| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ | ||
| ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
| κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
| ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
| ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
| : μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| , τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν | ||
| Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς |
| αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
| ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
| τυχεῖν : ἐπὶ τῶν ἐκ κακῶν εἰς ἀγαθὰ μεταβαινόντων . Ἀμελοῦς γωνία : ἐπὶ τῶν ῥᾳθύμως καὶ ἀργῶς καθημένων . | ||
| ἀργῶς καὶ ῥαθύμως καθημένων . Ἔστι δὲ καὶ χωρίον Λιβύης Ἀμελοῦς γωνία καλούμενον . Ἀμουσότερος Λειβηθρίων : ἐπὶ τῶν ἀμούσων |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς | ||
| καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως |
| τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
| ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
| ' ἀμφοτέρως ἐκέρδαινον , σοί τε συνὼν καὶ τῆς νῦν ἀνιούσης ἡμῖν πόλεως ἀπολαύων τὰ γιγνόμενα . ἐπεὶ δ ' | ||
| ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ εἰς ὕψος αἰρομένης καὶ μενούσης ἀκλίτου πρὸς τὰ |
| ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
| Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
| τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
| ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
| : οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
| κατὰ βρέγματος ἐπὶ ἰνίον , εἶτα μετωπιαία . Κεφ . κστʹ . Ἡ μεσότης τῷ ἰνίῳ ἐντιθέσθω τὰ εἰλήματα , | ||
| πρὶν ἀλείψασθαι . ἐπὶ ἡμέρας κʹ . ἀφανίζονται . [ κστʹ . Πρὸς τὸ κοιλίαν , ἢ ὑποχόνδριον , ἢ |
| γίνεσθαι , περὶ καρκίνον γενομένου τοῦ ἡλίου , περὶ μεσημβρίαν ἀτρεκῆ ἐπὶ τριακοσίους τὴν διάμετρον σταδίους μηνύει σαφῶς , ὅτι | ||
| δὲ ὅμως οὐδὲν καὶ τούτων οὕτως ἐχόντων συγγενομένους ἡμᾶς τὴν ἀτρεκῆ διάπειραν ἀλλήλων λαβεῖν : δύναιτο γὰρ ἂν καὶ τὰ |
| μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
| , ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
| διατεταγμένων , κίνησιν καὶ περιπόλησιν εὐμελεστάτην ἅμα καὶ ποικίλως περικαλλεστάτην ἀποτελουμένην . ἀφ ' ἧς ἀρδόμενος ὥσπερ καὶ τὸν τοῦ | ||
| τὴν ἐπιφάνειαν , καὶ ὡς εἰπεῖν περιγανοῖ τὴν ἐξ αὐτοῦ ἀποτελουμένην πύκνωσιν τῶν πόρων [ τὸ ὄξος ] : ὅθεν |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
| ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν | ||
| ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν |
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
| ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ | ||
| . ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ |
| μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
| ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
| λίθος ἐστίν , ἵνα μὴ ἐπὶ ἀναιρέσεως τὸν καταφατικὸν προσδιορισμὸν παραλαμβάνωμεν . Τὰς ἀντιθέσεις ἁπάσας τῶν προσδιωρισμένων προτάσεων ἐν τούτοις | ||
| δὲ ἕνεκεν , μήτε τὸν Ἑρμῆν ? ? ? ? παραλαμβάνωμεν ? εἰς διδασκαλίαν , ὥς φασίν τινες , μήτε |
| νῦν χρὴ νοῆσαι , ἐπειδὴ ὁ Ἰσσικὸς κόλπος πρὸς βορέαν ἀνατεινόμενος κατὰ τοῦτο τὸ μέρος ἐπικάμπτεται . Δνοφερῇ δὲ τῇ | ||
| ἐπὶ τῶν ὑπομνηστικῶν σημείων θεωρεῖται οὕτω γιγνόμενον : ὁ γὰρ ἀνατεινόμενος πυρσὸς τισὶ μὲν πολεμίων ἔφοδον σημαίνει , τισὶ δὲ |
| ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
| ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
| τοῦ κατὰ πρόσωπον μέρους τοῦ πρὸς μεσημβρίαν βλέποντος τριπλῷ περιλαμβανόμενος στοίχῳ κιόνων , ἐκ δὲ τῶν πλαγίων ἁπλῷ : ἐν | ||
| καθ ' ἣν μέμαρπται καὶ συνείληπται πάντα ἐν τάξει καὶ στοίχῳ μὴ ἔχοντι πέρας τὰ γινόμενα [ σύλληψιν ἡ ει |
| συστηματικαὶ δέ , ὁπόταν ἐκ διαζεύξεως εἰς συναφὴν ἢ ἔμπαλιν μετέλθῃ τὸ μέλος . Μελοποιία δέ ἐστι ποιὰ χρῆσις τῶν | ||
| πρῶτός ἐστι φιλόσοφος : ὅταν δὲ ἀπὸ τῆς θέας ἐκείνης μετέλθῃ εἰς ἐπιμέλειαν τῆς πόλεως καὶ κατὰ τὴν θέαν ἐκείνων |
| ἑστῶτες ὄργανα καὶ χρόνου μέτρα γεγόνασι μιμούμενοι τῆς γῆς τὸ ἐπιπροσθοῦν τῶι ἡλίωι περὶ αὐτὴν ὑποφερομένωι , καθάπερ εἶπεν Ἐ | ||
| μήτε μὴν ἐξαπλουμένας αὔξειν , ἀλλ ' οἷόν ἐστι τὸ ἐπιπροσθοῦν , τοιαύτην καὶ τῆς σκιᾶς συμμετρίαν φυλάσσειν : ἐλάσσονες |
| πράγμασιν , πῶς ἐὰν εἴπω ἄνθρωπός ἐστι ζῷον λογικὸν θνητὸν ἀποθνῆσκον καὶ τὰ ἑξῆς καὶ πλεονάσω ταῖς λέξεσιν ὁ ὅρος | ||
| ταὐτὸν γάρ ἐστιν κατὰ τὴν σημασίαν τὸ θνητόν καὶ τὸ ἀποθνῆσκον . ἐπειδὴ οὖν οὐδὲν πλέον σημαίνει ἡ προστεθεῖσα λέξις |
| ἐν τοῖς μέσοις συναναβλαστάνοντα καὶ ἐπιφυόμενα τῶν βλαβερῶν ἀναγκαίως ἂν τέμνοιτο τοῦ μὴ ζημιοῦσθαι τὰ ἀμείνω χάριν . ἢ οὐκ | ||
| συγκαταθετέον , διὰ γὰρ τῆς δριμυφαγίας εἰ καὶ τὸ πάχος τέμνοιτο τοῦ γάλακτος , ἡ ποιότης αὐτοῦ φθαρεῖσα καὶ δηκτικὴ |
| οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ | ||
| ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α . |
| δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
| πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
| αὐτῇ προσαρμοζομένης πρὸς τὰ ἔσχατα γινώσκειν τε τὰ ὄντα καὶ ἐναρμόζειν διὰ τὸ ἔχειν ἐν αὑτῇ τὰ στοιχεῖα κατὰ ἁρμονίαν | ||
