| τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς | ||
| τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ |
| ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
| καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| καὶ πρὸς τοῖς Γ , Δ , Ε σημείοις ἔστω ἔνοπτρα ἐπίπεδα , ἀφ ' ὧν ὁρᾶται τὸ Α , | ||
| με πολυδάκρυτον Ἑλλάδι λάτρευμα γᾶθεν ἐξορίζει , χρύσεα δ ' ἔνοπτρα , παρθένων χάριτας , ἔχουσα τυγχάνει Διὸς κόρα : |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
| : οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
| δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
| τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
| ΓΕΝ ! καὶ ΟΥ ! [ ] [ καθάπερ ] ΠΡΑ ! ! [ ] [ ] ΚΕΙΝΠΑ ! [ | ||
| ΡΑΞ γωνία τῆς ὑπὸ ΠΑΝ . ὅτι δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| ϘϠ , τῷ δὲ ἄξονι αὐτοῦ τύμπανον ἔστω συμφυὲς ΜαΜβ ὠδοντωμένον ὀδοῦσιν λοξοῖς , οὗ ἡ διάμετρος πρὸς τὴν τοῦ | ||
| τῷ δὲ ἄξονι τοῦ ΥΦ τυμπάνου συμφυὲς γενέσθαι τὸ ΧΨ ὠδοντωμένον , οὗ ἡ διάμετρος πρὸς τὴν τοῦ ΥΦ τυμπάνου |
| ] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ ! | ||
| ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε |
| ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
| ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
| τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
| . ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ | ||
| τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι |
| Συναγ . . , . : Τὰ Εὐκλείδου βιβλία δ Κωνικῶν Ἀπολλώνιος ἀναπλώσας καὶ προσθεὶς ἕτερα δ παρέδωκεν η Κωνικῶν | ||
| σκοπεῖν , ἔξεστι ταῦτα παρατιθέντι τοῖς ἐν τῷ πρώτῳ τῶν Κωνικῶν εἰρημένοις αὐτῷ δι ' αὑτοῦ βεβαιῶσαι τὸ προκείμενον : |
| , τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον | ||
| δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς |
| βούλονται , ὄρεξις , καὶ μὴ ἐπιθυμία ὁ ἔρως . Διῃρήσθω δὲ τῇδε : ἐὰν μὲν ἐπὶ τὸ καλὸν φαινόμενον | ||
| ΓΔ : λέγω , ὅτι ἡ ΓΔ μείζων ἐστίν . Διῃρήσθω ἡ ΑΒ κατὰ τὸ Ε : αἱ ΑΕ , |
| ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος , | ||
| δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία |
| : καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
| κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
| τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
| δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
| . Γεγράφθωσαν γὰρ διὰ τῶν Δ Ε παράλληλοι κύκλοι οἱ ΒΔΛ ΝΘΕΚ : [ γίνεται ἄρα μείζων ἢ ὁμοία ἡ | ||
| οὖν ἐπίπεδά ἐστιν ὀρθὰ ἀλλήλοις τό τε ΓΚΛ καὶ τὸ ΒΔΛ , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΚΛ ἐν |
| τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
| κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
| ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [ | ||
| : ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β |
| μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
| ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
| τοῦ δʹ ἢ οὔ . Ἐρχέσθω πρότερον καὶ ἔστω τὸ αγδβʹ , καὶ ἐν τῇ περιφορᾷ τῆς σφαίρας μετακεκινήσθω τὸ | ||
| καὶ διὰ τῶν πόλων αὐτῶν μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ αγδβʹ αεζβʹ , ὁμοία ἄρα ἐστὶν ἡ γεʹ περιφέρεια τῇ |
| εἰς ξ , ὧν δύο ἔστω τὰ ΑΣ , ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ | ||
| β λεπτὰ τὰ ΑΞ , ΞΖ , ἔσται λεπτὰ ἤτοι ξξα β καὶ τὰ ἑξῆς : ὁμοίως οὖν καὶ μοῖρα |
| καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
| τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| , ἑξάκις ἂν τόσση μιν ὑποδράμοι : αὐτὰρ ἑκάστη ἴση μετρηθεῖσα δύω περιτέλλεται ἄστρα οὐ γραμματικοῦ τοῦτο νοῆσαι , ὅτι | ||
| τοῦ λίθου δυνάμει . Ἀλλὰ οὖσα πρώτη φύσις καὶ οὐ μετρηθεῖσα οὐδὲ ὁρισθεῖσα ὁπόσον δεῖ εἶναιταύτῃ γὰρ αὖ ἡ ἑτέρα |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
| τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
| Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
| δὴ τομὰς κύκλους . ποιείτω , ὧν ἡμικύκλια ἔστω τὰ ΓΝΔ , ΜΝΞ . καὶ ἐπεὶ ἴσοι εἰσὶν οἱ ΒΓΔ | ||
| διὰ τῆς ΝΑ ἐπιπέδων ἐστὶν ἡ ΓΝΔ κύκλος . ὁ ΓΝΔ ἄρα κύκλος ὀρθός ἐστι πρὸς τὸν ΒΓΔ κύκλον . |
| ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ | ||
| . ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ |
| ἀρχαὶ πρὸς τὰς τάσεις . ἔχει δὲ καὶ πώματα τὸ γλωσσόκομον χάριν τοῦ κρύπτεσθαι τὰ ἐν αὐτῷ μηχανήματα : ἔχει | ||
| ἢ ὁτουοῦν ἄλλου . καλοῦσι δ ' αὐτὸ οἱ ἀμαθεῖς γλωσσόκομον . γλῶτται αὐλῶν καὶ γλῶτται ὑποδημάτων : ἃ γλωττίδας |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
| , πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
| ἀπὸ ΑΚ πρὸς τὸ ἀπὸ ΑΖ , τουτέστι τὸ ὑπὸ ΑΖΚ . ὀρθία ἄρα ἐστὶν ἡ ΓΔ τῆς τομῆς : | ||
| διάμετρον τὴν ΚΑ κύκλος ὀρθὸς ὢν πρὸς τὸ διὰ τῶν ΑΖΚ ἐπίπεδον . ἔσται δὴ ὀρθὸς ὁ κῶνος : ἴση |
| ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι | ||
| τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο |
| Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον | ||
| τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν |
| αὐτῇ προσαρμοζομένης πρὸς τὰ ἔσχατα γινώσκειν τε τὰ ὄντα καὶ ἐναρμόζειν διὰ τὸ ἔχειν ἐν αὑτῇ τὰ στοιχεῖα κατὰ ἁρμονίαν | ||
| ἢ ἀπολαύσεις ἡδονῶν : πάντα ταῦτα , κἂν πρὸς ὀλίγον ἐναρμόζειν δόξῃ , κατεκράτησεν ἄφνω καὶ παρήνεγκεν . σὺ δέ |
| . . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν | ||
| παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν . |
| ὅπερ ἐστὶν ἐπὶ τῆς ἐπιφανείας τοῦ κυλίνδρου , δίχα ἔσται τετμημένη κατὰ τὸ Ζ . ἐπεὶ γὰρ ἡ ΓΑ διάμετρος | ||
| τὴν γλῶτταν Γ : κἀκ τούτου δηλοῖ , ὅτι ἰδίᾳ τετμημένη προσεφέρετο ἡ γλῶττα παρὰ τῶν παλαιῶν . Γ ἀπένεγκε |
| , ΕΘΚ τριγώνων ] . ἐὰν δὴ μενούσης τῆς ΚΛ περιενεχθὲν τὸ ἡμικύκλιον εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν | ||
| , καὶ διήχθω τις ἡ ΒΕ , καὶ μενούσης αὐτῆς περιενεχθὲν τὸ τετράπλευρον εἰς τὸ αὐτὸ ἀποκαθεστάτω : ὅτι τὸ |
| . ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον ὀρθογώνιον ὅμοιόν ἐστιν τῷ ΜΒΝ τριγώνῳ ὀρθογωνίῳ , καὶ ἔστιν ἡμίσεια ὀρθῆς ἑκατέρα τῶν | ||
| δέ ἐστι τὸ ΔΜΒ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ ΜΒΝ : κατὰ διάμετρον ἄρα ἐστὶ τὸ Μ σημεῖον τῷ |
| καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν | ||
| τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : |
| δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
| πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
| ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
| , τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
| ὑπὸ ΜΧΟ γωνία : καὶ τὰ ἀπὸ τῶν ΓΦ , ΦΟ ἄρα ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΜΧ , ΧΥ | ||
| : μείζων ἄρα ἐστὶν ἢ ὁμοία ἡ μὲν ΧΩ τῆς ΦΟ , ἡ δὲ ΦΟ τῆς ΞΤ : ἐν πλείονι |
| τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ | ||
| μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ |
| δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς | ||
| ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ |
| ὅλων , ἀπὸ δὲ τοῦ ἐξ ἀρχῆς κύκλου ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΑΛ , ΔΜ : ἡ ἄρα ἀπὸ | ||
| ὅλων , ἀπὸ δὲ τῶν ἐξ ἀρχῆς κύκλων ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΜΝ , ΠΡ , ἡ ἄρα ἀπὸ |
| , ἐν δὲ τῷ δʹ κατὰ τὸ Λ , καὶ προσδιελθὼν τὴν ΛΜ οὖσαν περιφορὰν πάλιν ἀνατελεῖ κατὰ τὸ Μ | ||
| , τὴν ἀνομίαν τε τοῖς νόμοις κατέσβεσεν . καὶ ὀλίγα προσδιελθὼν ἐπιφέρει οὕτω δὲ πρῶτον οἴομαι πεῖσαί τινα θνητοὺς νομίζειν |
| : οὐκ ἄρα ἴση ἐστὶν ἡ ὑπὸ ΛΒΕ τῇ ὑπὸ ΖΕΑ . ὀρθὴ δὲ ἡ πρὸς τῷ Ε ὀρθῇ τῇ | ||
| πρὸς ὀρθὰς αὐτὴν τέμνει : ὀρθὴ ἄρα ἐστὶν ἡ ὑπὸ ΖΕΑ : πάλιν , ἐπεὶ εὐθεῖά τις ἡ ΖΕ εὐθεῖάν |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| κατὰ τὸ καρτερώτατον , οὔτε χρόνου φειδόμενος εἰς οὐδὲν δέον δαπανωμένου οὔτε δόξης ἀμείνονος ἐπιστροφήν τινα ποιησάμενος . ἤκουσε γὰρ | ||
| διπλασιάζων τὸ ἐγγραφόμενον πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν |
| ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ | ||
| ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα |
| πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
| : μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου | ||
| γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας |
| τυχεῖν : ἐπὶ τῶν ἐκ κακῶν εἰς ἀγαθὰ μεταβαινόντων . Ἀμελοῦς γωνία : ἐπὶ τῶν ῥᾳθύμως καὶ ἀργῶς καθημένων . | ||
| ἀργῶς καὶ ῥαθύμως καθημένων . Ἔστι δὲ καὶ χωρίον Λιβύης Ἀμελοῦς γωνία καλούμενον . Ἀμουσότερος Λειβηθρίων : ἐπὶ τῶν ἀμούσων |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
| καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
| περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
| ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
| κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
| ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |
| δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
| δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
| ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ | ||
| περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ |
| , τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν | ||
| Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς |
| ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι | ||
| δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου |
| ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί . Λοιπὸν δὲ ἕνεκεν τοῦ προχείρου | ||
| Α πόλου μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ |
| ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ | ||
| ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , |
| , πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
| γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
| μδʹ γοʹʹ [ Ἀρτάβρων ] Ἀρτάβρων λιμὴν εʹ γʹʹ μεʹ Νέριον ἀκρωτήριον εʹ δʹʹ μεʹ Ϛʹʹ Ἡ δὲ ἀρκτικὴ πλευρὰ | ||
| τοῦ ἱεροῦ ἀκρωτηρίου μέχρι τῆς πρὸς Ἀρτάβροις ἄκρας ἣν καλοῦσι Νέριον : τέταρτον δὲ τὸ ἐνθένδε μέχρι τῶν βορείων ἄκρων |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| , τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ | ||
| τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν |
| μὲν ΛΘ ἔσται γ νζ , ἡ δ ' ὑπὸ ΘΑΛ γωνία τῆς κατὰ τὸ πλάτος ἀποστάσεως , οἵων μέν | ||
| ἐστιν ἴση . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΘΑΛ τῇ ὑπὸ ΖΔΓ ἐστιν ἴση [ ἐπειδήπερ ἐὰν ἀπολάβωμεν |
| τίς ἐστι παρθένων ἀσκουσῶν γυναικῶν , ἥτις πάλαι τοῦ Ἀκρουλλίου κατονομάζεται . καὶ πάλιν ἄλλῃ τινὶ κουστωδίᾳ βαρβάρων ἐντυχόντες κατὰ | ||
| συνθέσεως ποιεῖται τὴν πρόοδον , καὶ διάνοια τοῦτο ἢ δόξα κατονομάζεται . , “ ἁ δὲ διάνοια τό τε πολλαπλόον |
| μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
| , ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
| ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ , | ||
| τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , |
| μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
| ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |
| καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
| τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
| διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι | ||
| διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι |
| γωνίας τεταγμένων πολυγώνων , τὴν δὲ περίμετρον ἴσην , τὸ πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο | ||
| ὁπότε τὰς περιμέτρους ἴσας εἶχεν , ἀεὶ μεῖζον ἀπεδείκνυτο τὸ πολυγωνότερον , καὶ πάντων ὁ κύκλος μείζων , ὥσπερ ἐδείχθη |
| , ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον | ||
| , ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι |
| ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
| δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
| μὲν δοθὲν εὐθύγραμμον τὸ ΑΒΓΔ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Ε : δεῖ δὴ τῷ ΑΒΓΔ εὐθυγράμμῳ ἴσον | ||
| μὲν δοθὲν τρίγωνον τὸ ΑΒΓ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ : δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον |
| πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
| ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
| μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
| , ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
| ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
| καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
| τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς | ||
| ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον , |
| τῶν ἄλλων ὑποκειμένων τῶν αὐτῶν : λέγω ὅτι ἡ ὑπὸ ΑΓΠ ὀξεῖά ἐστιν . Ἐπεὶ γάρ ἐστιν ὡς μὲν ἡ | ||
| τοῦ ΑΓΡ τριγώνου ἐλάσσων ἐστίν : ὀξεῖα ἄρα ἡ ὑπὸ ΑΓΠ γωνία : ἡ κλίσις ἄρα τῶν εἰρημένων ἐπιπέδων πρός |
| ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
| εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |