, καὶ ἐπεζεύχθω ἡ ΖΑ , καὶ τετμήσθω ἡ ὑπὸ ΕΖΑ γωνία δίχα τῇ ΖΗ εὐθείᾳ τοῦ Η σημείου μεταξὺ
ΚΙ , μεῖζόν ἐστι τὸ ΤΥΕ τρίγωνον τοῦ ΥΩΛ τῷ ΕΖΑ . ὁμοίως δὲ καὶ τὸ ΞΕΙ τοῦ ΞΡΚ μεῖζόν
5522861 ΦΚ
τὸ ὄμμα καὶ ἔστω τὸ Φ , καὶ περὶ τὴν ΦΚ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΦΡ , ΡΚ
ΧΥ , ἴσαι καὶ ἀπεναντίον ἔσονται , καί ἐστιν ἡ ΦΚ ἐκ τοῦ κέντρου οὖσα ἑξαγώνου : ἑξαγώνου ἄρα καὶ
5481651 ἐγκλιμα
ἄγειν ἀνάλογος : θέμα γὰρ ἴδιόν ἐστιν ὀξύτονον , οὐχὶ ἔγκλιμα τῆς σφῶιν . ποῖον γὰρ ἄλλο μόριον βαρυνόμενον δύναται
τοῖς περὶ τὴν Ἑλλάδα τόποις τετηρημένων , κατὰ δὲ τὸ ἔγκλιμα τῶν τόπων τούτων διημαρτήκασι . Παραπέμψαντες οὖν τοῦτο τὸ
5360983 διαβρωτικου
μὴ εἴη βαθύ : τοῦτο γὰρ σημεῖόν ἐστι κακοήθους καὶ διαβρωτικοῦ χυμοῦ , καὶ τὰ ἐν βάθει διαβιβρώσκοντος . εἰ
καὶ καλεῖται ὀδονταλγία . γίνεται δὲ αὕτη ἀπὸ ῥεύματος τοῦ διαβρωτικοῦ , ὡς καὶ αὐτὴν τὴν οὐσίαν γεώδη οὖσαν τρίζειν
5322800 ἑτερομηκει
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ
5206891 πλατυτατη
τῆς ἀκτῆς ἐστιν ἑπτά που στάδια , πλάτος δὲ ᾗ πλατυτάτη σταδίων τριῶν οὐ πλέον . ἐνταῦθα ἡ προτέρα πόλις
ἀπὸ Μέμφεως ἰόντι πλατυτέρα , κατὰ δὲ τὸ ἀνώτερον αὑτῆς πλατυτάτη . Τὸ μέρος τὸ ἄνωθεν Μέμφιδος Αἰγύπτου ἐστὶ τὸ
5183549 ἀπειραχως
ὅτι δὲ ταῦτα οὐ μοναχῶς ἀλλ ' ὀλίγου δέω λέγειν ἀπειραχῶς ἐν τοῖς οὖσιν ἔστι , πάλαι καὶ πρόπαλαι θεολόγων
ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ . Ἔστω δὴ νῦν ἰσοσκελὲς τὸ ΑΒΓ
5169940 παραλληλογραμμον
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου
5160192 περιαγομενον
τῇ κυρτῇ αὑτοῦ ἐπιφανείᾳ τῆς κοίλης τῶν δύο κύκλων , περιαγόμενον δὲ ὁμοίως κατὰ μῆκος περὶ τοὺς αὐτοὺς πόλους τῷ
τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς ἀπὸ τοῦ Δ ἐπὶ τὸ Β μένοντος τοῦ
5063452 λειπουσα
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων
5045698 ἐπιτελλον
διαπορευομένου τὰς αεʹ ηγʹ περιφερείας οὐ φαίνεται τὸ δʹ ἄστρον ἐπιτέλλον , οὐδὲ μὴν τοῦ ἡλίου τὴν γζαʹ περιφέρειαν διαπορευομένου
τῶν ἀπλανῶν ἀστέρων ἀπὸ ἑῴας φαινομένης ἐπιτολῆς ἑκάστης νυκτὸς ὁρᾶται ἐπιτέλλον μέχρι τῆς ἑσπερίας φαινομένης ἐπιτολῆς , ἐν ἄλλῳ δὲ
5044989 ΑΒΜ
ἀλλ ' ὡς ἡ ΑΜ πρὸς ΜΓ , οὕτως τὸ ΑΒΜ [ τρίγωνον ] πρὸς τὸ ΜΒΓ , καὶ τὸ
ὑπὸ ΗΒΕ τῇ Δ ἐστιν ἴση , καὶ ἡ ὑπὸ ΑΒΜ ἄρα τῇ Δ γωνίᾳ ἐστὶν ἴση . Παρὰ τὴν
5024382 ἀποστημα
οἶδα ποσταίῃ , οὐ πρόσω : ἔσχε δέ τι καὶ ἀπόστημα ἐν κενεῶνι , ὅπερ μελανθὲν ἀπέκτεινεν . Καὶ ἡ
μεταβολῆς γινομένης . υιβʹ . Φύγεθλόν ἐστι κατὰ βουβῶνα γινόμενον ἀπόστημα . υιγʹ . Ὑποσπαδίας ἐστὶ πάθος ἐφ ' οὗ
4976249 γεωμετρικῳ
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ
4893112 ἐπιζευξωμεν
τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς
Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ
4889833 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
4862088 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ
4857348 ἰσογωνιον
ἴσον ἐστὶ τὸ ΓΘ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , τῶν ΓΘ , ΕΗ ἄρα ἀντιπεπόνθασιν αἱ πλευραὶ
μονὰς κορυφή , ἀλλ ' ἐπίπεδον αὐτῇ τὸ πέρας γίνεται ἰσογώνιον τῇ βάσει : ἐὰν δὲ πρὸς τῷ μὴ εἰς
4838589 τομα
ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ
: οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι
4836216 συμπτωμα
ἀστέρων περιόδους καὶ εἴπομεν ὡς ἐπὶ εἴκοσιν ἡμέρας διαρκέσει τὸ σύμπτωμα : εἰ δὲ μὴ συσχηματίζονται , ἅπαξ τὴν περίοδον
τῶν ἐναντίων αἰτιῶν , ὡς εἰρήκαμεν , τὸ αὐτὸ γίνεται σύμπτωμα . ῥιγοῦσιν οὖν οἱ πολλοὶ καὶ ψύχονται τὸ σῶμα
4820171 ΚΒΟΣ
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν ,
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ
4809471 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
4778649 δυναμενη
τῆς σήψεως ἐπιτεινομένης ἥ τε δύναμις ἀσθενεστέρα γίνεται οὐκ ἔτι δυναμένη φέρειν τὸ μέγεθος τῶν πυρετῶν οὔτε [ ἔτι δύνασθαί
τοῦ Κυπρίων βασιλέως , καὶ ὅμως οὐκ ἠγανάκτησεν ἡ θεὸς δυναμένη λίθον αὐτὴν ὥσπερ τὴν Νιόβην ἀπεργάσασθαι . ἐῶ γὰρ
4773772 τετραγωνισμος
οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ
ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α .
4772922 Βρεττανικη
νήσους λέγοντες μικρὰς περὶ τὴν Βρεττανικήν . αὐτή τε ἡ Βρεττανικὴ τὸ μῆκος ἴσως πώς ἐστι τῆι Κελτικῆι παρεκτεταμένη ,
μὲν περὶ τῆς ὑπὲρ τῶν Ἄλπεων Κελτικῆς . Ἡ δὲ Βρεττανικὴ τρίγωνος μέν ἐστι τῷ σχήματι , παραβέβληται δὲ τὸ
4769599 τεταρτημοριον
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ
4763945 ὁριζουσα
ἡ ψυχὴ καὶ λέγεται αὕτη ἡ βούλησις ὁριστική , ὡς ὁρίζουσα τὸ ψεῦδος καὶ τὴν ἀλήθειαν , ἢ προστάσσειν βούλεται
λέγοντες . ἐπῆκται γὰρ ἤδη ψῆφος ἀίδιον κατ ' αὐτῶν ὁρίζουσα φυγήν , καὶ θεοὺς ὀμωμόκαμεν ἅπαντες μήτ ' αὐτοὶ
4744019 ΗΖΛ
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ
4709263 τετηρημενας
, ἐν ᾧ γίγνεται παραλλήλῳ , καὶ ἔτι προσυπογράφοντες τὰς τετηρημένας παρὰ τοῖς παλαιοῖς ἐν ταῖς κατὰ τὰς ἐκκειμένας ἡμέρας
, ἐπειδὴ κατὰ τὴν τρίτην ἀκρώνυκτον ἐπεῖχεν ὁ ἀστὴρ τὰς τετηρημένας τοῦ Κριοῦ μοίρας ιδ κγ ἀπέχων , ὡς ἐδείχθη
4676444 τετμημενη
ὅπερ ἐστὶν ἐπὶ τῆς ἐπιφανείας τοῦ κυλίνδρου , δίχα ἔσται τετμημένη κατὰ τὸ Ζ . ἐπεὶ γὰρ ἡ ΓΑ διάμετρος
τὴν γλῶτταν Γ : κἀκ τούτου δηλοῖ , ὅτι ἰδίᾳ τετμημένη προσεφέρετο ἡ γλῶττα παρὰ τῶν παλαιῶν . Γ ἀπένεγκε
4667395 τομας
τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ
δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον
4667255 σφαιρικη
τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων
ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα
4662293 ΛΓΘ
καὶ διὰ τοῦτο ἴση ἐστὶν ἡ ὑπὸ ΛΖΘ τῇ ὑπὸ ΛΓΘ . καὶ ἐπεὶ μείζων ἐστὶν ἑκατέρα τῶν ΑΕ ,
ἡ δὲ ἐφεξῆς ἡ ὑπὸ ΛΖΘ μείζων ἐστὶ τῆς ὑπὸ ΛΓΘ . οὐκ ἐλάσσων ἄρα ἡ ὑπὸ ΛΖΘ τῆς ὑπὸ
4659391 διαστηματικον
μέλος , περὶ ὃ καὶ ἡ ἁρμονικὴ καταγίγνεται , τὸ διαστηματικὸν τὸ ἐκ φθόγγων τε καὶ διαστημάτων συγκείμενον , δεῖ
τοὺς λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν
4653512 ῥητας
καὶ σκαληνὸν εἴη καὶ τὰς τὴν ὀρθὴν γωνίαν περιεχούσας πλευρὰς ῥητὰς ἔχῃ , ὅτε δὲ μὴ τοιοῦτόν ἐστιν , ἀλλ
ἄλλων τῶν περιεχομένων ὑπὸ ῥητῶν καὶ ἀποτομῶν τῇ τάξει διαφόρων ῥητὰς ὀφείλεται λαμβάνειν ἐκείνας , αἷς ἐστι σύμμετρος ἢ ἡ
4650477 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
4642615 περιεχομενον
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ
4634621 γωνιας
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς
4610242 ΒΚΘ
Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ
τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι
4581815 συναμφοτερας
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ
4576670 ἐπιπεδοις
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν
4573104 γραμμη
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ
4570666 ΑΔΖ
γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου
γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας
4561529 ΚΖΜ
ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι
τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο
4551995 ἀνωμαλον
μέλλοντος οὐδενὶ ἐοικώς , καὶ διὰ τὸ ἀνώμαλον τῆς ναυμαχίας ἀνώμαλον καὶ τὴν ἔποψιν ἐκ τῆς γῆς ἠναγκάζοντο ἔχειν .
πραγμάτων , ἀστάτοις καὶ ἀνιδρύτοις χρωμένη συντυχίαις , ὧν τὸ ἀνώμαλον οὐκ ἀδήλοις ἀλλὰ σαφέσι τεκμηρίοις ὁ ἀψευδέστατος ἐλέγχει χρόνος
4547088 ἀποκατασταθῃ
μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς
τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ
4541267 ἑξαγωνοις
, εἰ μὲν οὖν ἐν τοῖς τριγώνοις εἶεν ἢ ἐν ἑξαγώνοις ἥττονας ποιοῦσι τὰς συμπαθείας ὡς γενέσθαι τινὰς κατὰ καιροὺς
πρῶτον τῶν ἀνομοιογενῶν ιγʹ πολυέδρων ἐπεὶ περιέχεται τριγώνοις δʹ καὶ ἑξαγώνοις δʹ , γωνίας μὲν ἔχει στερεὰς ιβʹ , πλευρὰς
4512927 ὁσαπλασιων
ἀλλήλοις , καί ἐστιν ἴσον τὸ πλῆθος τῷ πλήθει , ὁσαπλασίων ἄρα ἐστὶν ὁ ΛΚ ἄξων τοῦ ΕΚ ἄξονος ,
γωνία τῆς ὑπὸ ΒΗΓ . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ , τοσαυταπλασίων ἐστὶ
4492629 τοσαυταπλασιων
δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ , τοσαυταπλασίων ἐστὶ καὶ ἡ ὑπὸ ΝΘΕ γωνία τῆς ὑπὸ ΕΘΖ
ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ περιφέρεια τῆς ΒΓ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ ΗΒΛ τομεὺς τοῦ ΗΒΓ τομέως .
4490183 παραλληλογραμμοις
δεδομένων ἄνευ θέσεως . τὰ δὲ ἑξῆς τούτοις Ϛʹ ἐν παραλληλογράμμοις ἐστὶ καὶ παραβολαῖς εἴδει δεδομένων χωρίων . τῶν δὲ
πρὸς ἑκάτερον τῶν παραλληλογράμμων . ἀσύμμετρον ἄρα τὸ τετράγωνον τοῖς παραλληλογράμμοις . ῥητὸν δὲ τὸ τετράγωνον : ἄλογα ἄρα τὰ
4482989 ἀπογειον
παρὰ τὰ α ι εὕρομεν τὴν κατ ' αὐτὸ τὸ ἀπόγειον παρὰ τὸ μέσον ἀπόστημα ὑπεροχὴν α ιζ : ὥστε
δὲ ΕΑ ἡ ἀπὸ τοῦ κέντρου τῆς γῆς ἐπὶ τὸ ἀπόγειον τοῦ ἐκκέντρου ξ , ἡ δὲ ΕΓ ἡ ἀπὸ
4465006 ἀκαταληπτος
” τὰ μύρια ὀλίγα ἐστίν “ ἀκαταλήπτῳ . πᾶσα γὰρ ἀκατάληπτος φαντασία ἀκαταλήπτῳ φαντασίᾳ ἐστὶν ἴση . ἐπεὶ οὖν ἡ
μεμοιραμένων οὐδείς : αἰσθητὸν γὰρ τὸ γενόμενον , αἰσθήσει δὲ ἀκατάληπτος ἡ νοητὴ φύσις . | ἐπειδὴ τοίνυν ἀοράτως τόδε
4463923 παρεμυθησαμεθα
καὶ τὴν ἐπιφορὰν τοῖς τοιούτοις λήμμασι συνεισάγεσθαι , καθὼς ἀνώτερον παρεμυθησάμεθα . Καὶ δὴ ταῦτα μέν , ὡς κεφαλαιωδέστερον εἰπεῖν
, ὡς ὑποδέδεικται , μήτε προστίθεταί τι τινί , ὡς παρεμυθησάμεθα , φανερὸν ὡς οὐδὲ μετατίθεταί τι ἀπό τινος :
4454674 δεικνυμενον
συλλογισμῷ τεθέντων τινῶν ἐξ ἀνάγκης ἕπεται τὸ δι ' ἐκείνων δεικνύμενον : ἐπὶ δὲ τῆς διαιρέσεως οὐδαμοῦ τοῖς τεθεῖσί τε
καὶ ζῶον παντὶ ἀνθρώπῳ ἐξ ἀνάγκης . ἔστι δὲ τὸ δεικνύμενον καὶ ποιοῦν ἀσυλλόγιστον τὴν συζυγίαν οὐ διὰ τὸ παντὶ
4452077 ἀστρονομικον
οὐ μέλλει γελοῖον εἶναι ; ἔφη . Τῷ ὄντι δὴ ἀστρονομικόν , ἦν δ ' ἐγώ , ὄντα οὐκ οἴει
, πολλὰ γὰρ εἴδη μαντικῆς : εἰκαστικόν , ἐπιπνευστικόν , ἀστρονομικόν . ► * : Ἡ μαντικὴ διαιρεῖται εἰς ὀνειροκριτικόν
4447418 εὐθυγραμμου
, καὶ ἡ μὲν τοῦ ἡμικυκλίου γωνία ἁπάσης γωνίας ὀξείας εὐθυγράμμου μείζων ἐστίν , ἡ δὲ λοιπὴ ἐλάττων . Ἔστω
θεωρημάτων , ἐν δὲ τῷ παρόντι στοιχείῳ ἐγγραφῆς ἢ περιγραφῆς εὐθυγράμμου εἰς εὐθύγραμμον ἐπί τινι τῶν ἐν αὐτῷ θεωρημάτων ὅλως
4440022 περιφερης
ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν :
τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα
4437139 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
4418452 καθιεσθαι
προσφερομένου πρὸς τὴν σελήνην ] : ἀποφερομένων ἀτόμων περιφέρειάν τινα καθίεσθαι τὴν σύγκρισιν ταύτην . Ἄλως περὶ τὴν σελήνην γίνεται
πρὸς τὴν σελήνην ] ἀποφερομένων [ ἀτόμων ] περιφέρειάν τινα καθίεσθαι τὴν σύγκρισιν ταύτην . ” Ἅλως περὶ τὴν σελήνην
4388587 εὐθυγραμμος
μὲν δοθὲν εὐθύγραμμον τὸ ΑΒΓΔ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Ε : δεῖ δὴ τῷ ΑΒΓΔ εὐθυγράμμῳ ἴσον
μὲν δοθὲν τρίγωνον τὸ ΑΒΓ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ : δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον
4384898 ἡμικυκλιον
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ
4382554 ὁμαλης
τοῦ ἐπικύκλου : τότε γὰρ τὸ πλεῖστον γίνεται διάφορον τῆς ὁμαλῆς κινήσεως παρὰ τὴν ἀνώ - μαλον . ἐπεὶ γὰρ
μὲν τοῦ ζῳδιακοῦ κέντρον τὸ Γ , τὸ δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ ἐκβληθείσης τῆς
4381562 ἀπολαβωμεν
ἀλλ ' Ἀθήναζε παρέχειν ἀνέπαφα ἡμῖν , ἕως ἂν ἡμεῖς ἀπολάβωμεν τὰ χρήματα ὅσα ἐδανείσαμεν . καί μοι ἀναγίγνωσκε τὴν
δὴ κἂν τὴν ΞΡ ἴσην ἑκατέρᾳ τῶν ΞΟ , ΞΠ ἀπολάβωμεν καὶ ἐπιζεύξωμεν τὴν ΟΡ , δείξομεν , ὅτι καὶ
4373927 ἰσοσκελες
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ
4372284 ἐφαπτομενας
ἐπὶ τοῦ πενταγώνου ἐὰν διὰ τῶν κατὰ τὸν κύκλον διαιρέσεων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν , περιγραφήσεται περὶ τὸν κύκλον πεντεκαιδεκάγωνον
εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον ὑπὸ τῶν ἀπὸ
4371632 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
4371071 ΑΖΔ
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ
4369697 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
4367932 γραφεισας
τῶν εἰς ταῦτα μισθοῦ δοκίμων , μόνας ἐξέδωκε τὰς εὐφόρως γραφείσας διὰ τὸ ἀρκέσαι ταῖς ὀλίγαις μόλις τὴν διόρθωσιν .
σύμμετροι . Ἀναπόδισαι εἰς τὸ ιαʹ θεώρημα καὶ τὰς ἐκεῖσε γραφείσας εὐθείας καὶ ἀριθμοὺς τῶν εὐθειῶν ἐν τούτῳ τῷ καʹ
4360235 παραπληρωματα
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα
4353810 ἐαρινος
δύο συλλαβὰς ὀξύτονα παρὰ καιροῦ συντιθέμενα συστέλλει τὸ Ι : ἐαρινός νυκτερινός θερινός . οἱ ποιηταὶ δὲ πολλάκις ἐκτείνουσι .
διὰ τοῦ Ε γράφεται , οἷον χειμερινός , θερινός , ἐαρινός , μετοπωρινός . Τὸ ταχινός δὲ καὶ ἀληθινός οὐκ
4343586 κʹʹʹ
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ
4341634 μηνιαιος
δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ
κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος
4326038 ιγʹʹ
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο
4317090 βαρυτατος
ὁ μὲν βαρύτερος ὀξύτατος ἐδείχθη πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ὥστ ' ἐπειδὴ τοσαῦτα μέν ἐστι μόνα τὰ
ὁ μὲν βαρύτερος ὀξύτατός ἐστι πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ἀναγκαῖον γὰρ ἐν τῇ συναφῇ τῶν πυκνῶν διὰ
4307726 πλινθιον
Δομιτίου δ ' αὐτὴν ἱππεῦσι πολλοῖς καὶ ψιλοῖς εὐμαρῶς οἷα πλινθίον πυκνὸν κυκλώσαντος , οὔτε ἐκδραμεῖν ἔτι ἔχουσα οὔτε ἐξελίξαι
συνεστήσατο μάχην . οἱ δ ' Ἰλλυριοὶ συντάξαντες ἑαυτοὺς εἰς πλινθίον ἐρρωμένως ὑπεστήσαντο τὸν κίνδυνον . καὶ τὸ μὲν πρῶτον
4304849 θεωρημα
, καί ἐστιν ἡ ὑποτείνουσα ε . δείκνυται οὖν τὸ θεώρημα οὕτως ὡς ἐν τῷ διαγράμματι . Πυθαγόρας ἀπὸ τῶν
τέχνη : ὁ γὰρ μηδὲν ὅλως εἰδώς , εἰ ἓν θεώρημα διδαχθείη τέχνης , τεχνίτης ἂν οὕτω λέγοιτο εἶναι .
4304260 ἀλλοτριωτατον
πάνυ σμικρὸν καὶ μὴ διαιρετὸν ? εἶναι καταφέροιτο ἐπὶ πρᾶγμα ἀλλοτριώτατον τοῦ θεοῦ ἀκούσας ? τὸ ἕν . , Εἰσὶ
καὶ ὁ ἕτερος ὁρισμὸς διὰ τοῦ ἑτέρου δεικνύοιτο , ὅπερ ἀλλοτριώτατον ἀποδείξεως . Ἀλλὰ μὴν οὐδὲ ἡ διὰ τῶν διαιρέσεων
4300038 γθʹ
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε
4296092 οἰκοδομοις
προτερήσασι , δίχα μὲν τοῖς ἀρχιτέκτοσι , χωρὶς δὲ τοῖς οἰκοδόμοις καὶ πάλιν τοῖς ἐργαζομένοις : καὶ αὐτὸς δὲ μετὰ
σπάρτη καὶ τὸ ὀρθογώνιον τρίγωνον , ὃ ἀλφάδιον παρὰ τοῖς οἰκοδόμοις καὶ τέκτοσιν ὀνομάζεται . ἡ μὲν γὰρ κάθετος ἐν
4289141 γνωμων
ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ
γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ
4277707 παρεπομενον
εἰσήγαγεν εἰς τὰ ὄντα καὶ ταύτῃ τὸ οὐσιῶδες μὴ ὂν παρεπόμενον ἔδειξεν , ὡς ἐν τῷ Σοφιστῇ διὰ πολλῶν ἐπιχειρημάτων
τοῦ σφυγμοῦ τῶν πυρεσσόντων . καὶ αὐτὸς δὲ Ἐρασίστρατος ἀεὶ παρεπόμενον οἴεται τῷ πυρετῷ . . . τυγχάνειν , κἂν
4277083 δυσπεριληπτος
χρόνων καὶ τῶν πράξεων ἐν πλείοσι πραγματείαις καὶ διαφόροις συγγραφεῦσι δυσπερίληπτος ἡ τούτων ἀνάληψις γίνεται καὶ δυσμνημόνευτος . ἐξετάσαντες οὖν
ἄρσην τὸ θηλυκόν . καὶ ἦν εἰς τὸ τοιοῦτο παράθεσις δυσπερίληπτος . καὶ δὴ οὖν ἐπὶ τοῦ προκειμένου ἐκεῖνό φασιν
4273406 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
4260607 παραλληλογραμμων
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ
4256956 παραλλαγη
. αὕτη μὲν ἡ ϲυμμετρία πλείοϲιν ἁρμόττει ϲώμαϲιν . ἡ παραλλαγὴ δὲ ἑκάϲτοτε τῇ γεύϲει τοῦ κάμνοντοϲ κρινέϲθω , ἵνα
περιφοραῖς καὶ μόριόν τι περιφορᾶς , μικρά τις ἂν γένοιτο παραλλαγὴ τοῦ μὴ οὐχὶ τὸ δʹ ἄστρον συνανατεῖλαι τῷ ἡλίῳ
4255266 ΛΗΚ
πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ
ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α
4254967 σφυγμος
ἣν ἥψατό τις διαστολήν , σῴζει τὴν αὐτὴν διάστασιν ὁ σφυγμὸς ἢ μεταβέβληκε , καὶ μάλιστα τῶν ἀνωμάλων καὶ ἀτάκτων
ἐντὸς αὐτῆς μεστότερόν τε καὶ σωματωδέστερον καταλαμβάνεσθαι . Κενός ἐστι σφυγμὸς καθ ' ὃν αὐτῆς τε τῆς ἀρτηρίας ἡ περιοχὴ
4254172 ἐπιζευξαι
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ
4248896 τριγωνῳ
τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν
' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας :
4241714 μονοστροφοι
μονοστρόφων : οὔτε ἀντιστροφὰς γὰρ ἔχουσιν οὔτε ἐπῳδούς , ἀλλὰ μονόστροφοί εἰσιν ὡς εἴρηται . ἔστι δὲ τῆς μὲν αʹ
μονοστρόφων : οὔτε ἀντιστροφὰς γὰρ ἔχουσιν οὔτε ἐπῳδούς , ἀλλὰ μονόστροφοί εἰσιν ὡς εἴρηται . ἔστι δὲ τῆς μὲν αʹ
4239058 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
4238710 ἀποτομη
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ
4237319 διαστηματικη
τινές εἰσιν ἰδέαι κινήσεως , ἥ τε συνεχὴς καὶ ἡ διαστηματική . κατὰ μὲν οὖν τὴν συνεχῆ τόπον τινὰ διεξιέναι
ἡ μὲν συνεχής τε καὶ λογικὴ καλουμένη , ἡ δὲ διαστηματική τε καὶ μελῳδική . ἡ μὲν οὖν συνεχὴς κίνησις
4235100 πολυγωνοις
τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων . ὁ μὲν γὰρ ἐφεξῆς
τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιεχόμενα μάθοι τις ἂν καὶ οὕτως . Πᾶσαν στερεὰν
4230902 μοιρικας
μέντοι ἐκ τῆς τῶν πρὸς τὰ φαινόμενα κανόνων πραγματείας τὰς μοιρικὰς κινήσεις ἐξετάζειν : αἱ γὰρ καθολικαὶ ὑποστάσεις καὶ χρονογραφίαι
οὕτως ποιήσῃς , κρείσσων ἐνεργήσεις . ποιεῖ δὲ καὶ πρὸς μοιρικὰς ἀνεπιτυχίας , ἀπραξίας καὶ τὰ τοιαῦτα . Τῆς οὖν
4229907 φαινομενη
πρὸς τῷ Β νοείσθω κατὰ τὸν τῆς διοπτείας χρόνον , φαινομένη πρὸς τῷ Κ σημείῳ . καὶ διὰ τῶν Ε
πρὸς τῷ εʹ , τοῦ βʹ ἄστρου ἐστὶν ἡ ἑῴα φαινομένη δύσις . Καὶ ἐπεὶ πρότερον ὁ ἥλιος ἐπὶ τὸ
4228345 τεταρτημοριου
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς
4227465 μοιρων
δὲ εʹ . Καὶ ὧδε τὴν τῆς ὥρας διαφορὰν νόει μοιρῶν οὖσαν εʹ , Ϙʹ . Ὁ ὀκτωκαιδέκατος ἀπέχων μοίρας
ἐπὶ τὴν ΑΕ ἡ ΚΖ . ἐπεὶ ἡ ΕΖ περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ μὲν ὑπὸ
4217781 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
4216334 παραλληλους
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ ,

Back