, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
: μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
τυχεῖν : ἐπὶ τῶν ἐκ κακῶν εἰς ἀγαθὰ μεταβαινόντων . Ἀμελοῦς γωνία : ἐπὶ τῶν ῥᾳθύμως καὶ ἀργῶς καθημένων . | ||
ἀργῶς καὶ ῥαθύμως καθημένων . Ἔστι δὲ καὶ χωρίον Λιβύης Ἀμελοῦς γωνία καλούμενον . Ἀμουσότερος Λειβηθρίων : ἐπὶ τῶν ἀμούσων |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ | ||
ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ |
τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς | ||
καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως |
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
γωνίας τεταγμένων πολυγώνων , τὴν δὲ περίμετρον ἴσην , τὸ πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο | ||
ὁπότε τὰς περιμέτρους ἴσας εἶχεν , ἀεὶ μεῖζον ἀπεδείκνυτο τὸ πολυγωνότερον , καὶ πάντων ὁ κύκλος μείζων , ὥσπερ ἐδείχθη |
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
: οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
ἐκ πλειόνων μέν εἰσιν ἁπλῶν λόγων ἡνωμένων δὲ ὑπὸ τοῦ συναπτικοῦ προσαγορευομένου συνδέσμου , οἷον εἰ ἡμέρα ἐστίν , ἥλιος | ||
ἐν οἷς συμπλέκει λόγους , ἔχων δὲ καὶ τὴν τοῦ συναπτικοῦ , ἐν οἷς ἀκολουθίας ἐστὶ παραστατικός , οὐκ ἀπὸ |
δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
τινὸς κύκλου τοῦ ΑΔ περιφερείας τὰς ΑΕ , ΕΔ ἴσας ἀφαιρείτωσαν πρὸς τὸν μέγιστον τῶν παραλλήλων τὸν ΖΕΗ , καὶ | ||
, ὦ θεοί , ἢ ἀκροάσασθαι ἐπικύψαντας αὐτῶν ; ὥστε ἀφαιρείτωσαν αἱ Ὧραι τὸν μοχλὸν ἤδη καὶ ἀπάγουσαι τὰ νέφη |
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
τοὺς μὲν τριάκοντα τὰς γνώμας ἐν ἀλλήλοις ἀποφαίνεσθαι , τὸν ἀρχιδικαστὴν δὲ τὸ ζώιδιον τῆς ἀληθείας προστίθεσθαι τῆι ἑτέραι τῶν | ||
σχήματος ὅτι τοὺς μὲν δικαστὰς οὐδὲν δεῖ λαμβάνειν , τὸν ἀρχιδικαστὴν δὲ πρὸς μόνην βλέπειν τὴν ἀλήθειαν . ἑξῆς δ |
, τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
ἀρχαὶ πρὸς τὰς τάσεις . ἔχει δὲ καὶ πώματα τὸ γλωσσόκομον χάριν τοῦ κρύπτεσθαι τὰ ἐν αὐτῷ μηχανήματα : ἔχει | ||
ἢ ὁτουοῦν ἄλλου . καλοῦσι δ ' αὐτὸ οἱ ἀμαθεῖς γλωσσόκομον . γλῶτται αὐλῶν καὶ γλῶτται ὑποδημάτων : ἃ γλωττίδας |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
εἰς ἴσα . ὁμοίως οὐδὲ ἡ τρίτη . Τὸν κανόνα καταγράψαι κατὰ τὸ καλούμενον ἀμετάβολον σύστημα . ἔστω τοῦ κανόνος | ||
βασιλεῦσαι , „ Ἡρόδοτον δὲ καὶ τὸ ὄνομα τοῦ βασιλέως καταγράψαι καλέσαντα Ἀργανθώνιον . Τῇ δὲ τῆς χώρας εὐδαιμονίᾳ καὶ |
Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον | ||
τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν |
τῶν ἄλλων ὑποκειμένων τῶν αὐτῶν : λέγω ὅτι ἡ ὑπὸ ΑΓΠ ὀξεῖά ἐστιν . Ἐπεὶ γάρ ἐστιν ὡς μὲν ἡ | ||
τοῦ ΑΓΡ τριγώνου ἐλάσσων ἐστίν : ὀξεῖα ἄρα ἡ ὑπὸ ΑΓΠ γωνία : ἡ κλίσις ἄρα τῶν εἰρημένων ἐπιπέδων πρός |
. παύονται δὲ τῶν καθάρϲεων αἱ μὲν περὶ τὸ πεντηκοϲτὸν ἔτοϲ , ϲπάνιαι δὲ μέχρι τῶν ἑξήκοντα , ἐνίαιϲ δὲ | ||
ἡ παροῦϲα ὥρα τοῦ ἔτουϲ , ποταπὸν δὲ τὸ ϲύμπαν ἔτοϲ : ἐντεῦθεν γὰρ τὰϲ διαίταϲ εὑρήϲειϲ ποιεῖϲθαι κάλλιϲτα , |
εἰ μὴ κικίννους ἀξίους λίτραιν δυοῖν . σὺν δὲ τῇ λίτρᾳ καὶ ἄλλα ὠνόμασε νομισμάτων ὀνόματα Ἐπίχαρμος ἐν Ἁρπαγαῖς ὥσπερ | ||
γὰρ ια καὶ ιγ # τοῦ ἐλαίου μίξειϲ τότε τῇ λίτρᾳ τοῦ κηροῦ . Ἐν ταῖϲ ἑψήϲεϲι τῶν φαρμάκων ἡ |
κατὰ τὸ καρτερώτατον , οὔτε χρόνου φειδόμενος εἰς οὐδὲν δέον δαπανωμένου οὔτε δόξης ἀμείνονος ἐπιστροφήν τινα ποιησάμενος . ἤκουσε γὰρ | ||
διπλασιάζων τὸ ἐγγραφόμενον πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν |
ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προσειληφώς | ||
γὰρ καὶ α ὁ γ ἐστί , καὶ τῇ γε σχηματογραφίᾳ οὕτως συνίσταται : ἐπὶ μιᾷ μονάδι δύο μονάδες παράλληλοι |
λίθος ἐστίν , ἵνα μὴ ἐπὶ ἀναιρέσεως τὸν καταφατικὸν προσδιορισμὸν παραλαμβάνωμεν . Τὰς ἀντιθέσεις ἁπάσας τῶν προσδιωρισμένων προτάσεων ἐν τούτοις | ||
δὲ ἕνεκεν , μήτε τὸν Ἑρμῆν ? ? ? ? παραλαμβάνωμεν ? εἰς διδασκαλίαν , ὥς φασίν τινες , μήτε |
τῶν καθεστώτων στρατιωτῶν χρήσιμον μετὰ σημείου , ᾥτινι ὁ πᾶς τοῦλδος ἤτοι τὰ σαγμάρια ἀκολουθεῖν ὀφείλουσιν . Χρὴ ὁρισθῆναι πόσαι | ||
ὡς ἀπὸ λίθου βολῆς . Ἐὰν δὲ σύνεισι καβαλλάριοι ἢ τοῦλδος , ὄπισθεν αὐτῶν τὸν τοῦλδον ποιεῖν καὶ μετ ' |
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
διὰ τέσσαρα κύκλος : κείνου δ ' ἡμίτονον φαίνων ἀνίησι χαλασθείς , τοῦ δὲ τόσον φαέθων ὅσον ὄβριμος Ἄρεος ἀστήρ | ||
διὰ τέσσαρα κύκλος : κείνου δ ' ἡμίτονον Φαίνων ἀνίησι χαλασθείς , τοῦ δὲ τόσον Φαέθων ὅσον ὄβριμος Ἄρεος ἀστήρ |
, τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν | ||
Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς |
εἰσιν κορυφαί , ὧν βάσεις αἰεὶ τὸ αὐτὸ πλάτος τοῦ πρισματίου , ἀλλὰ καὶ παραλλήλων τριγώνων τῷ ΑΒ ἐπιπέδῳ καὶ | ||
καὶ μέρος τοῦ σώματος αὐτοῦ φαίνηται ὑπὲρ τὸ πλάτος τοῦ πρισματίου , δεήσει πάλιν τὸ πρισμάτιον ἐγγυτέρω τῆς ὄψεως κινοῦντα |
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
λέγεται παρὰ τὸ ἓν καὶ νέον . καὶ γὰρ αὕτη πολλαπλασιαζομένη ἕνα νέον ἀριθμὸν φέρει καθ ' ὕφεσιν μιᾶς μονάδος | ||
γὰρ διπλασιαζομένη καὶ τριπλασιαζομένη καὶ ἁπλῶς εἰπεῖν πολλάκις πρὸς ἑαυτὴν πολλαπλασιαζομένη πάντως ἀρτίους ἀριθμοὺς ἀποτελεῖ . καὶ ἄλλως δὲ ἡ |
ἐν τοῖς μέσοις συναναβλαστάνοντα καὶ ἐπιφυόμενα τῶν βλαβερῶν ἀναγκαίως ἂν τέμνοιτο τοῦ μὴ ζημιοῦσθαι τὰ ἀμείνω χάριν . ἢ οὐκ | ||
συγκαταθετέον , διὰ γὰρ τῆς δριμυφαγίας εἰ καὶ τὸ πάχος τέμνοιτο τοῦ γάλακτος , ἡ ποιότης αὐτοῦ φθαρεῖσα καὶ δηκτικὴ |
, ἑξάκις ἂν τόσση μιν ὑποδράμοι : αὐτὰρ ἑκάστη ἴση μετρηθεῖσα δύω περιτέλλεται ἄστρα οὐ γραμματικοῦ τοῦτο νοῆσαι , ὅτι | ||
τοῦ λίθου δυνάμει . Ἀλλὰ οὖσα πρώτη φύσις καὶ οὐ μετρηθεῖσα οὐδὲ ὁρισθεῖσα ὁπόσον δεῖ εἶναιταύτῃ γὰρ αὖ ἡ ἑτέρα |
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
' ἀλλήλων , μᾶλλον δὲ ἀδυνάτως ἔχουσι κατὰ τὸ ἀκριβὲς ὁρισθῆναι αἱ τῶν ζῳδίων μοῖραι , ἀλλ ' εἰκός ἐστιν | ||
εἰδέναι τὰς διαφοράς , ἃς ἔχει τὸ προκείμενον εἰς τὸ ὁρισθῆναι πρὸς ἕκαστον τῶν παρ ' αὐτὸ ὄντων ἄνευ τοῦ |
, καὶ τὴν ὑπὸ ΔΒΓ γωνίαν δίχα τεμόντες ἕξομεν τρίχα τετμημένην τὴν ὑπὸ ΑΒΓ γωνίαν . μʹ . Ἔστω δὲ | ||
τὸν οἶνον ἔνδοθεν , πρὸς δὲ τούτοις τὴν ὕλην τὴν τετμημένην πεπρακότα μετὰ τὴν ἀντίδοσιν , πλέον ἢ τριάκοντα μνῶν |
μδʹ γοʹʹ [ Ἀρτάβρων ] Ἀρτάβρων λιμὴν εʹ γʹʹ μεʹ Νέριον ἀκρωτήριον εʹ δʹʹ μεʹ Ϛʹʹ Ἡ δὲ ἀρκτικὴ πλευρὰ | ||
τοῦ ἱεροῦ ἀκρωτηρίου μέχρι τῆς πρὸς Ἀρτάβροις ἄκρας ἣν καλοῦσι Νέριον : τέταρτον δὲ τὸ ἐνθένδε μέχρι τῶν βορείων ἄκρων |
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
ἡλίου τῆς ἐπιπροσθούσης αὐτῷ κορυφῆς : ὥστ ' ἂν αὕτη σταδιαία ᾖ , μείζονα δεήσει σταδιαίας εἶναι τὴν τοῦ ἡλίου | ||
προαστείων : ἀπὸ δὲ τοῦ αὐχένος ἐπὶ τὰς κορυφὰς ἄλλη σταδιαία λείπεται πρόσβασις ὀξεῖα καὶ πάσης βίας κρείττων : ἔχει |
αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε | ||
ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε |
ἄλκιμον ἦτορ , οὐρῇ δὲ πλευράς τε καὶ ἰσχία ἀμφοτέρωθεν μαστίεται , ἑὲ δ ' αὐτὸν ἐποτρύνει μαχέσασθαι , γλαυκιόων | ||
ὁ ποιητής : οὐρῇ δὲ πλευράς τε καὶ ἰσχία ἀμφοτέρωθεν μαστίεται . Καλλίμαχος δὲ κακῶς ἐπὶ τῶν μυῶν τέθεικεν : |
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν | ||
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν |
εἶτα ἀπεχόμενος . καρτερία δέ ἐστιν ἐπιστήμη ὑπομενετέων καὶ οὐχ ὑπομενετέων , ἢ ἀρετὴ ὑπεράνω ποιοῦσα ἡμᾶς τῶν δοκούντων εἶναι | ||
ἀρετῆς τιθέμενοι : τὴν γὰρ ἀνδρείαν ᾔδεισαν φευκτέων τε καὶ ὑπομενετέων ἐπιστήμην , ὡς ἂν ὁ ὀρθὸς ὑπαγορεύῃ λόγος . |
τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ | ||
ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α . |
παρθένοι δώδεκα . αἱ οὖν τέσσαρες αἱ εἰς τὰς γωνίας ἑστηκυῖαι ἐνδοξότεραί μοι ἐδόκουν εἶναι : καὶ αἱ ἄλλαι δὲ | ||
ὧδε κἀκεῖ περιτρεχόντων κύκλῳ τῆς πύλης : αἱ δὲ παρθένοι ἑστηκυῖαι περὶ τὴν πύλην ἔλεγον τοῖς ἀνδράσι σπεύδειν δεῖν οἰκοδομηθῆναι |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν | ||
ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν |
πράγμασιν , πῶς ἐὰν εἴπω ἄνθρωπός ἐστι ζῷον λογικὸν θνητὸν ἀποθνῆσκον καὶ τὰ ἑξῆς καὶ πλεονάσω ταῖς λέξεσιν ὁ ὅρος | ||
ταὐτὸν γάρ ἐστιν κατὰ τὴν σημασίαν τὸ θνητόν καὶ τὸ ἀποθνῆσκον . ἐπειδὴ οὖν οὐδὲν πλέον σημαίνει ἡ προστεθεῖσα λέξις |
ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
συστηματικαὶ δέ , ὁπόταν ἐκ διαζεύξεως εἰς συναφὴν ἢ ἔμπαλιν μετέλθῃ τὸ μέλος . Μελοποιία δέ ἐστι ποιὰ χρῆσις τῶν | ||
πρῶτός ἐστι φιλόσοφος : ὅταν δὲ ἀπὸ τῆς θέας ἐκείνης μετέλθῃ εἰς ἐπιμέλειαν τῆς πόλεως καὶ κατὰ τὴν θέαν ἐκείνων |
πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν τῷ κύκλῳ , | ||
πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὤιετό ποτε δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτωι τῶι τρόπωι ἐν τῶι κύκλωι , |
ἕξει ὅ τε Κριὸς καὶ ἡ Παρθένος . Ἵνα δὲ συντομωτέραν τὴν πῆξιν δηλώσωμεν πρὸς τό τινας καὶ ὅλον τὸ | ||
τὴν ὑποδειχθησομένην ὁδόν . Ἐδοκιμάσθη οὖν ἕκαστος τούτων τῶν ἀριθμῶν συντομωτέραν ἐπωνυμίαν κτησάμενος στοιχεῖον τῆς ἀριθμητικῆς θεωρίας εἶναι : καλεῖται |
τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ | ||
σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ |
ἱκανὸς εἶναι παρὰ τοιούτοις ἀνδράσι δοκιμασθείην . Τὸ δὲ σύνταγμα θαρροῦντί μοι λοιπὸν εἰπεῖν ὡς στρατηγῶν τε ἀγαθῶν ἄσκησις ἔσται | ||
ἱκανὸς εἶναι παρὰ τοιούτοις ἀνδράσι δοκιμασθείην . Τὸ δὲ σύνταγμα θαρροῦντί μοι λοιπὸν εἰπεῖν ὡς στρατηγῶν τε ἀγαθῶν ἄσκησις ἔσται |
ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
συμμαχίαν , ἵνα συνερχόμενοι καθ ' ἕκαστον ἐνιαυτὸν εἰς τὸν ἀποδειχθέντα τόπον πανηγυρίζωσι καὶ συνεστιῶνται καὶ κοινῶν ἱερῶν μεταλαμβάνωσιν . | ||
τὸν λόγον κατ ' ἐλπίδα προδοσίας καὶ συνελθόντος εἰς τὸν ἀποδειχθέντα τόπον , προελθοῦσα εἰς ἐφικτὸν ἡ παρθένος ἐξεληλυθέναι μὲν |
ἀπέχοντες , ὅσον καὶ ἡ ὑποκειμένη ἑκάστη μοῖρα ἔχει τὸν σταδιασμόν , καὶ οὐκ ἔστι χρεία ποιεῖν τὸν λόγον πρὸς | ||
ἀπέχοντες , ὅσον καὶ ἡ ὑποκειμένη ἑκάστη μοῖρα ἔχει τὸν σταδιασμόν , καὶ οὐκ ἔστι χρεία ποιεῖν τὸν λόγον πρὸς |
Συναγ . . , . : Τὰ Εὐκλείδου βιβλία δ Κωνικῶν Ἀπολλώνιος ἀναπλώσας καὶ προσθεὶς ἕτερα δ παρέδωκεν η Κωνικῶν | ||
σκοπεῖν , ἔξεστι ταῦτα παρατιθέντι τοῖς ἐν τῷ πρώτῳ τῶν Κωνικῶν εἰρημένοις αὐτῷ δι ' αὑτοῦ βεβαιῶσαι τὸ προκείμενον : |
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
ϲπληνίον ἐπιτίθει τῆϲ τετραφαρμάκου . Περὶ χαλαζίων . χαλαζιᾶν δὲ λέγουϲι τὰ βλέφαρα , ὅταν ἐκϲτραφέντων αὐτῶν φαίνηταί τινα ὑπερέχοντα | ||
δέ τιϲ καὶ ἀμυνόμενοϲ αὐτὸν ἀποκτεῖναι βούλοιτο τὸ θηρίον , λέγουϲι τοῦτον μοχθηρὸν ὄζειν πάνυ , καὶ μηδενὸϲ δὲ ἄλλου |
ῥαφή : ἀντὶ τοῦ παραλογίζεται , ὡς καὶ ἐν εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ | ||
συνώνυμον θεὶς τὸ ἀλύειν τῷ πλανᾶσθαι . κεῖται ἐν τετάρτῳ Ἐπιδημιῶν καὶ ἐν αʹ Γυναικείων καὶ ἐν Ἀφορισμοῖς . ἀπεδείξαμεν |
. ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον ὀρθογώνιον ὅμοιόν ἐστιν τῷ ΜΒΝ τριγώνῳ ὀρθογωνίῳ , καὶ ἔστιν ἡμίσεια ὀρθῆς ἑκατέρα τῶν | ||
δέ ἐστι τὸ ΔΜΒ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ ΜΒΝ : κατὰ διάμετρον ἄρα ἐστὶ τὸ Μ σημεῖον τῷ |
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος , | ||
δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία |
νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
δὲ κινούμενον ἄλογον ἔσται , τοιοῦτον δὲ ὂν οὐκ ἔσται καταλαμβάνον ἀλλὰ καταλαμβανόμενον . ὅπερ πάλιν ἦν ἄτοπον . Διὰ | ||
εἰς τήνδε τὴν ἀρτηρίαν αἵματος : ἐνοχλεῖ δὲ τῷ πνεύματι καταλαμβάνον αὐτοῦ τὰς ὁδούς , καὶ οὕτως ἤδη βήττει μὲν |
καθάπερ οὖν οὐδὲ ἡμεῖς , ὅταν εἰς τὴν οἰκίαν τινὰ εἰσαγάγωμεν ἢ τὸ χωρίον ἢ σκεύη τινὰ παράσχωμεν , εὐθὺς | ||
] μέχρις , μέχρι οὗ , ὅπως . ἐμβάλλωμεν ] εἰσαγάγωμεν . ἐσβάλωμεν ] ἐπιρρίψωμεν . . ὅπως ἂν ] |
κατὰ βρέγματος ἐπὶ ἰνίον , εἶτα μετωπιαία . Κεφ . κστʹ . Ἡ μεσότης τῷ ἰνίῳ ἐντιθέσθω τὰ εἰλήματα , | ||
πρὶν ἀλείψασθαι . ἐπὶ ἡμέρας κʹ . ἀφανίζονται . [ κστʹ . Πρὸς τὸ κοιλίαν , ἢ ὑποχόνδριον , ἢ |
ἀλλὰ καὶ Ἀπατουρίτης . δύναται καὶ Ἀπατούριος καὶ Ἀπατουρεύς . Ἀπέννιον , ὄρος διὰ μέσης Ἰταλίας τεταμένον ” τὴν μέν | ||
ἴδρις μωμήσαιτο σοφῆς ὑποεργὸς Ἀθήνης : ὅν ῥά τε κικλήσκουσιν Ἀπέννιον : ἐκ δὲ βορείης Ἄλπιος ἀρχόμενον Σικελὴν ἐπὶ πορθμίδα |
καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : φανερὸν δὴ ἐκ τοῦ προδεδειγμένου , ὅτι τὸ ΜΡ μέσον ἀνάλογόν ἐστι τῶν ΣΝ | ||
ἐπορευόμην χωρίον οὐκ ἄλλης πτώσεώς ἐστιν ἢ τῆς αἰτιατικῆς , προδεδειγμένου τοῦ ἐν εὐθείᾳ μὴ δύνασθαι τὰς προθέσεις καταγίνεσθαι , |
συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |
μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
, ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
τῆς ἀπάτης ἔρχεται : καὶ νῦν οὔτε βουλευτὴς εἰς τὰς πλευ - ρὰς ὕβρισται κέρδος τε οὐδὲν κεκράτηκε τῆς ψυχῆς | ||
, εἰ καὶ μὴ πρότερον ; οὐκ ἐπὶ τὴν ἐκείνου πλευ - σόμεθα ; ποῖ οὖν προσορμιούμεθ ' ; ἤρετό |
ΔΕΖ , τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ . Συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ | ||
] ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ ῥητόν ἐστιν . Συνεστάτω οὖν τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , |
εἴπερ μήτε κατὰ τὴν ἀντίθεσιν τοῦ θεριεῖν πρὸς τὸ μὴ θεριεῖν ἔχει χώραν , ἐξ ἀνάγκης τοῦ ἑτέρου τούτων ἐκβαίνοντος | ||
πρὶν διέλυε τὴν σύνταξιν ἢ τὸ πεδίον , ὃ ἔμελλεν θεριεῖν , ἱππεῦσι καὶ ὁπλίταις περιλάβοι : καὶ τότε κυκλῶν |
. σφῶν : τῶν Λακεδαιμονίων . εἰρημένον : ἀντὶ τοῦ ὁρισθέντος . κύριον : κεκυρωμένον , βέβαιον Κορίνθιοι : τὸ | ||
ὅσον κατὰ τὴν τοῦ ὁρισμοῦ ἀπόδοσιν ἔστιν ἐρωτᾶν περὶ τοῦ ὁρισθέντος , διὰ τί ἐστι , καὶ διὰ τί τοῦτ |