μὲν ΛΘ ἔσται γ νζ , ἡ δ ' ὑπὸ ΘΑΛ γωνία τῆς κατὰ τὸ πλάτος ἀποστάσεως , οἵων μέν | ||
ἐστιν ἴση . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΘΑΛ τῇ ὑπὸ ΖΔΓ ἐστιν ἴση [ ἐπειδήπερ ἐὰν ἀπολάβωμεν |
τυχεῖν : ἐπὶ τῶν ἐκ κακῶν εἰς ἀγαθὰ μεταβαινόντων . Ἀμελοῦς γωνία : ἐπὶ τῶν ῥᾳθύμως καὶ ἀργῶς καθημένων . | ||
ἀργῶς καὶ ῥαθύμως καθημένων . Ἔστι δὲ καὶ χωρίον Λιβύης Ἀμελοῦς γωνία καλούμενον . Ἀμουσότερος Λειβηθρίων : ἐπὶ τῶν ἀμούσων |
μέν εἰσιν ἀσύμπτωτοι , αἱ , ὅπως ποτ ' ἂν ἐκβληθῶσιν , μὴ συμπίπτουσαι , συμπτωταὶ δὲ αἵ ποτε συμπεσούμεναι | ||
ὑφ ' ἑαυτῶν καὶ ὑπὸ τῶν ἐναντίων παραπόλωνται ἢ πάλιν ἐκβληθῶσιν ἐκ τῆς πόλεως ἢ κατασχόντες αὑτοῖς δυσμενεῖς καὶ ἀχρείους |
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
λόγῳ , καὶ μᾶλλον , εἰ μὴ ἴσαι εἶεν αἱ ΕΖΚ ταῖς ΑΒΓ ἀλλὰ μείζους αὐτῶν , καὶ φανερόν , | ||
ὑπὲρ γῆν τὸ ΒΘΔ , μεσημβρινὸς - δὲ κύκλος ὁ ΕΖΚ . καὶ ὁ ἥλιος ἀπὸ θερινῶν τροπῶν πορευόμενος ἔν |
: καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
, ἵνα ὧραι καὶ θυσίαι καὶ ἑορταὶ τὰ προσήκοντ ' ἀπολαμβάνουσαι ἑαυταῖς ἕκασται τῷ κατὰ φύσιν ἄγεσθαι , ζῶσαν τὴν | ||
ΔΓΒΕ , διήχθωσαν δὲ αἱ ΖΒΗ , ΘΒΚ ἴσας περιφερείας ἀπολαμβάνουσαι πρὸς τῇ ΕΔ τὰς ΚΔ , ΔΗ . λέγω |
ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ | ||
περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ |
τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
ἀπὸ ΞΥ . ἐὰν ἄρα ποιήσωμεν , ὡς τὸ ὑπὸ ΗΚΕ πρὸς τὸ ἀπὸ ΚΖ , οὕτως τὸ ὑπὸ ΜΞΝ | ||
τῆς ἁφῆς ἀγομένῃ διαμέτρῳ τῇ ΚΕ γωνίαν ποιοῦσα τὴν ὑπὸ ΗΚΕ ἴσην τῇ δοθείσῃ τῇ Υ : ὅπερ ἔδει ποιῆσαι |
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
αἳ ἔχουσι τὴν Ἄϊδος κυνῆν , καὶ τὰ πέδιλα τὰ ὑπόπτερα , καὶ τὴν κίβησιν . Αἱ δὲ αὐτῷ φράζουσι | ||
Νύμφας σὺν Ἑρμῇ , αἰτήσας τε καὶ λαβὼν ὑποδεσμεῖται τὰ ὑπόπτερα πέδιλα καὶ τὴν κίβισιν περιβάλλει κατὰ τῶν ὤμων καὶ |
. ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον ὀρθογώνιον ὅμοιόν ἐστιν τῷ ΜΒΝ τριγώνῳ ὀρθογωνίῳ , καὶ ἔστιν ἡμίσεια ὀρθῆς ἑκατέρα τῶν | ||
δέ ἐστι τὸ ΔΜΒ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ ΜΒΝ : κατὰ διάμετρον ἄρα ἐστὶ τὸ Μ σημεῖον τῷ |
ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ ΘΓΒ : πολλῷ πλέον τῆς ὑπὸ ΔΠΒ . Διὰ τί | ||
. ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΘΑΒ ἴση τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γὰρ ἐφαρμοζομένων : ἐξ ὧν ἡ ὑπὸ |
Σχόλιον . διὰ βʹ τοῦ ιαʹ δεῖ ἐπιζεῦξαι καὶ τὰς ΧΥ , ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι | ||
πενταγώνου ἐστίν , ἐπειδήπερ , ἐὰν ἐπιζεύξωμεν τὰς ΦΚ , ΧΥ , ἴσαι καὶ ἀπεναντίον ἔσονται , καί ἐστιν ἡ |
ἀντικειμένῃ ὡς τὰ ΔΕ , ΖΗ : ὀπὰς ἔχοντα τὰς ͵Α , ͵Β καὶ μείζονα τὴν ͵Α τῆς ͵Β οὔσης | ||
Γεγράφθω διὰ τῶν Ϙ , Ϛ μέγιστος κύκλος ὁ ϘϚ ͵Α : ἴση ἄρα ἐστὶν ἡ ΨϚ τῇ ϚϘ . |
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
γωνίας τῆς ὑπὸ ΔΗΖ τῆς οὔσης ἴσης τῇ ὑπὸ ΔΖΗ διῆχθαι τὴν ΕΗ εὐθεῖαν , ὑφ ' ἧς ἡ ὑπὸ | ||
φασί , πόλεών τε γὰρ εὖ ἔχειν καὶ νομῶν καὶ διῆχθαι τὸν ποταμὸν ἐς τὰ ἄστη πάντα , γεωργίας τε |
ΓΖ περιεχόμενον ὀρθογώνιον τῶν αὐτῶν ωξε ε λβ , ἐὰν παραβάλωμεν παρὰ τὸν ἀριθμὸν τῶν ωξε ε λβ τὰ ͵γφνζ | ||
πρὸς κείμενόν τι πλῆθος ἐφαρμόζειν τὰς τῶν ἀποχῶν εἰκασίας , παραβάλωμεν τὸν ἀπὸ τῆς Χρυσῆς Χερσονήσου μέχρι Καττιγάρων πλοῦν , |
, τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον | ||
δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς |
ἐκτριβέντων ἡ ὁδὸς τῆς γονῆς ἐμπέφρακται : πωροῦνται γὰρ οἱ ὄρχιες : καὶ τὰ νεῦρα σκληρὰ καὶ μωρὰ γενόμενα ὑπὸ | ||
τῶν τὰ δέρματα παρὰ τὰς σισύρνας παραρράπτεται , καὶ οἱ ὄρχιες αὐτοῖσί εἰσι χρήσιμοι ἐς ὑστερέων ἄκεσιν . Σαυροματέων δὲ |
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
τῷ ΑΕΓ ἡμικυκλίῳ , ὁμοία ἐστὶν ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων | ||
Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : μείζων ἄρα ἐστὶν ἡ ΘΖΕ περιφέρεια τῆς ΗΘΖ περιφερείας . Κοινὴ ἀφῃρήσθω ἡ ΘΖ |
κύφειν . κύφωνες ξύλα εἰσὶν ἐπιτιθέμενα εἰς τοὺς τένοντας τῶν καταδίκων , ἵνα μὴ εὕρωσιν ἀνακύψαι : καὶ γὰρ τὸν | ||
τε καὶ φευγόντων , τῶν δὲ ἐν τοῖς οἴκοις ὥσπερ καταδίκων ἀποκεκλεισμένων : καὶ ἡ ἀθυμία πολλὴ καὶ ἡ λύπη |
κατὰ τῶν θηρίων , Σάτυρος δὲ νύκτωρ τὰ ὄρη περιφοιτῶν εἴληπτο . οἱ μὲν δὴ δήσαντες ἦγον τὸ ἄγρευμα τῷ | ||
ἀλλήλους κραυγὴ τῶν βασιλείων ἐξεφοίτησεν εὐνούχων καὶ γυναικῶν ἅμα : εἴληπτο δὲ ἄρα εὐνοῦχός τις ἐπὶ μιᾷ τῶν τοῦ βασιλέως |
ἄρα ΑΒ , ΓΔ ἐκβαλλόμεναι εἰς ἄπειρον συμπεσοῦνται : οὐ συμπίπτουσι δὲ διὰ τὸ παραλλήλους αὐτὰς ὑποκεῖσθαι : οὐκ ἄρα | ||
πρὸς ἀλλήλας αἱ ἑκατέρωθεν ἀκταί : προϊοῦσαι δὲ πλέον τελέως συμπίπτουσι κατὰ τὸ Ῥίον καὶ τὸ Ἀντίρριον , ὅσον δὴ |
καὶ αἱ ἐπιζευγνύουσαι αὐτὰ ἴσαι εἰσίν : ἴσων γὰρ πενταγώνων ὑποτείνουσι γωνίας : καὶ εἰσὶν ἐν κύκλῳ : τετράγωνον ἄρα | ||
ἐστιν ἡ μὲν ΑΓ τῇ ΘΗ : ἴσας γὰρ γωνίας ὑποτείνουσι τὰς ὑπὸ ΑΒΓ , ΘΛΗ : ἡ δὲ ΒΔ |
καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
ΓΕΝ ! καὶ ΟΥ ! [ ] [ καθάπερ ] ΠΡΑ ! ! [ ] [ ] ΚΕΙΝΠΑ ! [ | ||
ΡΑΞ γωνία τῆς ὑπὸ ΠΑΝ . ὅτι δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
τῶν Α Β Γ Δ Ε στερεῷ . τὸ δὲ γραμμικὸν ὑπὸ τοῦ Ἀπολλωνίου δέδεικται . ιθʹ . Ἀλλὰ δὴ | ||
. ἀνάλογον ὧδε κατὰ τὴν γεωμετρικὴν ἀναλογίαν λέγει . τὸ γραμμικὸν σχόλιον ἄνω παράκειται . ἰστέον ὅτι ἑτερόμηκες νῦν καλεῖ |
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
καὶ συναμφότεραι ἥ τε ὑπὸ ΓΕΖ ὅλη καὶ ἡ ὑπὸ ΓΗΒ δυσὶ ταῖς ὑπὸ ΔΕΖ , ΔΗΒ ἴσαι εἰσίν : | ||
δύο ὀρθῶν : αἱ ἄρα ὑπὸ ΕΗΔ , ΔΗΓ , ΓΗΒ γωνίαι ἴσαι ἀλλήλαις εἰσίν : ὥστε καὶ αἱ κατὰ |
ἐπὶ τοῦ πενταγώνου ἐὰν διὰ τῶν κατὰ τὸν κύκλον διαιρέσεων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν , περιγραφήσεται περὶ τὸν κύκλον πεντεκαιδεκάγωνον | ||
εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον ὑπὸ τῶν ἀπὸ |
ἀκτῖ - νες αἱ ΔΒ , ΔΓ . καὶ ἐπεὶ προσπεπτώκασιν ἀκτῖνες αἱ ΔΓ , ΔΒ ἐφαπτόμεναι τοῦ ΒΓ , | ||
ἀπό τινος σημείου τῶν ἐκτὸς τοῦ κύκλου πρὸς τὴν περιφέρειαν προσπεπτώκασιν εὐθεῖαι αἱ ΖΕ , ΖΔ , τὸ ΔΘΕ ἄρα |
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
καὶ Γῆς , ὃς μιγεὶς τῇ ἑαυτοῦ ἀδελφῇ Κητοῖ ταύτας ἀπέτεκε . κατῴκουν δὲ ὑπὸ γῆν , καὶ οὔτε ἡλίῳ | ||
καὶ Γῆς , ὃς μιγεὶς τοῦ ἑαυτοῦ ἀδελφῇ Κητοῖ ταύτας ἀπέτεκε . κατῴκουν δὲ ὑπὸ γῆν , καὶ οὔτε ἡλίῳ |
ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
: οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
” λίθος ἡ ξαινομένη καὶ ὑφαινομένη , ὥστε τὰ ὕφη χειρόμακτρα γίνεσθαι , ῥυπωθέντα δὲ εἰς φλόγα βάλλεσθαι καὶ ἀποκαθαίρεσθαι | ||
Ἀσίαι ἐπιγραφομένηι : γυναῖκες δ ' ἐπὶ τῆς κεφαλῆς ἔχουσι χειρόμακτρα . . . . Εὐέλγεια : πόλις * * |
ἑκατέρᾳ : καὶ γωνία ἡ ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΗ ἴση : βάσις ἄρα ἡ ΒΓ βάσει τῇ ΕΗ | ||
πλείονα σημεῖα ἢ δύο . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΕΔΗ , καὶ ὑπερβολὴ ἡ ΑΓ τῆς ΑΒ ἐφαπτέσθω κατὰ |
εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Β ἐπὶ τὸ Γ ἐπιζευγνυμένῃ εὐθείᾳ [ καί ἐστιν ἡ μὲν ἀπὸ τοῦ Α | ||
εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Κ ἐπὶ τὸ Δ ἐπιζευγνυμένῃ εὐθείᾳ : καὶ ἡ ΑΘ ἄρα περιφέρεια ἴση ἐστὶ |
τῆς ἀπάτης ἔρχεται : καὶ νῦν οὔτε βουλευτὴς εἰς τὰς πλευ - ρὰς ὕβρισται κέρδος τε οὐδὲν κεκράτηκε τῆς ψυχῆς | ||
, εἰ καὶ μὴ πρότερον ; οὐκ ἐπὶ τὴν ἐκείνου πλευ - σόμεθα ; ποῖ οὖν προσορμιούμεθ ' ; ἤρετό |
κατεηγότα κίνησιν ἔχειν . Περὶ παντὸς οὖν ποιητέον τὴν ἰγνύην ἐντετάσθαι . Δοκέοι ἂν οὖν μοι ὁ σωλὴν , ὁ | ||
ἀνατείνοντι ἐς τὴν μεσόδμην : τὸ δὲ σκέλος τὸ σιναρὸν ἐντετάσθαι χρὴ ὡς δύο δακτύλους μᾶλλον τοῦ ἑτέρου : ἀπὸ |
τοῦ ἀρτιάκις ἀρτίου ἐποιοῦμεν : γίνεται τοίνυν δωδεκάκις ψξη , ͵θσιϚ : οὗτος τοίνυν ὁ ὑπὸ τῶν ἄκρων ἐστί , | ||
ϘϚ : πολλαπλασιαζόμεναι γὰρ αἱ κδ ἐπὶ τὰς τπδ ποιοῦσι ͵θσιϚ , ἀλλὰ καὶ ὁ ϘϚ ἐφ ' ἑαυτὸν πολλαπλασιασθεὶς |
Βάστουλοι , τὴν δὲ ὑπὲρ τούτους μεσόγειον καὶ πρὸς τῇ Ταρρακωνησίᾳ Τούρδουλοι , ἐν οἷς μεσόγειοι πόλεις Σεγίδα θʹ Ϛʹʹ | ||
τοῦ Δορίου ποταμοῦ , ἀπὸ δὲ τῶν ἀνατολῶν τῇ αὐτῇ Ταρρακωνησίᾳ , ἀπὸ δὲ δύσεως τῷ δυτικῷ ὠκεανῷ , ἀπὸ |
τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί . Λοιπὸν δὲ ἕνεκεν τοῦ προχείρου | ||
Α πόλου μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ |
ἐπεὶ οὖν ἡ ὑπὸ ΝΘΒ οὐ μείζων ἐστὶ τῆς ὑπὸ ΘΑΒ , ἡ ἄρα ΝΘ πρὸς ΘΒ ἐλάττονα λόγον ἔχει | ||
. καί ἐστιν ἡ ΘΑ τῇ ΕΚΛ παράλληλος : ἡ ΘΑΒ διάμετρος ἄρα ἐστὶ τῆς τομῆς , αἱ δὲ ἐπ |
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ | ||
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα |
ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο | ||
τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος |
ποιησάμενος ἔπεισε τὰ Ῥωμαίων φρονεῖν , ὥστε καὶ συνθέμενος ὁ Βρέττιος ἔδειξε , καθ ' ὃ μέρος χρὴ προσβαλεῖν τοῖς | ||
παρὰ Φαβίῳ . τούτου τῆς ἀδελφῆς καλῆς οὔσης ἐν Τάραντι Βρέττιος ἤρα ἀνὴρ ὑπὸ Ἀννίβου τὰ τείχη φυλάττειν πεπιστευμένος . |
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
ἡ ΨΟ : λοιπὴ ἄρα ἡ ͵ΑΨ ἴση ἐστὶν τῇ ΟΡ . Διπλῆ δὲ ἡ ΟΡ τῆς ΩΨ : διπλῆ | ||
ἐπεί ἐστιν ὡς ἡ ΝΟ πρὸς τὴν ΟΡ , ἡ ΟΡ πρὸς τὴν ΡΝ , καὶ τὰ διπλάσια : τὰ |
Αἰγυπτιακοῖς ἔτεσι ση ἀποκαταστάσεις ποιεῖσθαι τὰς παρὰ τὸν λοξὸν ἐπίκυκλον ωξε ἔγγιστα : ἐπιλαμβάνεται γὰρ πρὸς τὸν ἀκριβῆ λογισμὸν μιᾶς | ||
δὲ ὑπὸ τῶν ΕΓ , ΓΖ περιεχόμενον ὀρθογώνιον τῶν αὐτῶν ωξε ε λβ , ἐὰν παραβάλωμεν παρὰ τὸν ἀριθμὸν τῶν |
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
νῆσον τὴν Στυρέων , καλεομένην δὲ Αἰγιλίην , τοῦτο δὲ καταγομένας ἐς τὸν Μαραθῶνα τὰς νέας ὅρμιζε οὗτος , ἐκβάντας | ||
τῆς ΕΖΗΘ τομῆς : πάσας γὰρ τὰς παρὰ τὴν ΚΛ καταγομένας ἐπ ' αὐτὴν δίχα τέμνει , ὥσπερ τὴν ΖΘ |
καταιονήσεσιν ἢ καταπλάσμασιν . ἐπὶ γὰρ τῶν θερμαινόντων χέονται καὶ πνευματοῦνται πάντες οἱ ψυχροὶ καὶ παχεῖς χυμοί , καὶ διατείνοντες | ||
καὶ ῥᾳδίωϲ , ὅ , τι περ ἂν προϲάρωνται , πνευματοῦνται , βέλτιον ἂν εἴη διδόναι τι ϲὺν τῇ τροφῇ |
πανταχόθεν περιεχομένη , τῇ τε Τυρσηνῇ καὶ Σικελῇ καὶ τῇ πληθούσῃ , ὃ ἔστι πολλῇ , Ἀδριάδι . Ἑκάστη δὲ | ||
' ἀνδρὸς τῶν περιπόλων τινὸς ἐξ ἐπιβουλῆς ἐν τῇ ἀγορᾷ πληθούσῃ καὶ οὐ πολὺ ἀπὸ τοῦ βουλευτηρίου ἀπελθὼν ἀπέθανε παραχρῆμα |
τὸ ὄμμα καὶ ἔστω τὸ Φ , καὶ περὶ τὴν ΦΚ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΦΡ , ΡΚ | ||
ΧΥ , ἴσαι καὶ ἀπεναντίον ἔσονται , καί ἐστιν ἡ ΦΚ ἐκ τοῦ κέντρου οὖσα ἑξαγώνου : ἑξαγώνου ἄρα καὶ |
μετὰ τοῦ ἀπὸ ΣΚ . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ , τούτῳ διαφέρει τὸ ὑπὸ ΜΡΝ | ||
ἑκατέρας τῶν ΣΚ , ΚΨ , μείζων ἄρα καὶ ἡ ΣΚ τῆς ΚΨ . ἀλλ ' ἡ μὲν ΣΚ τῇ |
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ | ||
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι |
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
ὡς κυνηγὸς ἐξαθροίζει καὶ ὁρμᾷ : ἐξαθροίζεται : τοὺς φυγάδας συναθροίζει καὶ συνάγει , ὡς ἐπὶ κυνῶν θῆρας φευγόντων : | ||
συγκινοῦντος , κινούμενος δὲ ὁ ἀὴρ συγκινεῖ τὰς νεφέλας καὶ συναθροίζει καὶ καταπυκνοῖ , καὶ πάλιν ἀραιοῖ καὶ διαλύει . |
ΑΒΓ , καὶ τῇ ΒΓ παράλληλος ἡ ΑΔ , καὶ διαχθεῖσα ἡ ΔΕ τῇ ΒΓ συμπιπτέτω κατὰ τὸ Ε σημεῖον | ||
γὰρ διὰ τοῦ Γ τῇ ΔΑ παράλληλος ἡ ΓΕ καὶ διαχθεῖσα ἡ ΒΑ συμπιπτέτω αὐτῇ κατὰ τὸ Ε . Καὶ |
τῇ ὑπὸ ΕΓΖ , τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ , τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ : | ||
περὶ τὸ ΓΕΗ ὀρθογώνιον κύκλος τξ , ἡ δὲ ὑπὸ ΕΓΗ γωνία , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ |
ἑλκόμενοι εἰς πρώραν καὶ πρύμναν ἐξ ἑκατέρου μέρους τοῦ ἱστοῦ πρότονοι , οἱ δὲ κατὰ τὰς γωνίας πόδες : ἑξῆς | ||
τῇ πρύμνῃ ἐπιστατῶν , κεῖνται δὲ οἱ κάλοι καὶ οἱ πρότονοι καὶ οἱ πόδες εὖ καὶ ἐπισταμένως διακεκριμένοι , ὥστε |
, Ε , Α , Ο ἔν τε γὰρ τῇ κωνικῇ ἐπιφανείᾳ ἐστὶ καὶ ἐν τῷ διὰ τοῦ ἄξονος ἐπιπέδῳ | ||
ἴσος ἐστὶν τῇ ὑπὸ τῆς ΑΒ ἐν τῇ στροφῇ γινομένῃ κωνικῇ ἐπιφανείᾳ διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς |
μετὰ τοῦ ὑπὸ ΗΘΚ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΒΑ ΛΡ καὶ τοῦ ὑπὸ ΗΘΚ | ||
ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΗΘΚ . ἀλλὰ τῷ ὑπὸ ΒΑΛ μετὰ τοῦ ὑπὸ ΒΑ ΛΡ , τουτέστιν τῷ ὑπὸ |
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
ΖΚ βάσις πρὸς τὴν ΞΡ βάσιν , οὕτως τὸ τοῦ ΔΨ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΤ στερεοῦ ὕψος . | ||
στερεοῦ ὕψος . τὰ δ ' αὐτὰ ὕψη ἐστὶ τῶν ΔΨ , ΒΤ στερεῶν καὶ τῶν ΔΓ , ΒΑ : |
μοίρας μθ μη , καὶ ἐπεζεύχ - θωσαν ἥ τε ΚΔΗ καὶ ἡ ΑΔΘ , καὶ ἔτι ἀπὸ τοῦ Α | ||
δοθείσης τῆς ΓΔ περιφερείας . . . ἐπεζεύχθωσαν ἥ τε ΚΔΗ καὶ ἡ ΑΔΘ . ἤχθω παράλληλος τῇ ΚΗ ἡ |
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ | ||
μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ |
βεβήκασι τῶν ΣΝ , ΟΔ , ἔστι δὲ καὶ ἡ ΟΒ τῇ ΣΚ ἴση , δύο δὴ τρίγωνά ἐστι τὰ | ||
πέντε συμφωνεῖν τὸν ΟΒ πρὸς τὸν ΞΒ : ὁ ἄρα ΟΒ ἔσται παρυπάτη μέσων . καὶ τῷ ΞΟ ἴσον ἔθηκα |
, ἀποτέμνει τῇ ἅρπῃ τὴν κεφαλὴν καὶ ἐνθεὶς εἰς τὴν κίβησιν φεύγει : αἱ δὲ αἰσθόμεναι διώκουσιν , οὐχ ὁρῶσι | ||
τε καὶ λαβὼν ὑποδεσμεῖται τὰ ὑπόπτερα πέδιλα , καὶ τὴν κίβησιν περιβάλλει . κατὰ τῶν ὤμων , καὶ τὴν Ἄϊδος |
τὴν ΖΜ , διὰ δὲ τὴν ὁμοιότητα τῶν ΒΚΤ , ΖΜΟ τριγώνων ἐστὶν ὡς ἡ ΚΒ πρὸς τὴν ΒΤ , | ||
ἀνάλογόν εἰσιν , ὅμοιον ἄρα ἐστὶ τὸ ΒΚΤ τρίγωνον τῷ ΖΜΟ τριγώνῳ . πάλιν , ἐπεὶ ἐδείχθη ὡς ἡ ΒΚ |
αἱ κακαὶ γυναῖκες , δέον αὐτάς , κἂν οἴκοι μὴ σωφρονῶσιν , ἔξω γε προϊέναι κοσμίως , αἱ δὲ μάλιστα | ||
τὴν πατρίδα λογιζόμενος , ἰσχυρὰν δὲ τότε ὅταν οἱ Ἕλληνες σωφρονῶσιν . εἴ γε μὴν αὖ καλὸν Ἕλληνα ὄντα φιλέλληνα |
: δεῖ δὲ τὰς δύο τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας [ διὰ τὸ καὶ παντὸς τριγώνου τὰς δύο πλευρὰς | ||
παντὸς τριγώνου τὰς δύο πλευρὰς τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας ] . Ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α |
ὅμοια . καὶ πυραμὶς ἄρα , ἧς βάσις μὲν τὸ ΒΚΤ τρίγωνον , κορυφὴ δὲ τὸ Λ σημεῖον , ὁμοία | ||
πρὸς τὴν ΜΟ , καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΒΚΤ , ΖΜΟ , ἐπειδήπερ , ὃ μέρος ἐστὶν ἡ |
κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
πλείονος ἕκατι , διέλυσαν τὰς οἰκείας δυνάμεις , καὶ οὐκέτι ἀνάλωτοι τοῖς πέλας ἐδόκουν . Τοιγάρτοι ἄρξαντες οὐ λίαν ἐλάττονα | ||
οἱ τῶν ἀγαθῶν πράξεων θησαυροί , οἳ μόνοι ἄσυλοι καὶ ἀνάλωτοι . ταῦτ ' οὖν γινώσκων , ὡς ἔοικεν , |
ἀπὸ ΝΞ . καὶ εἰσὶν ἀμφότεραι ἄκρον καὶ μέσον λόγον τετμημέναι : διὰ τὸ ἐν ἀρχῇ τοίνυν ἐστὶν ὡς ἡ | ||
μὲν ἰϲχυροτέροιϲι αἱ ῥίζαι ἐϲ μέγεθοϲ ἄμηϲ ἢ ὀλίγον ἁδρότερον τετμημέναι : ξὺν χόνδρῳ τε πλυτῷ ἢ φακῷ ἡ δόϲιϲ |
τρεῖς εὐθείας τὰς ΒΝ , ΒΓ , ΒΖ δύο εὐθεῖαι διηγμέναι εἰσὶν αἱ ΔΕ , ΔΝ , ἔστιν , ὡς | ||
δοθεῖσα τῇ θέσει καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ |
, . * . . ? Ἀχλύς : σκοτία , ἀορασία , ἡ ἄγαν ἀλύουσα καὶ ἀποκρύπτουσα : παρὰ τὸ | ||
. . . . Ἄϊδος κυνέην : νέφος τι καὶ ἀορασία : ἢ περιφραστικῶς τὴν περικεφαλαίαν : ἐν γὰρ αὐτῇ |
λόγον ἕξει καὶ ἡ ὑπὸ ΓΖΚ γωνία πρὸς τὴν ὑπὸ ΓΕΚ ἤπερ τὸ τάχος τοῦ ἐπικύκλου πρὸς τὸ τάχος τοῦ | ||
ΓΔΕ , ΖΗΘ , ἐν δὲ τῷ κώνῳ τρίγωνον τὸ ΓΕΚ . φανερὸν δὴ ὅτι τὸ κατὰ τὴν ΖΗΘ περιφέρειαν |
τὴν ἔνοπλον ὄρχησιν κατ ' ἐνίους τοὺς Διοσκούρους εὑρεῖν : ὀρχηστικοὶ γάρ τινες οἱ Διόσκουροι . ὁ δὲ Ἐπίχαρμος τὴν | ||
καὶ θυμώδεις εἰσὶ καὶ πολεμικοὶ τῇ βίᾳ τοῦ θερμοῦ καὶ ὀρχηστικοὶ δὲ διὰ τὰς ἑτοίμους φυγὰς τῶν βελῶν : ἔστι |
τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΓΕ , ΑΓΒ δυσὶν ὀρθαῖς ἴσας ποιοῦσιν : ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΒΓ | ||
εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ , ἴσας γωνίας περιέξουσιν . Δύο γὰρ εὐθεῖαι αἱ ΑΒ , |
ἕδραν προπίπτουϲαν κϚ Πρὸϲ τὰ ἐξόμφαλα βρέφη κζ Πρὸϲ τὰ δαϲέα βρέφη κη Πότε ἀπογαλακτιϲτέον τὰ παιδία κθ Δίαιτα παιδίων | ||
ἀνάπλαϲϲε κολλύρια καὶ χρῶ . Ἄλλο πρὸϲ ῥεύματα παλαιὰ καὶ δαϲέα βλέφαρα . καδμίαϲ ⋖ Ϛ χαλκοῦ κεκαυμένου ⋖ δ |
, τὴν δὲ σκληροτέραν : σκωλήκια γὰρ ποιῶν ἐκ τῆς σκληροτέρας καὶ λίνῳ περιδήσας πρὸς εὐχερῆ κομιδήν , ἐνετίθει τοῖς | ||
ἐστι ψυχῆς πρὸς κολάσεις προσποιουμένης χρηστότητα : μηδ ' οἴεσθαι σκληροτέρας αὐτὰς εἶναι . ἔτι γε τὸν σοφὸν οὐδὲν θαυμάζειν |
, τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
τριγώνου . ἐδείχθη δὲ καὶ ἡ ὑπὸ ΖΒΓ τῇ ὑπὸ ΗΓΒ ἴση : καί εἰσιν ὑπὸ τὴν βάσιν . Τῶν | ||
διὰ τῶν Γ Ζ [ ἐρχέσθω , καὶ ἔστω τὰ ΗΓΒ ΕΖΘ ] : ἤτοι δὴ ἐφάπτονται αἱ ΑΓ ΔΖ |
' ὅλου τε τοῦ ϲώματοϲ ἐπ ' αὐτῶν ἡ ὀϲμὴ διαφαίνει τοῦ κορίου . βοηθεῖ δὲ αὐτοῖϲ μετὰ τὸ ἐξεραθῆναι | ||
προσώπου καὶ διὰ τῶν σχημάτων καὶ ἑστώτων καὶ κινουμένων ἀνθρώπων διαφαίνει . Ἀληθῆ λέγεις , ἔφη . Οὐκοῦν καὶ ταῦτα |
γραμμῆς τῆς δυνάμει τὴν τομὴν ποιησάσης μεταξὺ οὔσης τῶν δυνάμει τμηθέντων εὑρίσκεται τόδε τὸ μέρος συναπτόμενον τῇ γραμμῇ καὶ τὸ | ||
τῆς φωνῆς παραβλάπτεται βραχύ τι καὶ τῶν ἐπικειμένων τῇ φάρυγγι τμηθέντων , καὶ προσέτι τριῶν ἄλλων συζυγιῶν συστελλουσῶν τὸν θώρακα |
, ἃ καὶ τὰς μικρὰς ἰᾶται φλεγμονάς , σκληρότητά τινα κεκτημένας : ἁπλούστατον δ ' ἐν αὐτοῖς ἐστι τὸ πάνυγρον | ||
οἶδε πράττειν . Πρὸς μὲν τὸ λέγειν ὡς οὐ τὰς κεκτημένας τὴν τέχνην ὁ νόμος ἀλλὰ τὰς ἐπὶ κακῷ χρησαμένας |
δείξομεν , καὶ γωνία ἡ ὑπὸ ΑΒΘ γωνίᾳ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση , καὶ βάσις ἄρα ἡ ἀπὸ τοῦ | ||
β ὀρθαὶ τξ . ἔστι δὲ καὶ ἡ μὲν ὑπὸ ΔΓΚ τῶν αὐτῶν ο , ἡ δὲ ὑπὸ ΛΓΚ ὀρθή |
ἐν τῷ δυσχειμέρῳ τούτῳ ὄρει : τὰ γὰρ ὑψηλόκρημνα ὄρη δυσχείμερά εἰσιν : ὅμως οὖν ἀναγκαῖόν ἐστι τοῦτο ποιῆσαι . | ||
ἐν τῷ δυσχειμέρῳ τούτῳ ὄρει : τὰ γὰρ ὑψηλόκρημνα ὄρη δυσχείμερά εἰσιν : ὅμως οὖν ἀναγκαῖόν ἐστι τοῦτο ποιῆσαι . |