ἀκτῖνα ἐκπέμπει , ὡς τοῦτο πάρεστιν ὁρᾶν ἐπί τε τῶν ἐσόπτρων γινόμενον καὶ πάντων ἁπλῶς τῶν κατὰ ἀνάκλασιν φωτιζόντων .
προσαγαγεῖν καὶ ἑτέρας διαφόρους ἀκτῖνας ἀπὸ ἐπιπέδων ὁμοίων καὶ ἴσων ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας
6200120 κεκινησθω
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ
5826989 ἐνοπτρων
Φρυγῶν γὰρ οὐδέν ' ἂν τρέσαιμ ' ἐγώ . οἵους ἐνόπτρων καὶ μύρων ἐπιστάτας . τρυφὰς γὰρ ἥκει δεῦρ '
αὐτά . Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κοίλων ἐνόπτρων , ὅσα μέν ἐστιν ἐντὸς τῆς συμπτώσεως τῶν ὄψεων
5682095 ἐπιζευξαι
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ
5630940 ἀχθεισων
τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας
διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται
5613716 ἡμικυκλιων
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι
5575871 ἐπιζευχθεισων
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α
5537403 ΑΔΖ
γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου
γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας
5502030 εὐθειων
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς
5478176 διαστησαντες
συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν
τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν
5469060 πιπτειν
. μέλλοντος δὲ τοῦ δωματίου , ἐν ᾧ ἦν , πίπτειν μάντις ὢν προεμήνυσεν . ἐφ ' ᾧ καταπληχθεὶς ὁ
ΒΛ . Οὐ γὰρ οἷόν τέ ἐστιν ἐπὶ τὴν κοινὴν πίπτειν τῆς ΕΛ εὐθείας καὶ τῆς περιφερείας τοῦ ἐκκέντρου τὴν
5438685 συννευσις
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν
5415414 παραλληλον
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη
5400038 ἐνηρμοσθω
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση
5373286 καταμετρησει
κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ
ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο
5358584 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
5335452 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
5332712 βορειοτερων
εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι
ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς
5328795 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
5326136 φερομενων
ζητήσεως ἀτάκτως κινουμένων , καὶ * ἄλλο ἐπ ' ἄλλων φερομένων μορίων , καί ποτε περὶ τὸν στόμαχον , ἐφ
νοητῶν ἐνεδείκνυντο , ὡς δὲ παραδειγμάτων περὶ τῶν ἐν αἰσθήσει φερομένων εἰδῶν : οἳ καὶ δοκοῦσι τοῖς πολλοῖς μόνην πρεσβεύειν
5318385 ἀχθωσιν
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν
5291526 κυκλων
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ
5275701 γεωμετρικῳ
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ
5177936 ἐπιτιθημι
τροχίσκον διαλύσας καὶ ἀναλαβὼν μέλιτι κατέφθῳ ἢ φοινίκων λιπαρῶν σαρκὶ ἐπιτίθημι , οὐδὲ γὰρ φειστέον ἀναλώματος ἐπὶ τῶν περὶ τὴν
† βεβαιοτάτης ψήφου ἡ παροιμία ἐτίθετο , οἷον τὸν Κολοφῶνα ἐπιτίθημι ἢ τὸν Κολοφῶνα ἀναγκάζω προσβιβάζων . ἄνω κάτω πάντα
5147570 σημειων
παύονται , ἢ πρόσθεν : οἵ τε κακοηθέστατοι καὶ ἐπὶ σημείων δεινοτάτων γιγνόμενοι τεταρταῖοι κτείνουσιν , ἢ πρόσθεν . Ἡ
ἐστὶν ἡμῖν , ὅτι οὐ παράδοξον εἰ τὰ τοιαῦτα τῶν σημείων πλειόνων ἐστὶ δηλωτικά : θεμένων γὰρ νόμους , ὥς
5142165 ἐπιπεδον
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν
5141921 ἐγκεκλισθαι
, τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν
Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς
5140378 πλευρων
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά
5126999 ἐνοπτρα
καὶ πρὸς τοῖς Γ , Δ , Ε σημείοις ἔστω ἔνοπτρα ἐπίπεδα , ἀφ ' ὧν ὁρᾶται τὸ Α ,
με πολυδάκρυτον Ἑλλάδι λάτρευμα γᾶθεν ἐξορίζει , χρύσεα δ ' ἔνοπτρα , παρθένων χάριτας , ἔχουσα τυγχάνει Διὸς κόρα :
5110565 Ἀφῃρησθω
ἐστὶ τοῦ τοιούτου μέρους τοῦ ἐξ ἀρχῆς ἀριθμοῦ . . Ἀφῃρήσθω κοινὴ λεῖψις τὰ κ . Ϟοὶ ἄρα τρεῖς λείψει
ὅτι μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ Ε χωρίου . Ἀφῃρήσθω γὰρ τὸ δοθὲν χωρίον τὸ ὑπὸ ΑΒΗ : λοιποῦ
5109405 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
5094324 περιφερους
ταύτην τὴν αἰτίαν καὶ ἡ ψυχὴ ἐκ τῶν δύο , περιφεροῦς καὶ εὐθείας , ὑπέστη ἐκ πέρατος καὶ ἀπείρου ,
ψυχροῦ . Κρύσταλλος συντελεῖται καὶ κατ ' ἔκθλιψιν μὲν τοῦ περιφεροῦς σχηματισμοῦ ἐκ τοῦ ὕδατος , σύνωσιν δὲ τῶν σκαληνῶν
5078978 τμηματων
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ
5065411 περιεχομενον
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ
5037637 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
5037300 καθετον
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ
5024091 ΒΗΔ
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ :
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς
5014373 προχωρειν
μέρος τῆς χορδῆς ἐγκόψεις τῇ κρού - σει , περαιτέρω προχωρεῖν οὐκ ἐῶν τὸν κραδασμὸν , ἐπίτριτον ἂν πρὸς τὸ
πάντως γε κατὰ δύναμιν . τοῦτο οὖν δείκνυσι μὴ δυνάμενον προχωρεῖν ἐπὶ τῶν μετὰ τρόπου προτάσεων , κατασκευάζειν πρότερον διὰ
5013255 διαστηματι
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ
5013056 σκιασματι
ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας
Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ
5009526 ἐσοπτρα
: ὥστε ἔσταν διὰ πλειόνων ἀνδρῶν κατὰ τὴν εἰρημένην θέσιν ἔσοπτρα κατεχόντων καὶ ἐπὶ τὸ Γ πεμπόντων σημεῖον ποιῆσαι τὸ
τοῦ Β σημείου , ἐπὶ τὰ εἰρημένα καὶ συνεχῆ ἀλλήλοις ἔσοπτρα ἀνακλασθήσονται ἐπὶ τὸ Α σημεῖον . δυνατὸν δὲ καὶ
5009065 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
5008324 εὐθυγραμμων
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν
5003822 γλωχινα
. Ἐκ τοῦ σχήματος ἔλαβε τὴν ἀρχὴν , εἰπὼν ὑπὸ γλωχῖνα : ἐπὶ γὰρ τῶν ἐχόντων γωνίας ἡ λέξις ,
. ληθαῖον : τὸ λήθην τῶν κακῶν ἐμποιοῦν . ποτὶ γλωχῖνα : πρὸς τὴν γωνίαν τοῦ θρόνου . λέχριος :
4995274 ΧΦΨ
κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι
Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται
4990162 ἐφαπτομενων
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ
4988744 διχοτομουμενον
τὸν δὲ μεσημβρινὸν ὀρθὸν προσαρμόσομεν τῷ κατὰ τὴν βάσιν ὁρίζοντι διχοτομούμενον μὲν ὑπὸ τῆς φαινομένης ἐπιφανείας αὐτοῦ , δυνάμενον δὲ
Σάμῳ ξόανον συμφώνως τῇ τῶν Αἰγυπτίων φιλοτεχνίᾳ κατὰ τὴν κορυφὴν διχοτομούμενον διορίζειν τοῦ ζῴου τὸ μέσον μέχρι τῶν αἰδοίων ,
4985402 κυκλικων
μᾶλλον καὶ σφαιρικοὶ λεγέσθωσαν , ἑνὶ πλείονι διαστήματι αὐξηθέντες ἀπὸ κυκλικῶν καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ
τὸ ζῴδιον λέγω , τυγχάνοντας καὶ ἐκ τῶν δυὸ τῶν κυκλικῶν συνδέσμων , ἐκλείπουσι κατὰ τομὴν πρὸς μοίρας τῶν δακτύλων
4967248 ἀντιστρεφοντων
Στησαγόραν βʹ , Σύγκρισις τῶν τροπικῶν ἀξιωμάτων αʹ , Περὶ ἀντιστρεφόντων λόγων καὶ συνημμένων αʹ , Πρὸς Ἀγάθωνα ἢ περὶ
ὡσαύτως . Ὅτι μέν , φησίν , οὔτε διὰ τῶν ἀντιστρεφόντων οὔτε διὰ τῆς διαιρέσεως τὸν ὁρισμὸν ἐνδέχεται συλλογίζεσθαι ,
4964057 τμηματα
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ
4962796 κλιματων
Νοιόμαγον εἰπὼν νοτιωτέραν μιλίοις νθʹ , βορειοτέραν αὐτὴν διὰ τῶν κλιμάτων ἀποφαίνει . Καὶ τὸν Ἄθω δὲ τάξας ἐπὶ τοῦ
οὕτως πραγματευσόμεθα . πάντοτε δεῖ πρῶτον εἰσέρχεσθαι εἰς τὸ τῶν κλιμάτων κανόνιον , ἔχοντα δὲ διαβήτην κεχηνότα καὶ κατὰ τὴν
4955290 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
4953809 περιγραψωμεν
τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ
μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ
4952015 ἰσων
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα
4948714 Ζ͵
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν
4938393 ἐξαρματα
ὥστε τὰς πανταχοῦ συνανατολάς τε καὶ συγκαταδύσεις καὶ συμμεσουρανήσεις καὶ ἐξάρματα πόλων καὶ τὰ κατὰ κορυφὴν σημεῖα καὶ ὅσα ἄλλα
δὲ τῶν καθ ' ἑκάστην χώραν διασήμων πόλεων τὰ μὲν ἐξάρματα μετειλημμένα εἰς τὰ μεγέθη τῶν ἐν αὐτοῖς μεγίστων ἡμερῶν
4930114 ΚΜΝ
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ
4916852 ἀνατολικων
πολὺς τῶν τοῦ Νίγρου στρατιωτῶν γίνεται , ὡς τῶν μὲν ἀνατολικῶν εὐθέως θραῦσαι τὴν ἐλπίδα , τῶν δὲ Ἰλλυριῶν ἐπιρρῶσαι
καθώς φησιν ὁ Παρθένιος : Κωρυκίων σεύμενος ἐξ ὀρέων , ἀνατολικῶν ὄντων . δύναται δὲ οὕτως καλεῖσθαι , καθ '
4896635 εζη
Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον
τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν
4896397 γραφομενην
ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ
ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ
4892724 περιεχομενῳ
τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ
ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν
4880701 ΕΖΓ
καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν
τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν :
4877948 παραβαλλομενων
. Διὰ μαχαιρῶν καὶ πυρὸς ῥίπτειν δεῖ : ἐπὶ τῶν παραβαλλομένων καὶ ῥιψοκίνδυνα ποιούντων . Δίκην ὑφέξει κἂν ὄνος δάκῃ
ἐστὶ διάνοια . ἀπὸ μεταφορᾶς τῶν στρα - τιωτῶν τῶν παραβαλλομένων ἔμπροσθεν ἐν τῷ πολέμῳ . ἐν ἀκαρεῖ χρόνῳ :
4876074 διαστημα
τὰς τάξεις τάσσειν , ἵνα μὴ ὡς κονδότεραι καὶ ὀλίγον διάστημα κρατοῦσαι μὴ δύνανται εὐκόλως τὰ κυνήγια περιλαμβάνειν , μήτε
οἷόν τε ὑπὸ ὄντος κατέχεσθαι μὴ κατεχόμενον δέ , ἢ διάστημα ἔρημον σώματος , ἢ διάστημα ἀκαθεκτούμενον ὑπὸ σώματος ,
4873508 ΔΘΗ
ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ
Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς
4873006 γωνιαν
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν
4864200 τεταγμενων
ἀποφαίνεται λέγων ὅτι τῶν ἑτερογενῶν καὶ μὴ ὑπ ' ἄλληλα τεταγμένων ἕτεραι τῷ εἴδει καὶ αἱ διαφοραί , τῶν δὲ
εἰ παραβάλλοιμεν αὐτὸ κριτηρίοις τισὶ τῶν ἰδίως ὑπ ' αὐτὸ τεταγμένων : ἐπὶ τὰ καθόλου πάντα προοδοποιεῖσθαι μάλιστα πέφυκε διὰ
4848490 ΗΖΛ
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ
4846502 ἀφαιρειτωσαν
τινὸς κύκλου τοῦ ΑΔ περιφερείας τὰς ΑΕ , ΕΔ ἴσας ἀφαιρείτωσαν πρὸς τὸν μέγιστον τῶν παραλλήλων τὸν ΖΕΗ , καὶ
, ὦ θεοί , ἢ ἀκροάσασθαι ἐπικύψαντας αὐτῶν ; ὥστε ἀφαιρείτωσαν αἱ Ὧραι τὸν μοχλὸν ἤδη καὶ ἀπάγουσαι τὰ νέφη
4836006 παραλληλων
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν
4833194 ὑποθησομεν
περὶ πλατὺν καὶ μαλακὸν τόπον : ὑπὸ δὲ τοὺς κανόνας ὑποθήσομεν καταζυγίδας σιδηρᾶς πλάτος μὲν ἐχούσας ἴσον τοῖς κανόσι ,
ἐνερευθὴς ὁ τόπος γίνεσθαι , κύκλον ἐξ ἐρίου ποιήσαντες εὐμεγέθη ὑποθήσομεν τῷ τόπῳ , μετὰ ταῦτα ῥοδίνην ἢ μυρσίνην κηρωτὴν
4823632 ἀκτινων
ἐπί γε τῶν ἀνακλάσεων ἴσας συνίστασθαι γωνίας ὑπὸ τῶν ἡλιακῶν ἀκτίνων ταῖς τῆς ἡμετέρας ὄψεως , ἥτις ἀποδέδεικται πρὸς ἴσας
. καθόλου δὲ περὶ ὁράσεως οὕτω διωριστέον , ὡς οὐκ ἀκτίνων ἐκπεμπομένων κωνικῶς ἢ σωματικῶς ἢ ἀσωμάτως , ὥς τινες
4819744 συννευουσαι
αὐτῶν τῶν γωνιῶν ἀνεγειρόμεναι καὶ εἰς ἓν καὶ τὸ αὐτὸ συννεύουσαι σημεῖον πυραμίδα ἀποκορυφοῦσιν ὀνομαζομένην ἀπὸ πενταγώνου βάσεως ἢ ἑξαγώνου
' ἄπειρον γενέσθαι , κατὰ τὰ λοιπὰ δὲ οὔ . συννεύουσαι γὰρ ἐπὶ τάδε τὰ μέρη πλέον ἀφίστανται ἀλλήλων κατὰ
4815379 ἀξονα
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ
4814940 τμηθεντος
| ἓν γὰρ τὸ ἐξ ἀμφοῖν τῶν ἐναντίων , οὗ τμηθέντος γνώριμα τὰ ἐναντία . οὐ τοῦτ ' ἐστίν ,
λοιπὸς ἄρα ὁ ΓΑ ἐστι μονάδων ι καὶ β . τμηθέντος δὲ τοῦ ΓΑ δίχα τοῦ ιβ κατὰ τὸ Δ
4806340 Δυνατον
δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν
καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν ,
4805174 συμπιπτουσι
ἄρα ΑΒ , ΓΔ ἐκβαλλόμεναι εἰς ἄπειρον συμπεσοῦνται : οὐ συμπίπτουσι δὲ διὰ τὸ παραλλήλους αὐτὰς ὑποκεῖσθαι : οὐκ ἄρα
πρὸς ἀλλήλας αἱ ἑκατέρωθεν ἀκταί : προϊοῦσαι δὲ πλέον τελέως συμπίπτουσι κατὰ τὸ Ῥίον καὶ τὸ Ἀντίρριον , ὅσον δὴ
4804990 δοθεισαν
ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ
κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ
4794903 διαμετρων
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς
4789629 συννευουσας
τῷ μήκει ἴσας ταῖς τοῦ τριγώνου πλευραῖς καθ ' ὕψος συννευούσας εἰς ἓν καὶ τὸ αὐτὸ σημεῖον , πυραμὶς ἂν
καὶ ἐπὶ τῶν περάτων αὐτῆς ἑστώσας πρὸς ὀρθάς , εἶτα συννευούσας εἰς τριγώνου γένεσιν , ὁρῶμεν , ὅτι , καθ
4784516 κωνικην
τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς
ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον ,
4784160 διαμετρον
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ ,
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης ,
4781281 ὀρθογωνιου
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου
4778795 ΒΛΓ
, τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον
δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς
4770583 νενοησθω
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον ,
4768196 ἀναστησωμεν
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων
4763235 στρογγυλων
ἑψηθὲν καὶ ποθὲν θερμὸν κυ . Ϛʹ καὶ πλῆθος ἑλμίνθων στρογγύλων ἐκβάλλει . καὶ ἀνδράχνης ὁ χυλὸς πινόμενος καὶ θαλασσία
γνώρισμα δῆλον τῷ συνειθισμένῳ τὸ τῶν εὐρύθμων καὶ ἀποτετορνευμένων καὶ στρογγύλων ἀποδέχεσθαι λόγων , καὶ τετριμμένῳ τὰ ὦτα πρὸς τὴν
4759564 καθετων
τῆς ΔΒ καὶ τῆς ΒΘ καὶ ἔτι τῆς ΕΘ , καθέτων δ ' ἀγομένων ἐπὶ μὲν τὴν ΔΒ τῆς ΖΚ
κώνου , οὗ βάσις μὲν ὁ ὑπὸ τῶν πτώσεων τῶν καθέτων γραφόμενος κύκλος , κορυφὴ δὲ ἡ αὐτὴ τῷ ἐξ
4755791 πενταγωνους
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ
4754061 κινουμενων
συνιεὶς τῆς καθολικῆς τῶν σφαιρῶν καὶ τῶν κατ ' αὐτὰς κινουμένων ἀστέρων ἁρμονίας τε καὶ συνῳδίας , πληρέστερόν τι τῶν
δὲ ἤγαγον τοὺς ἵππους πλησίον αὐτῶν , τῶν ἵππων δὲ κινουμένων , ἤχει ἡ γῆ , κοπτομένη τοῖς ποσὶν αὐτῶν
4751752 ὑπερκειμενων
, ἀναφωνήσεσιν , ἀλείμμασι , σικύαις καὶ δρώπαξι κατὰ τῶν ὑπερκειμένων , παροπτήσεσιν , ἡλιώσεσι καὶ τρίψεσι , ψιλώθροις ,
ψιλῷ ἐγχυματίζειν θερμανθέντι . φερόμενον γὰρ τὸ δάκρυον ἐκ τῶν ὑπερκειμένων μερῶν πρὸϲ τῷ βλεφάρῳ τὴν ϲύϲταϲιν ποιεῖται καὶ φανταϲίαν
4748858 ΝΗΞ
περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ
ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι
4747271 ἀρθεντων
ἄλλοις πεπλατυσμένοι , καθ ' ἑκάτερον μέρος μῦς εἷς : ἀρθέντων δ ' αὐτῶν ἐνίοτε μὲν ἐναργῶς φαίνονται τρεῖς συζυγίαι
ἀμαράκινον ἢ ἴρινον ἢ ἀνήθινον μύρον . Τῶν δὲ καταπλασμάτων ἀρθέντων , ἔριον καθαρὸν βεβρεγμένον τινὶ τῶν εἰρημένων μύρων θερμῷ
4746230 εὐθυγραμμος
μὲν δοθὲν εὐθύγραμμον τὸ ΑΒΓΔ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Ε : δεῖ δὴ τῷ ΑΒΓΔ εὐθυγράμμῳ ἴσον
μὲν δοθὲν τρίγωνον τὸ ΑΒΓ , ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ : δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον
4743709 κλωμενων
Εὐφράτου νήσοις δένδρα φύεσθαι λιβάνου πνέοντα , ὧν τὰς ῥίζας κλωμένων ὀπὸν ῥεῖν : παγούρων δὲ καὶ ἐχίνων μεγέθη ,
. ῥάθαγός ἐστιν ὁ κτύπος ὁ γινόμενος ὑπὸ τῶν κυμάτων κλωμένων ἐπ ' ἑαυτῶν καὶ προσρηγνυμένων ἐν ταῖς πέτραις .
4740755 ὀρθογωνιος
τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν
4736252 μεγεθων
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ
4733990 δοθεισων
καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος
μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω
4731277 τετμημενη
ὅπερ ἐστὶν ἐπὶ τῆς ἐπιφανείας τοῦ κυλίνδρου , δίχα ἔσται τετμημένη κατὰ τὸ Ζ . ἐπεὶ γὰρ ἡ ΓΑ διάμετρος
τὴν γλῶτταν Γ : κἀκ τούτου δηλοῖ , ὅτι ἰδίᾳ τετμημένη προσεφέρετο ἡ γλῶττα παρὰ τῶν παλαιῶν . Γ ἀπένεγκε
4730063 ὑποτεινειν
σκιᾶς πλάτος σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ
τῇ ὑπὸ ΕΑΓ ἴση διὰ τὸ καὶ τὸ ΔΓ τμῆμα ὑποτείνειν αὐτάς . Πόθεν , ὅτι ἡ πρὸς ὀρθὰς αὐτῇ
4726713 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν

Back