| ἢ ἀπολαύσεις ἡδονῶν : πάντα ταῦτα , κἂν πρὸς ὀλίγον ἐναρμόζειν δόξῃ , κατεκράτησεν ἄφνω καὶ παρήνεγκεν . σὺ δέ |
| ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ | ||
| ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , |
| . . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν | ||
| παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν . |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| εἰσιν κορυφαί , ὧν βάσεις αἰεὶ τὸ αὐτὸ πλάτος τοῦ πρισματίου , ἀλλὰ καὶ παραλλήλων τριγώνων τῷ ΑΒ ἐπιπέδῳ καὶ | ||
| καὶ μέρος τοῦ σώματος αὐτοῦ φαίνηται ὑπὲρ τὸ πλάτος τοῦ πρισματίου , δεήσει πάλιν τὸ πρισμάτιον ἐγγυτέρω τῆς ὄψεως κινοῦντα |
| φυτοῦ : τὸ ἀϊκὴ ἐν τόνῳ διαλλάξαν τὴν γραφὴν ἔσχεν ἀπαράλλακτον , ὀξύνε - ται γάρ : τὸ γραμματική : | ||
| ταῖς ὀφρύσι τρίχας διαμένειν καὶ τὴν ὅλην πρόσοψιν τοῦ σώματος ἀπαράλλακτον εἶναι καὶ τὸν τῆς μορφῆς τύπον γνωρίζεσθαι : διὸ |
| , στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
| ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
| ἡ ἀπὸ τοῦ Ε ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐν μετεωροτέρῳ ἐστὶν ἐπιπέδῳ : ἐν τῷ διὰ τῶν ΑΒ , | ||
| ὅπερ ἐστὶν ἀδύνατον . οὐκ ἄρα ἡ ΒΓ εὐθεῖα ἐν μετεωροτέρῳ ἐστὶν ἐπιπέδῳ : αἱ τρεῖς ἄρα εὐθεῖαι αἱ ΒΓ |
| ἀκτῖνα ἐκπέμπει , ὡς τοῦτο πάρεστιν ὁρᾶν ἐπί τε τῶν ἐσόπτρων γινόμενον καὶ πάντων ἁπλῶς τῶν κατὰ ἀνάκλασιν φωτιζόντων . | ||
| προσαγαγεῖν καὶ ἑτέρας διαφόρους ἀκτῖνας ἀπὸ ἐπιπέδων ὁμοίων καὶ ἴσων ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας |
| λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
| διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
| καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
| τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
| τῶν προηγουμένων ἀποδείξεων , καὶ τὸν γινόμενον ἐπὶ ἑνὶ κεφαλαίῳ ἀποδεδειγμένῳ . ταύτῃ δὲ διαφέρουσιν ἀλλήλων αἱ ἀναμνήσεις , ὅτι | ||
| ἐπίσκεψιν οὔτε ὁ αὐτὸς γίνεται λόγος τῷ ὑφ ' ἡμῶν ἀποδεδειγμένῳ οὔτε σύμφωνος ὁ πρῶτος καὶ διὰ τῆς κατ ' |
| Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων | ||
| ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι . |
| τῶν ἄλλων ὑποκειμένων τῶν αὐτῶν : λέγω ὅτι ἡ ὑπὸ ΑΓΠ ὀξεῖά ἐστιν . Ἐπεὶ γάρ ἐστιν ὡς μὲν ἡ | ||
| τοῦ ΑΓΡ τριγώνου ἐλάσσων ἐστίν : ὀξεῖα ἄρα ἡ ὑπὸ ΑΓΠ γωνία : ἡ κλίσις ἄρα τῶν εἰρημένων ἐπιπέδων πρός |
| γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν | ||
| γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
| ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
| ταπεινοῦται μικρόν , σὺ δὲ κατὰ τὸ τῆς ἀποστάσεως ἀνάλογον συλλογίζου περὶ τῆς τοῦ μεγέθους πηλικότητος . οἷον ἔστω ὁ | ||
| ταπεινοῦται μικρόν , σὺ δὲ κατὰ τὸ τῆς ἀποστάσεως ἀνάλογον συλλογίζου περὶ τῆς τοῦ μεγέθους πηλικότητος . οἷον ἔστω ὁ |
| ἀρχαὶ πρὸς τὰς τάσεις . ἔχει δὲ καὶ πώματα τὸ γλωσσόκομον χάριν τοῦ κρύπτεσθαι τὰ ἐν αὐτῷ μηχανήματα : ἔχει | ||
| ἢ ὁτουοῦν ἄλλου . καλοῦσι δ ' αὐτὸ οἱ ἀμαθεῖς γλωσσόκομον . γλῶτται αὐλῶν καὶ γλῶτται ὑποδημάτων : ἃ γλωττίδας |
| ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
| ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
| συμμαχίαν , ἵνα συνερχόμενοι καθ ' ἕκαστον ἐνιαυτὸν εἰς τὸν ἀποδειχθέντα τόπον πανηγυρίζωσι καὶ συνεστιῶνται καὶ κοινῶν ἱερῶν μεταλαμβάνωσιν . | ||
| τὸν λόγον κατ ' ἐλπίδα προδοσίας καὶ συνελθόντος εἰς τὸν ἀποδειχθέντα τόπον , προελθοῦσα εἰς ἐφικτὸν ἡ παρθένος ἐξεληλυθέναι μὲν |
| μᾶλλον καὶ ἧττον : οἷον τὸ τρίγωνον καὶ τὸ τετράγωνον ἀπλατῆ εἰσι , διὰ τοῦτο οὐκ ἐπιδέχονται τὸ μᾶλλον καὶ | ||
| ὀφθαλμοῦ εὐθεῖά ἐστι καὶ αὕτη ἑξάκι καταμετρεῖ τὸν μέγιστον καὶ ἀπλατῆ κύκλον , ἀλλ ' οὐχὶ τὸν πλάτος ἔχοντα : |
| τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
| , ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
| ἔχει ἀλλ ' ἔτι γίνεται : τὸ δὲ γινόμενον οὐκ ἀπήρτισται . σπουδὴ δὲ καὶ τοῦδε : ἡ τούτου δὲ | ||
| ταύτηι , ἧι ἡ μὲν σφαῖρα κυκλοτερῶς πανταχόθεν εἰς λειότητα ἀπήρτισται , τὸ σφαιροειδὲς δὲ κύκλος , οὐ μὴν ἴσος |
| γωνίας τεταγμένων πολυγώνων , τὴν δὲ περίμετρον ἴσην , τὸ πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο | ||
| ὁπότε τὰς περιμέτρους ἴσας εἶχεν , ἀεὶ μεῖζον ἀπεδείκνυτο τὸ πολυγωνότερον , καὶ πάντων ὁ κύκλος μείζων , ὥσπερ ἐδείχθη |
| ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος , | ||
| δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία |
| εἰς ἴσα . ὁμοίως οὐδὲ ἡ τρίτη . Τὸν κανόνα καταγράψαι κατὰ τὸ καλούμενον ἀμετάβολον σύστημα . ἔστω τοῦ κανόνος | ||
| βασιλεῦσαι , „ Ἡρόδοτον δὲ καὶ τὸ ὄνομα τοῦ βασιλέως καταγράψαι καλέσαντα Ἀργανθώνιον . Τῇ δὲ τῆς χώρας εὐδαιμονίᾳ καὶ |
| κέντρου τοῦ θ , καὶ τῆς μεταξὺ τῶν κέντρων τῆς θκ ἐκβληθείσης ἐφ ' ἑκάτερα , ἐὰν κέντρῳ τῷ θ | ||
| κέντρῳ μὲν τῷ θ τοῦ παντός , διαστήματι δὲ τῷ θκ , γεγράφθαι νοήσωμεν κύκλον τὸν κπρ , ἔπειτα τοῦτον |
| τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
| δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
| βʹ γʹ . ὅτι τὴν ἑξάδα ὁλομέλειαν προσηγόρευον οἱ Πυθαγορικοὶ κατακολουθοῦντες Ὀρφεῖ , ἤτοι παρόσον ὅλη τοῖς μέρεσιν ἢ μέλεσιν | ||
| ὑπάρχον οὐχ οἷοί τ ' ἦσαν κατασκευάζειν τῷ γεωμετρικῷ λόγῳ κατακολουθοῦντες , ἐπεὶ μηδὲ τὰς τοῦ κώνου τομὰς ῥᾴδιον ἐν |
| μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
| ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |
| ἐμποδίζειν ἰδίᾳ ἐτέθη : καὶ ὑμεῖς οὖν ἐκ τοῦ μέσου βαστάσαντες αὑτοὺς ἧττον ἡμῖν ἐνοχλήσετε . “ Δημοχάρους δὲ τοῦ | ||
| δυνάμενοι διεξελθεῖν διὰ τὸ εἶναι τεναγώδη , συμβουλαῖς τῆς Μηδείας βαστάσαντες τὴν ναῦν διεκόμισαν εἰς τὴν Τριτωνίδα λίμνην . μήδεσσιν |
| δύνασθαι ποιεῖν τὸ ἀποπαλλόμενον φῶς , ὅπερ ἐπὶ τῶν ἄλλων ἀνακλάσεων οὐ συμβαίνει . οὕτως οὖν καὶ ἠχὼ πανταχόθεν μὲν | ||
| τῆς ΓΚ , ἐάν τε ἴση , ἡ σύμπτωσις τῶν ἀνακλάσεων οὔτε ἐπὶ τῆς περιφερείας τοῦ κύκλου οὔτε ἐκτὸς οὐ |
| τὸ φανερὸν ἐξαλλάσσει . Τῶν δὲ ἐν τῷ ἡμικυκλίῳ τῷ ἀπολαμβανομένῳ ὑπὸ τοῦ ἰσημερινοῦ πρὸς τῷ θερινῷ τροπικῷ ἴσων περιφερειῶν | ||
| δὲ ΑΓ ἐλάσσων ἐστὶν ἑκατέρας αὐτῶν τῷ ὑπὸ τῆς ἐπισκοτήσεως ἀπολαμβανομένῳ μέρει τῆς τοῦ ἐκλείποντος διαμέτρου . Ἔστω τὸ τῆς |
| τῶν λοιπῶν καταπαλτῶν τυγχάνει : εἶτα δι ' αὐτοῦ ἤχθω λινέα καὶ τοῦ κανόνος τοῦ Τ ἄνωθεν καὶ κάτωθεν , | ||
| ὁρίζοντι τὸν Μ , καὶ δι ' αὐτοῦ διώσθω ἡ λινέα τῶν κοράκων : ἔστωσαν γὰρ ἐξ ἑκατέρου μέρους τοῦ |
| σκιᾶς πλάτος σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ | ||
| τῇ ὑπὸ ΕΑΓ ἴση διὰ τὸ καὶ τὸ ΔΓ τμῆμα ὑποτείνειν αὐτάς . Πόθεν , ὅτι ἡ πρὸς ὀρθὰς αὐτῇ |
| εἰδέναι χρὴ ὅτι τὰ σχήματα τῶν διαιρέσεων διδασκόμεθα ἐκ τῆς ἐπιβλέψεως τῆς πρόσθεν πρὸς τὸ ἀσφαλὲς καὶ τὸ εὔμορφον : | ||
| διὰ τῆς εἰς ἀδύνατον ἀπαγωγῆς δεικνύμενον δι ' ἧς πεποιήμεθα ἐπιβλέψεως δείκνυται καὶ διὰ τῶν αὐτῶν ὅρων , δι ' |
| τοῦ δʹ ἢ οὔ . Ἐρχέσθω πρότερον καὶ ἔστω τὸ αγδβʹ , καὶ ἐν τῇ περιφορᾷ τῆς σφαίρας μετακεκινήσθω τὸ | ||
| καὶ διὰ τῶν πόλων αὐτῶν μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ αγδβʹ αεζβʹ , ὁμοία ἄρα ἐστὶν ἡ γεʹ περιφέρεια τῇ |
| τὴν προσβολὴν τῆς ἀναθεωρήσεως σύγκρισις γίνηται συνεθιζομένοις καὶ ἐπὶ τῆς σφαιρικῆς εἰκόνος γυμνῇ τῇ τῶν ἄστρων φαντασίᾳ . προσεντάξαντες οὖν | ||
| . τοσαῦτα περὶ μουσικῆς καὶ ἀριθμητικῆς , ἀλλὰ καὶ τῆς σφαιρικῆς πρώτη ἐστίν . εἰ μὲν γὰρ λάβῃς τὴν ἀκίνητον |
| τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ | ||
| μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ |
| τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
| κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
| καὶ ὅσων λόγοι μέν εἰσι πλήρεις θεωρημάτων , ὕλη δὲ ἀνεπίδεκτος : περὶ δὲ τὰ φανταστὰ διατρίβειν φαθί , καθόσον | ||
| κωλυόμεθα ἀριθμὸν ὑπὸ τοῦ Ϛʹ , ἐπείπερ ὑπόκειται ἡ μονὰς ἀνεπίδεκτος οὖσα τῆς ἐπανόδου καὶ ἀναλύσεως : ἡ δὲ δυὰς |
| δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
| δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
| καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
| τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
| , πολυμερές τε καὶ ἀμερές . περὶ μὲν οὖν τοῦ πολυμεροῦς εἴρηται : τὸ δὲ ἀμερὲς αὐτῆς καὶ ἁπλοῦν τάσις | ||
| αλ [ ] ˈ ἐπιλε [ Τῆς περὶ μέλους ἐπιστήμης πολυμεροῦς οὔσης καὶ διῃρημένης εἰς πλείους ἰδέας μίαν τινὰ αὐτῶν |
| , καὶ ἐπεζεύχθω ἡ ΖΑ , καὶ τετμήσθω ἡ ὑπὸ ΕΖΑ γωνία δίχα τῇ ΖΗ εὐθείᾳ τοῦ Η σημείου μεταξὺ | ||
| ΚΙ , μεῖζόν ἐστι τὸ ΤΥΕ τρίγωνον τοῦ ΥΩΛ τῷ ΕΖΑ . ὁμοίως δὲ καὶ τὸ ΞΕΙ τοῦ ΞΡΚ μεῖζόν |
| καὶ διὰ τοῦτο ἴση ἐστὶν ἡ ὑπὸ ΛΖΘ τῇ ὑπὸ ΛΓΘ . καὶ ἐπεὶ μείζων ἐστὶν ἑκατέρα τῶν ΑΕ , | ||
| ἡ δὲ ἐφεξῆς ἡ ὑπὸ ΛΖΘ μείζων ἐστὶ τῆς ὑπὸ ΛΓΘ . οὐκ ἐλάσσων ἄρα ἡ ὑπὸ ΛΖΘ τῆς ὑπὸ |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| ἀστραπὰς γεννῶντα : αἱ δὲ ἑξῆς βʹ μοῖραι πυρώδεις , ὁμιχλώδεις . τὰ δὲ δεξιὰ πρὸς τῷ Ἡνιόχῳ εὔκρατα , | ||
| ' ἐκ τῆς ὄψεως ἀκτῖνες πύριναι , οὐχὶ μέλαιναι καὶ ὁμιχλώδεις : διόπερ ὁρατὸν εἶναι τὸ σκότος . Ἐμπεδοκλῆς τὴν |
| τοὺς διαφανέας λίθους [ τῷ πυρί ] : τὸ δὲ θυμιᾶται ἐπιβαλλόμενον καὶ ἀτμίδα παρέχεται τοσαύτην ὥστε Ἑλληνικὴ οὐδεμία ἄν | ||
| . καλεῖται δὲ βράθυ , ἢ καὶ σαβίνα . αὕτη θυμιᾶται τοῖς θεοῖς ἀντὶ λιβάνου . Βρύσις κοινὸν ζῷόν ἐστιν |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| . ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον ὀρθογώνιον ὅμοιόν ἐστιν τῷ ΜΒΝ τριγώνῳ ὀρθογωνίῳ , καὶ ἔστιν ἡμίσεια ὀρθῆς ἑκατέρα τῶν | ||
| δέ ἐστι τὸ ΔΜΒ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ ΜΒΝ : κατὰ διάμετρον ἄρα ἐστὶ τὸ Μ σημεῖον τῷ |
| διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
| αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
| τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ ἐστι τοῦ περιγεγραμμένου : καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ | ||
| οὐδὲ μέχρι τινὸς ὡρισμένου χρόνου καὶ παραγεγραμμένου , ὅ ἐστι περιγεγραμμένου . Παραγγελία : Δημοσθένης ἐν τῷ κατ ' Αἰσχίνου |
| εἰς ξ , ὧν δύο ἔστω τὰ ΑΣ , ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ | ||
| β λεπτὰ τὰ ΑΞ , ΞΖ , ἔσται λεπτὰ ἤτοι ξξα β καὶ τὰ ἑξῆς : ὁμοίως οὖν καὶ μοῖρα |
| καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
| λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
| καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
| , πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |