοῦ κατὰ πρόσωπον μέρους τοῦ πρὸς μεσημβρίαν βλέποντος τριπλῷ περιλαμβανόμενος στοίχῳ κιόνων , ἐκ δὲ τῶν πλαγίων ἁπλῷ : ἐν | ||
καθ ' ἣν μέμαρπται καὶ συνείληπται πάντα ἐν τάξει καὶ στοίχῳ μὴ ἔχοντι πέρας τὰ γινόμενα [ σύλληψιν ἡ ει |
ἀμώμου , ναρδοϲτάχυοϲ , κόϲτου , καρυοφύλλου , καϲϲίαϲ , καϲάμου ἀνὰ # γ , οἴνου τὸ ἀρκοῦν . γʹ | ||
: κατεψυγμένοιϲ δὲ τὰ δι ' ὀποβαλϲάμου , φύλλου , καϲάμου , πεπέρεωϲ : θώρακι δὲ ἐν μὲν αἵματοϲ ἀναγωγαῖϲ |
μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |
ἀπωλείας . Ὅτι κατὰ τοὺς τῆς παλαιᾶς ἡλικίας καιρούς , διεληλυθότων σχεδὸν ἐτῶν ἑκατόν , θεασάμενος τὴν Κόρινθον Γάϊος Ἰούλιος | ||
τοῦτο ἅπαν εἰς τὸν θεὸν ἀνάγειν , καὶ πλειόνων ἐτῶν διεληλυθότων , τὸ μὲν ἀκριβὲς οὐκ ἔχω λέγειν ὁπόσα , |
πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν τῷ κύκλῳ , | ||
πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὤιετό ποτε δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτωι τῶι τρόπωι ἐν τῶι κύκλωι , |
- ] τοῦτο . Ὅτι καὶ προμνήστριαί ? ? εἰσιν δεινόταται ὡς πάσσοφοι οὖσαι ? [ ] περὶ τοῦ γνῶναι | ||
ἔτι καὶ τόδε αὐτῶν ᾔσθησαι , ὅτι καὶ προμνήστριαί εἰσι δεινόταται , ὡς πάσσοφοι οὖσαι περὶ τοῦ γνῶναι ποίαν χρὴ |
δυάδες τρεῖς , δικώλους ἔχουσαι τὰς περιόδους , ἐξ ἰάμβου τριμέτρου ἀκαταλήκτου ἐκκειμένου καὶ κώλων διαφόρων . τῆς μὲν οὖν | ||
ἢ τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει : |
πραγματικῇ ἐπιμελεῖσθαι εἰώθαμεν Σύγκρισίς ἐστι λόγος τὸ βέλτιον ἐπὶ χεῖρον παριστάνων ἢ παράλληλος ἐξέτασις ἀγαθῶν ἢ φαύλων . ἔστιν ἡ | ||
ἀποθεώσας , ὅτι δεῖ τοὺς οὕτως ἀποθανόντας ὡς θεοὺς ὀμνύναι παριστάνων , τοῖς δὲ κρίνουσι τὸ τῶν ἐκεῖ προκινδυνευσάντων ἐντιθεὶς |
προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
ἁρμονίαν μέχρι τῶν στερεῶν προάγειν . ἀριθμῶν καὶ δυσὶ συναρμόζεσθαι μεσότησιν , ὅπως διὰ παντὸς ἐλθοῦσα τοῦ τελείου στερεοῦ κοσμικοῦ | ||
οὕτως διακειμένων τῶν τεσσάρων ἐπιφαίνεσθαι τὴν γεωμετρικὴν ἐμπλέγδην ἀμφοτέραις ταῖς μεσότησιν ἀντεξεταζομένην , ὡς ὁ μέγιστος πρὸς τὸν τρίτον ἀπ |
Βάστουλοι , τὴν δὲ ὑπὲρ τούτους μεσόγειον καὶ πρὸς τῇ Ταρρακωνησίᾳ Τούρδουλοι , ἐν οἷς μεσόγειοι πόλεις Σεγίδα θʹ Ϛʹʹ | ||
τοῦ Δορίου ποταμοῦ , ἀπὸ δὲ τῶν ἀνατολῶν τῇ αὐτῇ Ταρρακωνησίᾳ , ἀπὸ δὲ δύσεως τῷ δυτικῷ ὠκεανῷ , ἀπὸ |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
τοῦ ἀρτιάκις ἀρτίου ἐποιοῦμεν : γίνεται τοίνυν δωδεκάκις ψξη , ͵θσιϚ : οὗτος τοίνυν ὁ ὑπὸ τῶν ἄκρων ἐστί , | ||
ϘϚ : πολλαπλασιαζόμεναι γὰρ αἱ κδ ἐπὶ τὰς τπδ ποιοῦσι ͵θσιϚ , ἀλλὰ καὶ ὁ ϘϚ ἐφ ' ἑαυτὸν πολλαπλασιασθεὶς |
τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς | ||
τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ |
. τούτων πάλιν συντιθεμένων γίνονται πόδες δισυλλάβων μὲν καὶ τρισυλλάβων πεντασύλλαβοι λβ , τῶν δὲ τρισυλλάβων ἀλλήλοις παρατιθεμένων ἑξασύλλαβοι ξδ | ||
τάξει αὐτῶν κεῖνται , ἀλλὰ προστιθεμένης καὶ ἑτέρας συλλαβῆς γίνονται πεντασύλλαβοι καὶ ἀποτελοῦσιν ἐπιτρίτους : ὁμοίως καὶ οἱ λοιποί . |
ἐχρήσαντο , τὸ μὴ δυνηθῆναι διὰ τοῦτο μετασχεῖν τῆς τῶν διαβατηρίων θυσίας . εἶτ ' ἐδέοντο μὴ ἔλαττον τῶν ἄλλων | ||
ὁ δὲ Ἀριστόβουλος προστίθησιν ὡς εἴη ἐξ ἀνάγκης τῇ τῶν διαβατηρίων ἑορτῇ μὴ μόνον τὸν ἥλιον ἰσημερινὸν διαπορεύεσθαι τμῆμα , |
δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς ὑπὸ Ἀπολλωνίου κατὰ | ||
μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ γὰρ μυριάδες ἐπὶ |
τὸ ἄρα ὑπὸ τῶν ΕΖΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΚΖΗ . ἀλλὰ τῷ ὑπὸ τῶν ΕΖΔ ἴσον ἐδείχθη τὸ | ||
ἡ ΛΝ τῇ ΝΖ . ἤχθωσαν τεταγμένως αἱ ΒΘ , ΚΖΗ , ΛΜΔ . ἐπεὶ οὖν διὰ τὰ δεδειγμένα ἐν |
τινὰς συριγμούς . Ἔφορος δ ' , ᾧ τὸ πλεῖστον προσχρώμεθα διὰ τὴν περὶ ταῦτα ἐπιμέλειαν , καθάπερ καὶ Πολύβιος | ||
. , : Ἔφορος δ ' , ὧι τὸ πλεῖστον προσχρώμεθα διὰ τὴν περὶ ταῦτα ἐπιμέλειαν , καθάπερ καὶ Πολύβιος |
, τὸ πρός τι πῶς ἔχον , ᾧ δὴ πρότερον ἐφαρμόσαντες ταῖς θέσεσι τὰς κατὰ τὸ καλούμενον ἀμετάβολον σύστημα δυνάμεις | ||
τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ |
. ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν : | ||
σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων |
γωνίας τεταγμένων πολυγώνων , τὴν δὲ περίμετρον ἴσην , τὸ πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο | ||
ὁπότε τὰς περιμέτρους ἴσας εἶχεν , ἀεὶ μεῖζον ἀπεδείκνυτο τὸ πολυγωνότερον , καὶ πάντων ὁ κύκλος μείζων , ὥσπερ ἐδείχθη |
τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
δ ' αὐτοὺς οἱ Ἀλεξανδρεῖς πλάτακας ἀπὸ τοῦ περιέχοντος . κυπρῖνος . τῶν σαρκοφάγων καὶ οὗτος , ὡς Ἀριστοτέλης ἱστορεῖ | ||
, τρίγλη δὲ τρὶς , σκορπίος δʹ , καὶ ὁ κυπρῖνος πεντάκις . Ὅτι ἐρχομένου τοῦ ἀέρος τινὲς τῶν ἰχθύων |
δοκεῖ νοσεῖν , ὅπερ οὐκ ἄλογον ἔχοντά τινα δριμύτητα : διατηροῦσι γὰρ αὗται . Τὸ γὰρ ὅλον ἐάν τις ἀλλοιώσας | ||
περὶ τὰ τούτου μέρη καὶ τὰ πάθη καὶ τὰ ἔργα διατηροῦσι τὸ συμβαῖνον . καὶ τὰς ἀρχὰς καὶ τὰ αἴτια |
καί ἐϲτι τροπὴ τοῦ θέρουϲ ἐπὶ τὸ ψυχρόν : μηνὶ Αὐγούϲτῳ κη Προτρυγητὴρ ἑῷοϲ ἐπιτέλλει καὶ Ὀιϲτὸϲ δύνει : ἐϲτὶ | ||
# α . δεῖ δὲ ϲκευάζειν τὸ φάρμακον ἐν μηνὶ Αὐγούϲτῳ , ἡνίκα ὀκτωκαιδεκαταία ἐϲτὶν ἡ ϲελήνη . εἰ δὲ |
καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . . | ||
τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο |