ΓΖ περιεχόμενον ὀρθογώνιον τῶν αὐτῶν ωξε ε λβ , ἐὰν παραβάλωμεν παρὰ τὸν ἀριθμὸν τῶν ωξε ε λβ τὰ ͵γφνζ | ||
πρὸς κείμενόν τι πλῆθος ἐφαρμόζειν τὰς τῶν ἀποχῶν εἰκασίας , παραβάλωμεν τὸν ἀπὸ τῆς Χρυσῆς Χερσονήσου μέχρι Καττιγάρων πλοῦν , |
Αἰγυπτιακοῖς ἔτεσι ση ἀποκαταστάσεις ποιεῖσθαι τὰς παρὰ τὸν λοξὸν ἐπίκυκλον ωξε ἔγγιστα : ἐπιλαμβάνεται γὰρ πρὸς τὸν ἀκριβῆ λογισμὸν μιᾶς | ||
δὲ ὑπὸ τῶν ΕΓ , ΓΖ περιεχόμενον ὀρθογώνιον τῶν αὐτῶν ωξε ε λβ , ἐὰν παραβάλωμεν παρὰ τὸν ἀριθμὸν τῶν |
ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν | ||
πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν |
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
τοῦ λόγου τοῦ τῶν ριδ ιϚ πρὸς τὰ λϚ λη ἀφέλωμεν τὸν τῶν ριζ ιβ πρὸς τὰ κε μδ , | ||
ἑκάτερος αὐτῶν ἐλάσσων Μο ι , καὶ ἐὰν ἑκάτερον αὐτῶν ἀφέλωμεν ἀπὸ Μο ι , εὑρήσομεν τοὺς λοιποὺς τῶν ζητουμένων |
τοῦτο καὶ μᾶλλον τοῦ δακρύου . Τὸ δὲ δάκρυον ἀπὸ ἐντομῆς συλλέγειν , ἐντέμνειν δὲ ὄνυξι σιδηροῖς ὑπὸ τὸ ἄστρον | ||
καὶ εἴ τι τοιοῦτον ἕτερον ὅτι μὲν καὶ ἀπ ' ἐντομῆς γίνεται καὶ αὐτομάτως εἴρηται . ποία δέ τις ἡ |
τῶν ριζ λα ιε πρὸς τὰ κδ ιε νζ , καταλειφθήσεται ἡμῖν ὁ τῆς ὑπὸ τὴν διπλῆν τῆς ΘΕ πρὸς | ||
͵βτνη μγ : ὥστε καὶ τὸ μὲν ἀπὸ τῆς ΒΓ καταλειφθήσεται ωκβ ιε , αὐτὴ δὲ ἡ ΒΓ ἔσται μήκει |
οἷόν τε ἰσχνότατον καὶ ἀσθενέστατον , μέχρις ἂν ᾗ δυνατὸν κατεργάσωνται τάς τε ἡδονὰς καὶ τὰς λύπας . βραδὺ δὲ | ||
ἀλήθουσιν , ἕως ἂν εἰς σεμιδάλεως τρόπον τὸ δοθὲν μέτρον κατεργάσωνται . προσούσης δ ' ἅπασιν ἀθεραπευσίας σώματος καὶ τῆς |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
ἀρκοῦντι ἐπὶ ἡμέραϲ γ , προκαθάραϲ καὶ ἀφελὼν αὐτῆϲ τὸ ὑμενῶδεϲ , τῇ δὲ τετάρτῃ τῶν ἡμερῶν αἴρων ἐξ αὐτῆϲ | ||
. μὴ παρόντοϲ ἄνθουϲ ῥοᾶϲ τὸ ἐντὸϲ μεταξὺ τῶν κόκκων ὑμενῶδεϲ μίγνυε . Τὸ πτερύγιον νευρώδηϲ ἐϲτὶν τοῦ ἐπιπεφυκότοϲ ὑμένοϲ |
μέντοι τὸ ὄρον παρά τε Αἰσχύλωι ἐν Κερκύνωνι καὶ παρὰ Μενάνδρωι ἐν β Ἐπικλήρωι σημαίνει ξύλον τι , ὧι τὴν | ||
] ποϲί ὀριβατοῦντεϲ γὰρ κόπτουϲι ξύλα ἔϲτιν [ ] παρὰ Μενάνδρωι τὸ τοιοῦτον ⸐ τοῦτ ' ἐκδανείζει καὶ κυκᾶιϲ [ |
. τοὺϲ δὲ ἐπὶ ῥάχεωϲ τραύματι ἢ πτώματι ἢ ὀλιϲθήματι ϲπονδύλου θανατικῶν ϲυνδρομῶν ϲυνεδρευουϲῶν ἀδύνατον ἰᾶϲθαι . εἰ δὲ καυλὸϲ | ||
ἐν τοῖϲ διαλείμμαϲιν , εἶτα προϲβλητέον ϲικύαϲ ἀπὸ τοῦ πρώτου ϲπονδύλου μέχριϲ ὀϲφύοϲ προκαταπλαϲϲομένων τῶν μερῶν μετὰ τῶν ὑποχονδρίων , |
τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ ἐστι τοῦ περιγεγραμμένου : καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ | ||
οὐδὲ μέχρι τινὸς ὡρισμένου χρόνου καὶ παραγεγραμμένου , ὅ ἐστι περιγεγραμμένου . Παραγγελία : Δημοσθένης ἐν τῷ κατ ' Αἰσχίνου |
ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει | ||
δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα , |
ϲύριγγι τοϲοῦτον χρόνον , ἕωϲ ὅτε τὸν ῥύπον ἤλπιϲα τελείωϲ ἐκπεϲεῖν , μετὰ ταῦτα ἐπέθηκα τὸ φάρμακον . ἦν δὲ | ||
ἀρχῶν ποιηϲόμεθα τὴν ἀπόϲφιγξιν . μετὰ δὲ τὸ ἀποϲαπῆναι καὶ ἐκπεϲεῖν τὰ ἀπολινωθέντα ϲώματα τῇ ἐμμότῳ θεραπεύϲομεν αὐτοὺϲ ἀγωγῇ κοιλοτέραν |
λήσομεν ἑαυτοὺς ἰσότιμον τὴν ὕλην τὴν φθαρτὴν καὶ ῥευστὴν καὶ μεταβλητὴν τῷ ἀγενήτῳ καὶ ἀϊδίῳ καὶ διὰ παντὸς συμφώνῳ ποιοῦντες | ||
Θάλεω καὶ Πυθαγόρου καὶ οἱ Στωικοὶ τρεπτὴν καὶ ἀλλοιωτὴν καὶ μεταβλητὴν καὶ ῥευστὴν ὅλην δι ' ὅλης τὴν ὕλην . |
τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια | ||
καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα |
ἀμφοτέροις τοῖς ἐκκειμένοις δωδεκατημορίοις κατὰ τὴν πρὸ ἓξ ὡρῶν θέσιν παραλλάσσειν , ὅταν τὰ μὲν τῆς Παρθένου δύο μέρη κατὰ | ||
ἐκλείποι , ἤτοι κατὰ μὲν τὴν ἑτέραν τῶν συνόδων μηδὲν παραλλάσσειν τὴν σελήνην , κατὰ δὲ τὴν ἑτέραν πλεῖον τῶν |
τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ | ||
μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ |
: μετὰ τὸ ϲχηματίϲαι τὸν πάϲχοντα οἰκείωϲ , ἐπιϲπαϲάμενοι τὴν πόϲθην εἰϲ τοὔμπροϲθεν καθήϲομεν ἄγκιϲτρα γ ἢ δ εἰϲ αὐτὴν | ||
εἴη τοῦτο , προϲλαμβάνειν τι μᾶλλον τῆϲ βαλάνου πρὸϲ τὴν πόϲθην ἤπερ τοὐναντίον : λεπτὴ γὰρ οὖϲα ἡ πόϲθη διατιτρᾶται |
τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε | ||
ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε |
τὴν μὲν τῶν χορδῶν κοινὴν ἀπόδεσιν , τὴν ἐκ τοῦ διαγωνίου πασσάλου , εἰς τὸν τοῦ ὀργάνου βατῆρα , ὃν | ||
πρὸ ἐκείνου τετραγώνου τοῦ δʹ , παρὰ τὸν εʹ , διαγωνίου κειμένου αὐτῷ ἑνὸς τριγώνου . ὁ δ ' ὑπὸ |
ε ἔτι | χρῆϲθαι ταῖϲ ἀνατάϲεϲιν , ὅταν ἢ τὰ ϲχήματα τῶν νόϲων τοῦτον τὸν τρόπον ϲυναναγκάζῃ ἢ πολλή τιϲ | ||
τὸ ἐπὶ πόδαϲ ἀπαρέγκλιτον , τὰ δὲ παρὰ ταῦτα πάντα ϲχήματα παρὰ φύϲιν εἰϲίν : παρὰ δὲ τὸ χόριον ἢ |
, τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς αβ , οὕτω καὶ ἐπὶ τῆς ἀνισότητος τῆς | ||
ΑΒΓ ἄλλο τρίγωνον συστήσασθαι τὴν ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἴσην ἑκατέρᾳ τῷ ΔΕ , ΔΑ καὶ |
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
ἀκτῖνα ἐκπέμπει , ὡς τοῦτο πάρεστιν ὁρᾶν ἐπί τε τῶν ἐσόπτρων γινόμενον καὶ πάντων ἁπλῶς τῶν κατὰ ἀνάκλασιν φωτιζόντων . | ||
προσαγαγεῖν καὶ ἑτέρας διαφόρους ἀκτῖνας ἀπὸ ἐπιπέδων ὁμοίων καὶ ἴσων ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας |
μὲν ΛΘ ἔσται γ νζ , ἡ δ ' ὑπὸ ΘΑΛ γωνία τῆς κατὰ τὸ πλάτος ἀποστάσεως , οἵων μέν | ||
ἐστιν ἴση . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΘΑΛ τῇ ὑπὸ ΖΔΓ ἐστιν ἴση [ ἐπειδήπερ ἐὰν ἀπολάβωμεν |
ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί . Λοιπὸν δὲ ἕνεκεν τοῦ προχείρου | ||
Α πόλου μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ |
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ . | ||
παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ |
μεταξὺ ἕως τῶν ἐφεξῆς τόπων μήπως ὑπὸ ἀγαθοποιῶν ἢ κακοποιῶν μαρτυρῶνται , καὶ πρὸς αὐτὰς τὴν τῆς ἑξῆς τριμήνου κατάστασιν | ||
κακοποιηθῇ , τὰ δὲ κάθυγρα τῶν ζῳδίων ὑπὸ τῶν ἀγαθοποιῶν μαρτυρῶνται , αὔτανδρον μὲν τὸ σκάφος οὐ φθαρήσεται , οἱ |
ὅπερ ἐστὶν ἐπὶ τῆς ἐπιφανείας τοῦ κυλίνδρου , δίχα ἔσται τετμημένη κατὰ τὸ Ζ . ἐπεὶ γὰρ ἡ ΓΑ διάμετρος | ||
τὴν γλῶτταν Γ : κἀκ τούτου δηλοῖ , ὅτι ἰδίᾳ τετμημένη προσεφέρετο ἡ γλῶττα παρὰ τῶν παλαιῶν . Γ ἀπένεγκε |
. Διὰ μαχαιρῶν καὶ πυρὸς ῥίπτειν δεῖ : ἐπὶ τῶν παραβαλλομένων καὶ ῥιψοκίνδυνα ποιούντων . Δίκην ὑφέξει κἂν ὄνος δάκῃ | ||
ἐστὶ διάνοια . ἀπὸ μεταφορᾶς τῶν στρα - τιωτῶν τῶν παραβαλλομένων ἔμπροσθεν ἐν τῷ πολέμῳ . ἐν ἀκαρεῖ χρόνῳ : |
, καὶ ὕστερον μὴ τέγγειν , μηδὲ κατακέεσθαι ἐπὶ τὰ σχάσματα , τῶν δὲ ἐναίμων τινὶ φαρμάκων καταχρῖσαι τὰ σχάσματα | ||
, καὶ πινέτω ὕδωρ : ἢν δὲ ἀπολύων εὑρίσκῃς τὰ σχάσματα φλεγμαίνοντα , καταπλάσσειν τῷ ἐκ τοῦ ἀγνοῦ καὶ λίνου |
ἂν πείθῃς ἐμὲ ἔσται σοι . καὶ τοῦ λοιποῦ ὅταν πέμπῃς παρ ' ἐμὲ , ὡς πρὸς βασιλέα τῆς Ἀσίας | ||
; μόνον ἐκεῖ μου μέμνησο . ἄν μ ' ἐκεῖ πέμπῃς , ὅπου κατὰ φύσιν διεξαγωγὴ οὐκ ἔστιν ἀνθρώπων , |
σημείων : ὅπερ ἔδει δεῖξαι . Ἐὰν ἐν τμήματι κύκλου κλασθῶσιν εὐθεῖαι , μεγίστη μὲν ἔσται ἡ πρὸς τὴν διχοτομίαν | ||
. καὶ χεῖρον μέν ἐστιν πρόδηλον , εἰ τὰ δύο κλασθῶσιν : ἧττον δέ , εἰ τὸ ἔμπαλιν : τοῦ |
ὀρθαί εἰσιν αἱ ὑπὸ ΚΖΒ , ΒΛΚ διὰ τὸ ἐν ἡμικυκλίοις εἶναι καὶ ἐκ κέντρου τὰς ΚΖ , ΚΛ , | ||
ΘΛΑ τὰς ὑπὸ ΒΓΑ , ΘΛΑ ἴσας ἔχουσιν : ἐν ἡμικυκλίοις γάρ : ἔχει δὲ τὸ ΘΛΑ τρίγωνον τὴν ὑπὸ |
οὗτος . δύο τοίνυν ἀνδράσι τῶν πρόσθεν ἐκ θεῶν ψῆφον δεδόσθαι παρειλήφαμεν , Λυκούργῳ τε τῷ Λακεδαιμονίῳ καὶ Σωκράτει τῷ | ||
, ἔνθα ὁ φιλόσοφος λέγει ἀπολελυμένως δεδομένα μεγέθη , μεγέθει δεδόσθαι σημαίνει . Ὁ λόγος τοῦ πόσου διακόλουθος , ἡ |
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων | ||
ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι . |
, νυμφίον ἐρῶντα . Μία τοίνυν ἔτι παρὰ τοῦ φύσαντος ἐμὶ λείπεται προσβολή . τίς οὖν ἐστιν αὕτη ; εἰ | ||
, νυμφίον ἐρῶντα . Μία τοίνυν ἔτι παρὰ τοῦ φύσαντος ἐμὶ λείπεται προσβολή . τίς οὖν ἐστιν αὕτη ; εἰ |
δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ ὅλην τὴν ΓΘ ἕξομεν τοιούτων ξα μθ , οἵων καὶ ἡ ΕΘ συνάγεται | ||
ἑκάστου τοῦ τε μήκους καὶ τοῦ πλάτους καὶ τῆς ἀνωμαλίας ἕξομεν τὰς ἐν τῷ χρόνῳ τῆς φαινομένης συνόδου ἀκριβεῖς παρόδους |
τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ | ||
ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν |
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
, ἡμῶν τῶν καταγεγηρακότων ἐν αὐταῖς καὶ μεγάλην ἐκ μικρᾶς πεποιηκότων τὴν πόλιν . ἔπειτ ' εἰ πείσειν ὑπέλαβεν ὑμᾶς | ||
κατήντησεν οὐχ ὁσίως : ὁ ἔφορος δαίμων τῶν τὰ ἄλαστα πεποιηκότων : πλουτῶν ἀκμάζων : γράφεται καὶ φονίαισι μάχαις : |
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
Καρκίνου ζῳδίου . διὰ τοῦτο μετακινεῖσθαι λέγει ὁ Εὐκλείδης τὴν διόπτραν καὶ ἐξ ἄλλου καὶ ἄλλου σημείου τὰς ἀρχὰς τῶν | ||
ἄνω μέροϲ τὸν κοχλίον ἔχοντα , καὶ κρατεῖϲθαι μὲν τὴν διόπτραν ὑπὸ τοῦ ἐνεργοῦντοϲ , ϲτρέφεϲθαι δὲ τὸν κοχλίον δι |
τροχίσκον διαλύσας καὶ ἀναλαβὼν μέλιτι κατέφθῳ ἢ φοινίκων λιπαρῶν σαρκὶ ἐπιτίθημι , οὐδὲ γὰρ φειστέον ἀναλώματος ἐπὶ τῶν περὶ τὴν | ||
† βεβαιοτάτης ψήφου ἡ παροιμία ἐτίθετο , οἷον τὸν Κολοφῶνα ἐπιτίθημι ἢ τὸν Κολοφῶνα ἀναγκάζω προσβιβάζων . ἄνω κάτω πάντα |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
γὰρ ἔγωγε τῶν Ἁρπάλου φίλων φανήσομαι γεγονώς , τῶν τε γραφέντων περὶ Ἁρπάλου μόνα τὰ ἐμοὶ πεπραγμέν ' ἀνέγκλητον πεποίηκε | ||
πόλις μὴ ἐθέλοι ἀκολουθεῖν , ἐπὶ ταύτην πρῶτον ἰέναι . γραφέντων δὲ τούτων καὶ ἀναγνωσθέντων τοῖς πρέσβεσιν , εἶπεν ὁ |
, ὅταν τὰ ἀπ ' αὐτῶν τετράγωνα τῷ αὐτῷ χωρίῳ μετρῆται , ἀσύμμετροι δέ , ὅταν τοῖς ἀπ ' αὐτῶν | ||
, ὅτι ὑφ ' ὅσων ἂν ὁ Δ πρώτων ἀριθμῶν μετρῆται , ὑπὸ τῶν αὐτῶν καὶ ὁ Α μετρηθήσεται . |
ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
ΒΔ , ΔΓ ἴσον ὑπόκειται τῷ ἀπὸ τοῦ τετάρτου μέρους ἀναγραφομένῳ τετραγώνῳ τῆς Α . ὥστε τὸ δὶς ὑπὸ τῶν | ||
ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τοῦ λοιποῦ τμήματος τοῦ ΑΘ ἀναγραφομένῳ τετραγώνῳ . Ἀπορεῖται [ ] , ὅτι πόθεν δῆλον |
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
περὶ πλατὺν καὶ μαλακὸν τόπον : ὑπὸ δὲ τοὺς κανόνας ὑποθήσομεν καταζυγίδας σιδηρᾶς πλάτος μὲν ἐχούσας ἴσον τοῖς κανόσι , | ||
ἐνερευθὴς ὁ τόπος γίνεσθαι , κύκλον ἐξ ἐρίου ποιήσαντες εὐμεγέθη ὑποθήσομεν τῷ τόπῳ , μετὰ ταῦτα ῥοδίνην ἢ μυρσίνην κηρωτὴν |
ΒΔ διπλάσιον τοῦ δὶς ἀπὸ ΒΕ : τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα προσλαβόντα τὰ ἀπὸ ΚΖΜ εἴδη ὅμοια τῷ πρὸς | ||
ΒΘ τῶν αὐτῶν Ϙθ θ , καὶ ὅλη μὲν ἡ ΝΖΘ ἔσται ση μγ , ἡ δ ' ἡμίσεια αὐτῆς |
λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
, εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
συμπτώματα , ὧν ἡ μὲν ἡμέρα κατὰ τὸν ἐξ ἡλίου φωτισμὸν συμβαίνει , ἡ δὲ νὺξ κατὰ φωτισμοῦ στέρησιν τοῦ | ||
πλείστου τῶν ἡμερῶν . ἤματος ἐκ πλείου : καθὸ τὸν φωτισμὸν ἡ σελήνη πλήρη ἔχει ἐν αὐτῷ . ἴδρις ⌊ |
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . ηʹ . Διὰ μὲν οὖν τοῦ συνημμένου | ||
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . Ὁμοίως καὶ τὸ ΑΗΒ τῷ ΔΘΕ , |
μέση καλεῖται : τῶν γὰρ καθ ' ἕκαστον τρόπον φθόγγων ἐκτιθεμένων μεσαιτάτη κεῖται . μετὰ δὲ ταύτην ἡμιτόνιον μὲν ἐπιτείναντι | ||
ὑπεροχῆς γίνονται , καὶ πλευραὶ αὐτῶν εἰσιν οἱ μέγιστοι τῶν ἐκτιθεμένων , καὶ ὁ ὑπὸ τοῦ μεγίστου τῶν ἐκτιθεμένων καὶ |
Εὐθυκράτηϲ προὔδωκε τὴν ἑαυτοῦ πατρίδα Ὄλυνθον καὶ αἴτιοϲ ἐγένετο τὰϲ πόλειϲ τῶν Χαλκιδέων οὔϲαϲ τετταράκοντα ἀναϲτάτουϲ γενέϲθαι καὶ τὰ ἑξῆς | ||
? [ ! ] ! ! ! ν ὅϲαϲ ἀναϲτάτουϲ πόλειϲ ἑόρακαϲ [ ] [ , τοῦτ ] ' ἀπολώλεκεν |
ἡμεῖς ἐτηροῦμεν , ποτὲ μὲν σύμφωνοι κατελαμβάνοντο τοῖς κατὰ τὴν ἐκκειμένην ὑπόθεσιν ἐπιλογισμοῖς , ποτὲ δὲ διάφωνοι καὶ διάφοροι , | ||
ἐπεῖχεν τοῦ Καρκίνου μοίρας ια γʹ , κατὰ δὲ τὴν ἐκκειμένην τήρησιν δηλονότι μοίρας ζ λγ , ἐπειδὴ πάλιν τοῖς |
εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Β ἐπὶ τὸ Γ ἐπιζευγνυμένῃ εὐθείᾳ [ καί ἐστιν ἡ μὲν ἀπὸ τοῦ Α | ||
εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Κ ἐπὶ τὸ Δ ἐπιζευγνυμένῃ εὐθείᾳ : καὶ ἡ ΑΘ ἄρα περιφέρεια ἴση ἐστὶ |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
σκληρὰν ἔχουσι τὴν σάρκα , πλὴν τοῦ παρὰ Ῥωμαίοις καλουμένου γαλαξίου ἐνδοξατάτου τε καὶ ἁπαλοῦ τυγχάνοντος : ἔστι γὰρ καὶ | ||
τὰ οὐράνια σώματα καὶ ἡ περὶ τούτων ζήτησις , περὶ γαλαξίου περὶ ἄστρων περὶ ἡλίου καὶ σελήνης , ἢ περὶ |
κατὰ τοὺς ὤμους πλάτους , ὅθεν ἐννέα ἐν τῷ μετώπῳ τάσσοντες τρεῖς ἐν τῷ βάθει ποιοῦσιν . οὐδὲ γὰρ τὸ | ||
ἰδίαν σημαίνουσί τι , συνδέουσι δὲ τοὺς λόγους , ἑξῆς τάσσοντες καὶ οὕτως ἐπισυν - δέοντες καὶ ἑνοῦντες . οὐκ |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
γῆν . ὅτι μὲν γὰρ φθείρεται , δῆλον ἐκ τῶν περιλειπομένων ἀνθράκων : οὗτοι γὰρ τὸν αὐτὸν ὄγκον διαφυλάττοντες τῷ | ||
κατορθώματι ἐπαρθέντες , τῶν τ ' ἀπολωλότων οἶκτος καὶ τῶν περιλειπομένων ἔλεος , ὡς ἀναρπασθησομένων αὐτίκα μάλα δι ' ἀπορίαν |
χρήσασθαι : δεῖ γὰρ λαμβάνειν τὸν μονάδι ἐλάττονα ἀριθμὸν καὶ πολυπλασιάζειν ἐπὶ τὸν ἐξ ἀρχῆς προκείμενον καὶ τὸν γενόμενον μερίζειν | ||
: ἐκ γὰρ τοῦ διαφόρως ἔχειν , ἃ δεῖ ἅμα πολυπλασιάζειν , τό τε αʹ ὁμοῦ καὶ τὸ γʹ καὶ |
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
τρίχεϲ ἔϲονται χνοώδειϲ . Ἄλλο . ὄνων τῶν ὑπὸ τὰϲ ὑδρίαϲ ⋖ ιβ ϲανδαράκηϲ ⋖ δ ἀϲβέϲτου ⋖ η ἀρϲενικοῦ | ||
, ἐν ᾧ γῆϲ ἔντερα ἢ ὄνοι οἱ παρὰ τὰϲ ὑδρίαϲ ἐνήψηνται , ἢ τὸ ἀμυγδάλινον ἔλαιον καθ ' αὑτὸ |
καὶ λάφυρα κομίζων , δόξαν δὲ μεγάλην ἐκ τῶν κατορθωμάτων περιπεποιημένος . Ἐπ ' ἄρχοντος δ ' Ἀθήνησι Καλλιμάχου Ῥωμαῖοι | ||
εἰς Μακεδονίαν , οὐ μόνον δόξαν εὐσεβείας καὶ ἀρετῆς στρατηγικῆς περιπεποιημένος , ἀλλὰ καὶ πρὸς τὴν μέλλουσαν αὔξησιν αὐτῷ γίνεσθαι |
ἕω κειμένην , ἀλλὰ τὴν ἐξ Ἰβήρων ἐπὶ τὰ ἑῷα παρέλκουσαν . Ἴβηρές τε , φησὶ , καὶ Ἰταλοὶ πάντες | ||
ὡς ἐν τῷ περὶ προθέσεως εἰ θεῷ φίλον μαθησόμεθα , παρέλκουσαν ἔχει τὴν ὑπό πρόθεσιν , ὥστε μηδὲ παρέχειν ἔμφασιν |
ῥέοντος τοῦ αἵματος . ὥσπερ καὶ ἐπὶ τῶν ἄλλων τῶν φλεβοτομουμένων : εἶθ ' ἃ πράττειν ὅπως μήποτε λάθῃς ἀντὶ | ||
ἐν τῇ χειρί . ἐπὶ δὲ τῶν ἀπὸ τοῦ μετώπου φλεβοτομουμένων ἢ κανθῶν ἢ γλώσσης ἢ παρὰ τὰ ὦτα χρὴ |
ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ | ||
ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα |
παρὰ τοὺς νόμους τὴν λῆξιν πεποίηται , ἐκ πολλῶν οἶμαι ἐπιδεδεῖχθαι τοῦτο ὑμῖν , ὦ ἄνδρες δικασταί : τὸ δὲ | ||
ἰδίην ἀποδεικνύμενος . Περὶ μὲν οὖν τουτέων ἱκανῶς μοι ἡγεῦμαι ἐπιδεδεῖχθαι . Λέγουσι δέ τινες καὶ ἰητροὶ καὶ σοφισταὶ ὡς |
: οὐκ ἄρα ἴση ἐστὶν ἡ ὑπὸ ΛΒΕ τῇ ὑπὸ ΖΕΑ . ὀρθὴ δὲ ἡ πρὸς τῷ Ε ὀρθῇ τῇ | ||
πρὸς ὀρθὰς αὐτὴν τέμνει : ὀρθὴ ἄρα ἐστὶν ἡ ὑπὸ ΖΕΑ : πάλιν , ἐπεὶ εὐθεῖά τις ἡ ΖΕ εὐθεῖάν |
καὶ πῦρ , εἶτα εἰς τὴν παλαιὰν ὄψιν καταστάντα καὶ δηλώσαντα , ἀφίησιν . ὁ δὲ ἔρχεται οὕτως ἐπὶ τὰ | ||
πατρὸς Ἀλεξάνδρου θάνατον Φίλας τῆς παλλακίδος αὐτοῦ , πρὸς ἣν δηλώσαντα τὸ γεγονός , ἐπειδὴ παρεφύλαξεν ταύτης βλεπομένης παντελῶς ἐκεῖνον |
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς | ||
ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον , |
δείξομεν , καὶ γωνία ἡ ὑπὸ ΑΒΘ γωνίᾳ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση , καὶ βάσις ἄρα ἡ ἀπὸ τοῦ | ||
β ὀρθαὶ τξ . ἔστι δὲ καὶ ἡ μὲν ὑπὸ ΔΓΚ τῶν αὐτῶν ο , ἡ δὲ ὑπὸ ΛΓΚ ὀρθή |
δ ' ὑποδεχόμενος παρ ' αὐτόν , ἐφεξῆς δ ' ἑκατέρωθε κατ ' ἀξίαν ἧς ἔχουσιν ὑπεροχῆς . καὶ οἱ | ||
[ τρο ? ! [ ! ! ] δύ ' ἑκατέρωθε [ καὶ τοῦτο φοβερὸν ἐκπ ? [ φέρ ' |
κατὰ βρέγματος ἐπὶ ἰνίον , εἶτα μετωπιαία . Κεφ . κστʹ . Ἡ μεσότης τῷ ἰνίῳ ἐντιθέσθω τὰ εἰλήματα , | ||
πρὶν ἀλείψασθαι . ἐπὶ ἡμέρας κʹ . ἀφανίζονται . [ κστʹ . Πρὸς τὸ κοιλίαν , ἢ ὑποχόνδριον , ἢ |
ἔχων : ἐπὶ τῶν φύσει μὲν ἀνδρείων , ἑτέραν δὲ προσλαμβανόντων ἔξωθεν βοήθειαν . Λήθαργος κύων : ὁ προσσαίνων μὲν | ||
εἰς τὸν ἀροτριασμὸν ὃν δύνανται ποιεῖν ἐν πάντι ἀγρῷ τῶν προσλαμβανόντων αὐτά , καὶ τὸν καρπὸν αὐτῶν ἀφορίζειν τοῖς πένησιν |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
, τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
: οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ | ||
περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ |
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
καὶ περιστάσεις οὐ τὰς τυχούσας ἐπιφέρουσιν , ὁτὲ δὲ καὶ κακοθανασίας παραίτιοι γίνονται . Ἡ δὲ Ἀφροδίτη ἐν τούτῳ τῷ | ||
δύσεως ἢ προδύσεως κακοποιοὶ τυχόντες βιαιοθανασίας καὶ αἰτίας παθῶν καὶ κακοθανασίας ἀποτελοῦσι . τὴν δὲ αὐτὴν δύναμιν καὶ ὁ ὄγδοος |
λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς | ||
παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ |
τῶν ΓΒ ΒΖ . καὶ γὰρ τοῦτο φανερὸν ἐκ τῶν προδεδειγμένων . ιδʹ . Πάλιν ἔστωσαν δύο εὐθεῖαι αἱ ΑΒ | ||
τοσαῦτα καὶ περὶ τὴν τοῦ κυλίνδρου τομὴν ἐκ τῶν ἐνταῦθα προδεδειγμένων εὑρήσει συμβαίνοντα . διόπερ τούτου μὲν ἀποστάς , ὀλίγα |
πλίνθοις ὀπταῖς : Φασὶ γὰρ τὴν Βαβυλῶνα ἀπὸ ὀπτῶν πλίνθων οἰκοδομηθῆναι , καὶ ἀντὶ γύψου ἀσφάλτῳ συνδεθῆναι τὰς πλίνθους . | ||
ᾗ Ἀρυτάμας Λάκων νικᾷ στάδιον ] τῆς Σικελίας ἐν Παλικίοις οἰκοδομηθῆναι τόπον , εἰς ὃν ὅστις ἂν εἰσέλθῃ , εἰ |
ὑπ ' ἄλλου τινὸϲ ὠφεληθέντεϲ : ᾧ καὶ δῆλον ὅτι μόνουϲ τοὺϲ ἀνιάτωϲ ἔχονταϲ οὐκ ὠφέληϲεν . πίνεται δὲ μετ | ||
χωρούϲῃ δὲ ♃ ιβ , ἐπίβαλλε αὐτῇ ἐλαίου ♃ Ϛ μόνουϲ καὶ χρίϲαϲ ἀκριβῶϲ τὸ ϲτόμα τῆϲ χύτραϲ γύψῳ , |
τῶν Α Β Γ Δ Ε στερεῷ . τὸ δὲ γραμμικὸν ὑπὸ τοῦ Ἀπολλωνίου δέδεικται . ιθʹ . Ἀλλὰ δὴ | ||
. ἀνάλογον ὧδε κατὰ τὴν γεωμετρικὴν ἀναλογίαν λέγει . τὸ γραμμικὸν σχόλιον ἄνω παράκειται . ἰστέον ὅτι ἑτερόμηκες νῦν καλεῖ |
τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |