| τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
| παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
| ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
| δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
| δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
| Τιμαίῳ παραδίδωσιν , εἰς ἃ λέγει ὅτι πῶς ὀφείλομεν δύο ἐπογδόους εὑρίσκειν . τοῦτο οὖν τὸ νῦν παραδιδόμενον συμβάλλεται ἡμῖν | ||
| ἐπογδόους ἐν τῇ ψυχογονίᾳ εὑρήσομεν . εἰ γὰρ θέλομεν δύο ἐπογδόους εὑρεῖν , λαμβάνομεν τὸν δεύτερον ὀκταπλάσιον : τίς δὲ |
| ἀπέχοντες , ὅσον καὶ ἡ ὑποκειμένη ἑκάστη μοῖρα ἔχει τὸν σταδιασμόν , καὶ οὐκ ἔστι χρεία ποιεῖν τὸν λόγον πρὸς | ||
| ἀπέχοντες , ὅσον καὶ ἡ ὑποκειμένη ἑκάστη μοῖρα ἔχει τὸν σταδιασμόν , καὶ οὐκ ἔστι χρεία ποιεῖν τὸν λόγον πρὸς |
| ἐν εἰσθέσει μονόμετρον ἰαμβικόν , μεθ ' ὃ ἔκθεσις εἰς στίχους ἰαμβικοὺς ἀκαταλήκτους τριμέτρους παʹ . Γ ἀλλ ' οὐ | ||
| τοῦ Διονυσίου καυχωμένου περὶ τῶν ἰδίων ποιημάτων , καί τινας στίχους τῶν δοκούντων ἐπιτετεῦχθαι προενεγκαμένου , καὶ ἐπερωτῶντος Ποῖά τινά |
| ἀλλὰ δὲ τῇ ἑβδόμῃ ἄρας ἀπὸ μαζῶν καθαρώκην , καὶ σύνθες ἐν ὀργάνῳ εἰς ἀπόσταξιν τέχνης , τῷ μὲν ὄξει | ||
| ἑκατέρωθεν τούτων , οἷον τοῦ η καὶ τοῦ ιβ : σύνθες γὰρ τούτους , καὶ γίνονται πάλιν κ , καὶ |
| καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
| δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
| πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
| καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| μὲν οὖν ἐπὶ μονάδα αἱ ἀφαιρέσεις περαιωθῶσι , πρώτους καὶ ἀσυνθέτους αὐτοὺς ἀποφαίνουσι πρὸς ἀλλήλους , ὅταν δὲ ἐπὶ ἕτερόν | ||
| ψεύστας , διαβόλους , ἐπιόρκους , βαθυπονήρους , ἐπιβουλευτικούς , ἀσυνθέτους , ἀδεξιάστους , νοθευτάς , γυναικῶν διαφθορέας καὶ παίδων |
| , ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
| τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
| ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
| ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
| αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
| σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
| ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
| τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
| τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
| περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
| ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
| καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
| ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
| κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
| ͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
| μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
| ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
| , πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
| γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
| δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ | ||
| κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος |
| αʹ ἀτελὴς καὶ δοκεῖ βακχεῖος ἴτ ' ἐγκονεῖ : ] διίαμβος - τε σπεύδεθ ' ὡς : ] ἐπίτριτος γʹ | ||
| ⌈ καὶ ἑξασύλλαβος , καὶ ἀντίσπαστος καὶ ἐπίτριτος πεντασύλλαβος καὶ διίαμβος καὶ διτρόχαιος καὶ ἰωνικὸς καὶ παίων ⌈ , ὥσπερ |
| Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
| . . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
| Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς | ||
| Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς |
| ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
| αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
| καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
| λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
| : ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
| . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
| κατὰ μῆνα καὶ τῶν καθ ' ἡμέραν ἀποτελεσμάτων ἀπὸ τῶν ἐννάτων καθὼς ἐδόξασαν οἱ Ἰνδοὶ διηγησόμεθα εἰς τὸ μετέπειτα , | ||
| εἶτα τῆς Ἀφροδίτης . καὶ τοιουτοτρόπως ποιοῦμεν τὸν περίπατον τῶν ἐννάτων τῶν ζῳδίων πάντων , διαγινώσκοντες τοὺς κυρίους ἑκάστης διαιρέσεως |
| γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
| ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
| ἀνθρακωδῶν ἑλκῶν ρδʹ . Πρὸς τὰ ἐν μήτρᾳ ἀκάθαρτα ἕλκη ρεʹ . Πρὸς ὑγρὸν φερόμενον ἀπὸ τοῦ γυναικείου αἰδοίου ρϚʹ | ||
| ἐστὶν ] τὴν Ψυττάλειάν φησιν , ἥτις ἀπέχει τῆς Σαλαμῖνος ρεʹ σταδίους , ὅπου εὑρεθέντες οἱ ἡγεμόνες τῶν Περσῶν ὑπὸ |
| λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
| διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , | ||
| ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , |
| λέγεται παρὰ τὸ ἓν καὶ νέον . καὶ γὰρ αὕτη πολλαπλασιαζομένη ἕνα νέον ἀριθμὸν φέρει καθ ' ὕφεσιν μιᾶς μονάδος | ||
| γὰρ διπλασιαζομένη καὶ τριπλασιαζομένη καὶ ἁπλῶς εἰπεῖν πολλάκις πρὸς ἑαυτὴν πολλαπλασιαζομένη πάντως ἀρτίους ἀριθμοὺς ἀποτελεῖ . καὶ ἄλλως δὲ ἡ |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| τε τῶν χμʹ καὶ ὁ τῶν χμηʹ καὶ ὁ τῶν χλʹ . ὡς ἔχουσιν αἱ καταγραφαί . Ὅτι δὲ οὐ | ||
| στάδια ͵ατʹ : Κῶ περίμετρος στάδια φνʹ : Σάμου στάδια χλʹ . Ἰκαρία δὲ ἐστὶ μακρὰ , τραχεῖα , μῆκος |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| διατιθέμενον δὲ καὶ τὸν ὠκεανὸν ὑπ ' αὐτῆς κατὰ τοὺς ἑβδομαδικοὺς ἀριθμοὺς ὁρῶμεν : νουμηνίᾳ μὲν μέγιστος ἐν τῷ πλημμύρειν | ||
| Κρόνου , ἐν αἷς κατεδικάσθη . Ἢ πάλιν πειρατέον τοὺς ἑβδομαδικοὺς κύκλους εἰς μθʹετηρίδας κατάξαντας ἀπολύειν ἀπὸ τοῦ ἀφέτου ἀνὰ |
| θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
| ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
| ἔφη : Κοινῶς ποιητὰς ἔθος ἐστὶν καλεῖν , καὶ τοὺς περιττοὺς τῇ φύσει καὶ τοὺς κακούς : ἔδει δὲ κρίνειν | ||
| δὲ ὅτι καὶ ἡ τοῦ μαθηματικοῦ ἀριθμοῦ ἀρχὴ πάντας τοὺς περιττοὺς καὶ τοὺς ἀρτίους διπλασιάζουσα τὸν ἄρτιον ὑφίστησι : καὶ |
| δὲ ξέστην ἕνα καὶ ἥμισυν καὶ ταῦτα ἐπ ' ἀνθράκων διακεκαυμένων προαφεψήσαντας μετρίως καὶ ἀπαφρίσαντας μῖξαι ζιγγιβέρεως μὲν οὐγκίας τρεῖς | ||
| ὄξους δὲ ξέστην α , καὶ ταῦτα ἐπ ' ἀνθράκων διακεκαυμένων ἑψήσαντα μετρίως καὶ ἀπαφρίσαντα μῖξαι ζιγγιβέρεως μὲν # γ |
| ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
| . . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
| ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
| ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
| τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια | ||
| καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα |
| τετράκις δεκαέξ . Οἷον δύναμις ὁ δ τετράγωνος . . δυναμόκυβος . Οἷον δύναμις ὁ δ καὶ κύβος ὁ η | ||
| αὐτῷ πλευρᾶς γεγονότος πολλαπλασιάσῃς , γενήσεται ὁ λβ ὅστις ἐστι δυναμόκυβος . . κυβοκύβων . Δυναμόκυβός ἐστιν ὁ λβ ἐπειδὴ |
| τοῦτο δρῶσιν ἐπὶ τοῖς κοινοῖς ἀγαθοῖς . τρία γὰρ αὑτὴν διελοῦσα τέλη τὴν μὲν ἡγεμονίαν καθ ' ἕκαστον τοῖς ἀρίστοις | ||
| ποθεῖτ ' ἴσως μαθεῖν σαφέστερον ] : πεπόηκεν ἡ γυνὴ διελοῦσα τὸν τοῖχον ] διέξοδόν τινα [ ] παντ ' |
| : πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
| τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| ὥστε εἶναι ἐν ὅλῃ τῇ φάλαγγι κέρατα μὲν δύο , φαλαγγαρχίας δὲ δ , μεραρχίας δὲ η , χιλιαρχίας δὲ | ||
| ἐφ ' ᾗ ὁ στρατηγός , κέρατα ἔχουσα δύο , φαλαγγαρχίας ἤτοι ἀποτομὰς δ , μεραρχίας η , χιλιαρχίας ιϚ |
| ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν | ||
| πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν |
| ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
| ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
| , τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
| πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
| διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
| αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
| μεσότητος τὸ συντεθέντων τῶν ἄκρων ἀλλήλοις καὶ ὑπὸ τοῦ μέσου πολυπλασιασθέντων διπλάσιον ἀποτελεῖσθαι τὸ γινόμενον τοῦ ὑπὸ τῶν ἄκρων γινομένου | ||
| δύναμις ὁ δ καὶ κύβος ὁ η . Ἐξ ὧν πολυπλασιασθέντων γίνεται ὁ λβ δυναμόκυβος . . κυβόκυβον . Οἷον |
| . . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
| ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
| Ἔννατον ἐπὶ τοῖς εἰρημένοις δεῖ ζητῆσαι κεφάλαιον , ἐκ πόσων κανόνων δεῖ θηρᾶν τὸν ἑκάστου διαλόγου σκοπόν . χρεία γάρ | ||
| βάσεων , σκελῶν , διαπηγμάτων , ἀγκώνων , ἀξόνων , κανόνων , χελωνῶν , κοχλιῶν , τυμπάνων , τύλων , |
| ἀστραγάλων ἤ τινων ἄλλων ἐξετάζειν τὸν συμπαίζοντα πότερον ἀρτίους ἢ περισσοὺς κατέχει , ὡς καὶ Ἀριστοφάνης Πλούτῳ στατῆρσι δ ' | ||
| ὑπάρχον καὶ ταὐτὸν ἀεί . γεννᾶται δὲ δυάδος τοὺς τάξει περισσοὺς μηκυνούσης , ἵν ' ἐπειδὴ δυάδι οἱ γνώμονες ἀλλήλων |
| καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
| τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
| τὸ βαρύ . ὑποκείσθω δὲ καὶ τοὺς τοῖς ἑξῆς φθόγγοις συμφωνοῦντας διὰ τῆς αὐτῆς συμφωνίας ἑξῆς αὑτοῖς εἶναι . ἀσύνθετον | ||
| ὀκτακισχιλίους ἡ διαφορά ἐστι , πρὸς δύο καὶ ταῦτα ἄνδρας συμφωνοῦντας ἀλλήλοις , τῶν μὲν λεγόντων τὸ τῆς Ἰνδικῆς πλάτος |
| οἱ μερίζοντες καὶ περὶ τὴν ἐκείνου ἁπλότητα διπλασιαζόμενοι καὶ ἔτι πολλαπλασιαζόμενοι , ἐκεῖνο γὰρ τῷ ἓν εἶναι , πάντα ἐστὶ | ||
| . Καὶ πάλιν γίνεται δίτονον ὁ η καὶ ὁ θ πολλαπλασιαζόμενοι : ὁ γὰρ οβ εὑρίσκεται ἀνάλογον μεταξὺ καὶ ποεῖ |
| , καὶ δέον ἔστω τὸν ἐξ αὐτῶν ἀριθμὸν εἰπεῖν μὴ πολλαπλασιάσαντα αὐτούς . Ἔστι δὲ φανερὸν διὰ τῶν ἀριθμῶν : | ||
| , καὶ δέον ἔστω τὸν ἐξ αὐτῶν στερεὸν εἰπεῖν μὴ πολλαπλασιάσαντα αὐτούς . Ἔστωσαν οὖν οἱ ἀριθμοὶ νʹ νʹ νʹ |
| τοῦ ἀρτιάκις ἀρτίου ἐποιοῦμεν : γίνεται τοίνυν δωδεκάκις ψξη , ͵θσιϚ : οὗτος τοίνυν ὁ ὑπὸ τῶν ἄκρων ἐστί , | ||
| ϘϚ : πολλαπλασιαζόμεναι γὰρ αἱ κδ ἐπὶ τὰς τπδ ποιοῦσι ͵θσιϚ , ἀλλὰ καὶ ὁ ϘϚ ἐφ ' ἑαυτὸν πολλαπλασιασθεὶς |
| καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
| : τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
| χυμῶν ἄθροισις γενέσθαι : εἰ μὲν ἐπὶ τοὐκτὸς , τοὺς διαλείποντας , εἰ δὲ ἐπὶ τὰ ἐντὸς , τοὺς συνεχεῖς | ||
| τοὺς ὀκτὼ καὶ ἁπλῶς ἑκάστῳ τοὺς διπλασίους τῆς ἑαυτοῦ τάξεως διαλείποντας . ἐκ δὴ τούτου φανερὸν ὅτι ἕκαστος κατὰ τὸ |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
| λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
| οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , εἶτα διπλασίους καὶ τριπλασίους τούτων καὶ ἐπ ' ἄπειρον , ἐπιτριμερῶν δὲ ἑπτὰ | ||
| ἐπὶ μιᾶς εὐθείας ἐφεξῆς τούς τε διπλασίους ἐκτάττων καὶ τοὺς τριπλασίους , πρῶτον μὲν ἰσχυρίζεται τῇ λεγομένῃ κατὰ μῆκος σχίσει |
| τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ | ||
| καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ |
| οὐγγίαϲ αʹ ἡμιϲείαϲ . Ἡ μνᾶ πρὸϲ τὸ Ἰταλικὸν ἔχει δραχμὰϲ ρμδʹ , πρὸϲ δὲ τὸ Ἀττικὸν δραχμὰϲ ρκβʹ : | ||
| παρ ' ἔμοιγ ' ὤν . ἀλλὰ διὰ τὰϲ τέτταραϲ δραχμὰϲ ἀποβαλῶ , φηϲί , τὴν προαίρεϲιν ; καὶ τῶν |
| τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε | ||
| ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε |
| ἐπιβάλλον . ἐὰν δέ πως μήτε Ἥλιος μήτε Σελήνη τὸν ἀφετικὸν τόπον λάχωσιν ἀλλὰ ὡροσκόπος ἢ μεσουράνημα , οὐκέτι τὸ | ||
| ἀφέτης . καὶ ἐὰν μὲν ὁ Ἥλιος ἢ Σελήνη τὸν ἀφετικὸν τόπον λάχῃ , λογίζεσθαι δεῖ ἀπὸ τῆς ἀφετικῆς μοίρας |
| λέγονται μερικαὶ γνώσεις , οὕτω καὶ εἰσὶ καὶ καθ ' ὅρους μόνον βεβήκασι καὶ ἄνευ συνθέσεως ἐν ἑνὶ τῷ ὑποκειμένῳ | ||
| γὰρ μεταπίπτειν . Θέσει ἄρα . , ] διὰ τοὺς ὅρους . κύκλος γὰρ τῇ θέσει καὶ τῷ μεγέθει δεδόσθαι |
| . τούτων πάλιν συντιθεμένων γίνονται πόδες δισυλλάβων μὲν καὶ τρισυλλάβων πεντασύλλαβοι λβ , τῶν δὲ τρισυλλάβων ἀλλήλοις παρατιθεμένων ἑξασύλλαβοι ξδ | ||
| τάξει αὐτῶν κεῖνται , ἀλλὰ προστιθεμένης καὶ ἑτέρας συλλαβῆς γίνονται πεντασύλλαβοι καὶ ἀποτελοῦσιν ἐπιτρίτους : ὁμοίως καὶ οἱ λοιποί . |
| λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
| , εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
| καὶ ἐλλείψεις τοῦ δέοντος : ἀλλ ' ὅμως οὔτε τοὺς μέσους σώφρονας λέγομεν οὔτε τοὺς ὑπερβάλλοντας ἀκολάστους . εἰ δὲ | ||
| - τοῦ , πορφυραῖ δὲ ἄρα στιγμαὶ τοὺς ὀφθαλμοὺς αὐτῷ μέσους ἐς κάλλος γράφουσιν . ὁ δὲ τοξότης ἐν τῇ |
| καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . . | ||
| τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο |
| ρα κβ ἢ ταῖς ἀπὸ σνη λη μέχρις σϘ μα συνεμπίπτῃ , τότε μόνον ἐν τοῖς ἐκκειμένοις τόποις δυνατὸν ἔσται | ||
| τῶν νβʹ , καὶ εὑρόντα πρῶτον ἐννεαδικὸν ζητεῖν , μὴ συνεμπίπτῃ αὐτῷ ἑβδομαδικός . οὐκ ἀρέσκει δέ τισι τὸ [ |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
| ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
| συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
| τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| νήσων ἡ μεγίστη καλουμένη Ἀλβίων τὴν περίμετρον ἔχει σταδίων τρισμυρίων ἐννακισχιλίων , ἡ δὲ Ἰέρνη ἀναλόγως ταύτης μείζων * . | ||
| Καρχηδόνα ὑπὲρ μυρίους καὶ τρισχιλίους , οὐ πλείους ὄντας τῶν ἐννακισχιλίων , εἴπερ ἐπὶ τοῦ αὐτοῦ μεσημβρινοῦ ἐστι κατὰ τοῦτον |
| ἐπαναφερομένων τῇ ὡροσκοπούσῃ , καὶ ταύταις ταῖς λ μοίραις δεξιὰς ἑξαγώνους μὲν τὰς τοῦ ιαʹ τόπου ὃν καὶ ἀγαθὸν δαίμονά | ||
| μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις δεξιὰς ἑξαγώνους τὰς τοῦ ἀγαθοῦ δαίμονος καὶ τετραγώνους τοῦ ὑπὲρ γῆν |
| , ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
| πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
| δὲ Νικοχάρης ἔφη : κύουσαν δέλφακα . καὶ Εὔπολις Χρυσῷ Γένει : οὐκ ἀλλ ' ἔθυον δέλφακα ωδον θἠστίᾳ καὶ | ||
| ' Ἀλκαίου τοῦ κιθαρῳδοῦ , οὗ καὶ Εὔπολις ἐν Χρυσῷ Γένει μέμνηται ὦ ' λκαῖε Σικελιῶτα Πελοποννήσιε . τί δὲ |
| ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
| ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
| ρβ τῆς ἀνωμαλίας ἀπέχουσα τοῦ ἀπογείου τοῦ ἐπικύκλου καὶ μοίρας σνη ἕως σο , πλεῖστον καὶ τὸ παρὰ τὴν πρώτην | ||
| , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς τὰ # |
| θεῶν εἵλκυσαν εἰς ἔρωτα ἑαυτῶν , ἐξαιρέτως δὲ παρὰ τοὺς λοιποὺς θεοὺς Ἄρης καὶ Ἀθηνᾶ τῆς πόλεως ἤρων καὶ ἀντεποιεῖτο | ||
| ἐκλήθη σεισάχθεια : φανερὸν δὲ διὰ τί . Ἔπειτα τοὺς λοιποὺς νόμους ἔθηκεν , οὓς μακρὸν ἂν εἴη διεξιέναι , |
| . ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν : | ||
| σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων |
| διάνοιαν καὶ τοῖς ὀνόμασι διαφέρουσιν . Ἐπεὶ γοῦν δύο μὲν κανόνας τῶν εἰς ην ὀνομάτων , ὥς φαμεν , ὁ | ||
| φαίνεσθαι , ἃ δὴ καὶ φανδούρους καλοῦσιν οἱ πολλοὶ , κανόνας δ ' οἱ Πυθαγορικοὶ , καὶ τὰ τρίγωνα τῶν |
| δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
| ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
| ὁ μὲν κθʹ πρὸς ἀμφοτέρους τοὺς ἄκρους οὐ ποιεῖ λόγον ἐπιμόριον , ὁ δὲ κηʹ πρὸς μὲν τὸν λʹ τὸν | ||
| πολλαπλάσιον δὶς συντεθῇ , τὸ ὅλον οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , |
| κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται | ||
| καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα : |
| ἢ συμβεβηκός , ἐνδέχεται καὶ διαφόρους μέσους λαβεῖν καὶ διαφόρους ἐλάττονας , κἀντεῦθεν συναγαγεῖν καὶ διάφορα συμπεράσματα . κατὰ σημεῖον | ||
| οἱ δὲ πορρωτέρω , καὶ διὰ τοῦτο ἢ πλέονας ἢ ἐλάττονας περιέπλευσαν σταδίους : τοῦ δὲ ἐπ ' εὐθείας γινομένου |
| δέ φησι : πρὸς τοὺς στρατηγοὺς ῥᾷόν ἐστι μυρίαις μοίραις προσελθόντ ' ἀξιωθῆναι λόγου ἢ πρὸς τοὺς καταράτους ἰχθυοπώλας ἐν | ||
| ἐν Πλάνῳ : πρὸς τοὺς στρατηγοὺς ῥᾷόν ἐστιν μυρίαις μοίραις προσελθόντ ' ἀξιωθῆναι λόγου λαβεῖν τ ' ἀπόκρισιν ὧν ἂν |
| προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
| ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
| , ὁπλίτας ὑβριστάς , ἐν Σικελίᾳ ἡττωμένους , ἐν Ἑλλησπόντῳ λαμβανομένους . Τὰ δὲ Περσικὰ εἰ λέγοις , στρατιωτικόν μοι | ||
| δὲ ῥᾴδιον παρακολουθήσωμεν τοῖς ῥηθησομένοις , λέγομεν ὡς ἐπεὶ τοὺς λαμβανομένους ἐν ταῖς προτάσεσιν ὅρους καὶ φωνάς τινας εἶναι ἀναγκαῖον |