| παύονται , ἢ πρόσθεν : οἵ τε κακοηθέστατοι καὶ ἐπὶ σημείων δεινοτάτων γιγνόμενοι τεταρταῖοι κτείνουσιν , ἢ πρόσθεν . Ἡ | ||
| ἐστὶν ἡμῖν , ὅτι οὐ παράδοξον εἰ τὰ τοιαῦτα τῶν σημείων πλειόνων ἐστὶ δηλωτικά : θεμένων γὰρ νόμους , ὥς |
| κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
| γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
| Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
| τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις | ||
| δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς |
| τῶν πραγμάτων ἐνέκυπτεν : τῶν γὰρ πραγμάτων τῶν μὲν ὄντων φανερῶν , τῶν δὲ ἀφανῶν , καὶ τῶν φανερῶν , | ||
| ] ἤτοι τοῦ θερινοῦ τροπικοῦ ἤτοι τοῦ μεγίστου τῶν ἀεὶ φανερῶν ἤτοι τῶν ἀρκτικῶν . Δέδεικται . , ] ἐν |
| ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
| καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
| ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
| περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
| ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
| , ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
| τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας | ||
| διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται |
| τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν | ||
| ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| στερητικά . Τὸ προκείμενον ἡμῖν ἐστι διακρῖναι τὰ εἴδη τῶν ἀντικειμένων ἀπ ' ἀλλήλων , καὶ τέως τὰ πρός τι | ||
| ἐπεὶ συνεθέμεθα καὶ ὡμολογήσαμεν ὡς ἂν ἐφ ' ἑνὸς τῶν ἀντικειμένων δειχθῇ , οὕτως ἐπὶ πάντων ἕξειν . οὐκ ἐδεήθημεν |
| πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
| δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
| Ἢ ὅτι μὴ οἷόν τί ἐστι δηλοῦσιν οὐδὲ ἐναλλαγὴν τῶν ὑποκειμένων οὐδὲ χαρακτῆρα , ἀλλ ' ὅσον μόνον τὴν λεγομένην | ||
| τούτων διαλέγεται ὡς μερῶν προτάσεων καὶ ὡς περὶ κατηγορουμένων καὶ ὑποκειμένων , ἐν δὲ τοῖς Ἀναλυτικοῖς ὡς περὶ μερῶν συλλογισμοῦ |
| ἀμείβει τόπον , ἀμφότεραι δὲ χώραν ὑπαλλάττουσιν . τῶν μέντοι παρόδων ἡ μὲν δεξιὰ ἀγρόθεν ἢ ἐκ λιμένος ἢ ἐκ | ||
| δὲ σελιδίων τὰ μὲν πρῶτα β περιέξει τοὺς τῶν μέσων παρόδων ἀριθμούς , ὥσπερ ἐπὶ τοῦ ἡλίου καὶ τῆς σελήνης |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
| ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
| τοῦ ἰσημερινοῦ πόλος τὸ Γ , καὶ γεγράφθω τοῦ διὰ μέσων τῶν ζῳδίων κύκλου δύο τμήματα τό τε ΑΔΕ καὶ | ||
| μοίρας ε με , βορειότερον δ ' ἦν τοῦ διὰ μέσων μοίραις ε , ἐφαίνετο δ ' ἐν Ἀλεξανδρείᾳ κατὰ |
| λαμβάνεται δὲ καὶ ἀπὸ τοῦ ἐκβησομένου καὶ μόνων τῶν εὐλόγων αἰτιῶν : εἰδέναι δὲ χρὴ , ὡς καὶ τὸ ἐκβησόμενον | ||
| . ἀρξώμεθα οὖν λέγειν τὰς θεραπείας ἀπὸ τῶν διὰ προκαταρκτικῶν αἰτιῶν συνισταμένων κεφαλαλγιῶν τὴν ἀρχὴν ποιούμενοι . Τὰ σημεῖα πᾶσι |
| Ὀλύμπου , πάντες δ ' ἀστέρες ἄλλοι ὑποχθόνιοι φορέωνται ἔκτοσθεν κέντρων , τῆμος ξείνης ἀπὸ γαίης ἄξεται ἀλλοτρίων φωτῶν ἀγνῶτα | ||
| εἶναι ποιεῖ . Οὐ χρὴ δὲ ἐκ μόνων τῶν τεσσάρων κέντρων περὶ τῶν τοιούτων καταστοχάζεσθαι , ἀλλὰ δεῖ καὶ τὴν |
| λεγόμενον μῆκος χωρὶς πλάτους τινὸς ἐπινοεῖν , ἐπείπερ ὄψις τῶν ἀδήλων ἐστὶ τὰ φαινόμενα , πλανώμενος ἢ τάχα κατασοφιζόμενος ἡμᾶς | ||
| : ἀγωνιῶ καὶ πάνυ τετάραγμαι ἐκεῖνο ἐνθυμουμένη τῶν κεκρυμμένων καὶ ἀδήλων ἀνθρώποις πραγμάτων , εἰ ζήσονται οὗτοι σὺν ἡμῖν πολὺν |
| ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
| οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
| κατὰ μῆκος καὶ κατὰ πλάτος πρὸς τοὺς τῶν ἐν αὐταῖς φαινομένων ἐπιλογισμοὺς τὴν μὲν τοιαύτην ἔκθεσιν ἐξαιρέτου καὶ γεωγραφικῆς ἐχομένην | ||
| τοίνυν τὴν ἰατρικὴν κατὰ τὴν αὐτῶν δόξαν γνῶσιν εἶναι τῶν φαινομένων κοινοτήτων , τὸ δὲ φαινόμενον οὐχ ὡς δι ' |
| κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ | ||
| καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν , |
| ἔστιν ἄρα καὶ ὡς εἷς τῶν ἡγουμένων πρὸς ἕνα τῶν ἑπομένων , οὕτως ἅπαντες οἱ ἡγούμενοι πρὸς ἅπαντας τοὺς ἑπομένους | ||
| , τὸ δὲ καὶ μετὰ κυνῶν . δύο γὰρ τῶν ἑπομένων ταῖς βουσίν , ὡς δὴ μακρὰν ἦσαν οὐχ ὁρῶντες |
| ὑπὸ ΔΑΜ γωνίας καὶ πασῶν δηλονότι τῶν τὸν αὐτὸν τρόπον συνισταμένων . φανερὸν δ ' αὐτόθεν , ὅτι καὶ τῶν | ||
| . λέγω , ὅτι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τῶν συνισταμένων ἰσοσκελῶν τὰς βάσεις ἐχόντων μεταξὺ τῶν Γ , Β |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
| : ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
| . * ὡς γὰρ τῶν κατ [ ' εὐθυωρίαν ] κειμένων ποταμῶν τὰ ῥεύματά [ οὐκ ] ἀνάσχετα ? ? | ||
| , καὶ τὰ καθ ' ἕκαστα τῶν ἐν τῷ ἱερῷ κειμένων ἐξαριθμησάμενος αὐτῷ καὶ πίστιν ἱκανὴν παρασχών , ὡς οὐκ |
| γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
| τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
| . ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
| αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
| , μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
| δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
| διαιρέσεων τὰς τῶν ἡλικιῶν διαφορὰς καὶ ἐπιτηδειότητας πρὸς ἕκαστα τῶν ἀποτελεσμάτων ἀναγκαῖον προϋποτίθεσθαι καὶ σκοπεῖν δεόντως ὅπως μὴ λάθωμέν ποτε | ||
| , παρὰ τὴν τάξιν τῶν συμπτωμάτων , ὡς ἐκ τῶν ἀποτελεσμάτων ἐστὶ δῆλον , ἀναγκαῖον ὁμολογεῖν , καὶ τὴν θεραπείαν |
| . περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ . | ||
| , ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι |
| πρὸς τὴν ὑπὸ τὴν διπλῆν τῆς ΕΑ , τῶν δὲ ἐπιζητουμένων περιφερειῶν τῆς μὲν ΖΘ νῦν ὑποκειμένης , διδομένου δὲ | ||
| τὸν ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι |
| ζητήσεως ἀτάκτως κινουμένων , καὶ * ἄλλο ἐπ ' ἄλλων φερομένων μορίων , καί ποτε περὶ τὸν στόμαχον , ἐφ | ||
| νοητῶν ἐνεδείκνυντο , ὡς δὲ παραδειγμάτων περὶ τῶν ἐν αἰσθήσει φερομένων εἰδῶν : οἳ καὶ δοκοῦσι τοῖς πολλοῖς μόνην πρεσβεύειν |
| τε ὅταν σεμνότερος ᾖ τὴν ἀξίαν , μέγιστον δὲ πάντων ἀξιωμάτων ἡγεμονία . οὐ μὴν ἀπέχρησεν Ἀγαμέμνονι τοῦτόν σε μόνον | ||
| γραμμάτων διεξοδεύουσι λόγους καὶ προτάσεις μηδὲ μιμουμένοις φωνὰς καὶ προφορὰς ἀξιωμάτων κεχρῆσθαι , ἀγάλματα δὲ γράψαντες καὶ ἓν ἕκαστον ἑκάστου |
| : οὓς ἂν ἐπερωτήσῃ τις , ἢ λαβών τι τῶν παρακειμένων ἔκυψεν ὥσπερ Τήλεφος πρῶτον σιωπῇ ὡσεί τε προσέχων οὐδὲν | ||
| ἐμπίπτωσιν αἱ τοῦ πλάτους μοῖραι , τῶν ἐν αὐτῷ μόνῳ παρακειμένων τὰ εὑρισκόμενα ἑξηκοστὰ ἐκθησόμεθα , καὶ ὅσους μὲν ἐὰν |
| κατὰ τὴν τῶν ἐπικύκλων δέ , ὅταν αἱ ἀπὸ τῶν ἀπογείων αὐτῶν μεταβάσεις εἰς τὰ προηγούμενα γίνωνται , τὸν ἀπὸ | ||
| ' αὐτῶν ἐξ ἑτοίμου τῶν περιοδικῶν κινήσεων ἀπὸ τῶν οἰκείων ἀπογείων διδομένων καὶ τὰς φαινομένας ἑκάστοτε παρόδους ἐπιλογιζώμεθα . τέτακται |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| Φρυγῶν γὰρ οὐδέν ' ἂν τρέσαιμ ' ἐγώ . οἵους ἐνόπτρων καὶ μύρων ἐπιστάτας . τρυφὰς γὰρ ἥκει δεῦρ ' | ||
| αὐτά . Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κοίλων ἐνόπτρων , ὅσα μέν ἐστιν ἐντὸς τῆς συμπτώσεως τῶν ὄψεων |
| , ὡς παρὰ τοῖς ῥήτορσι πολλάκις , καὶ δι ' ὑστέρων τὸ πρότερον , ὥσπερ οἱ διὰ σημείων συλλογισμοί , | ||
| ἔπεμψεν ἐντός , ὀλέθριον βάρος . [ ὅθεν πρὸς ἀνδρῶν ὑστέρων κεκλήσεται δούρειος ἵππος , κρυπτὸν ἀμπισχὼν δόρυ . ] |
| ΕΖΔ δύο ὀρθῶν ἐλάσσονές εἰσιν : αἱ δὲ ἀπ ' ἐλασσόνων ἢ δύο ὀρθῶν ἐκβαλλόμεναι συμπίπτουσιν : αἱ ἄρα ΕΒ | ||
| Ἀντωνίου , ἀπάξειν αὐτὸν εἰπόντος ὡς ἀνδράποδον πολεμοποιόν , εἴτε ἐλασσόνων ἀξιοῦσθαι νομίζων παρ ' ἃ προσεδόκησεν , εἴτε τῶν |
| οὗ ὁρᾷ μεγέθους : καὶ κατὰ τοῦτο γὰρ οὐδὲν τῶν ὁρωμένων ὅλον ἅμα ὁρᾶται , καὶ ταύτῃ μείζονα γίνεσθαι τὸν | ||
| γνωρίζειν τὸ ἦθος , καὶ καταμαντεύεσθαι τῆς ψυχῆς διὰ τῶν ὁρωμένων , μαντείαν ἀσαφῆ : τίς γὰρ ἐπιμιξία πρὸς ὁμοιότητα |
| ὡς ἀπαντᾷ ὁ σύνδεσμος , ἐν ᾧ ἡ τελευταία περισπωμένη καταλαμβάνεται . ὁμοίως ὡς τὸ ἐπίρρημα τῇ ὑστέρᾳ ὀξεῖαν ἀναδέχεται | ||
| πήγανον . Ἐκλέγεσθαι χρὴ ἀπὸ τῶν ἀλεκτρυόνων τοὺς πολεμικωτάτους : καταλαμβάνεται δὲ τοῦτο ἐξ αὐτῆς τῆς χρείας καὶ πείρας , |
| , κεκτημένος μὲν οὐσίαν μετρίαν , στεφανῶσαι δὲ ἀπὸ τῶν ὑπαρχόντων τὴν πόλιν καὶ τὴν οἰκίαν βουλόμενος , λογιζόμενος τοὺς | ||
| ἄδηλον πέρας , καὶ ἵνα ποιήσῃ διάταξιν περὶ πάντων τῶν ὑπαρχόντων αὐτοῦ , ὅτι ηὐλόγησα αὐτὸν ὑπὲρ ἄμμον θαλάσσης , |
| ἀσιτίαις : εἰ δὲ μηδέτερον εἴη τούτων , ἐπὶ τῶν τοπικῶν ἴασιν εὐθὺς ἀφικνούμεθα , κατ ' ἀρχὰς μὲν ἀναστέλλοντες | ||
| κωνικῶν γραμμῶν . λέγομεν , ὅτι καὶ τῶν πρὸς γραμμαῖς τοπικῶν τὰ μὲν ἐπίπεδον ἔχει τόπον , τὰ δὲ στερεόν |
| ΑΒΓ ὅλῳ τῷ ΔΕΖ ἐστὶν ὅμοιον . ηʹ . Θέσει δεδομένων τῶν ΑΒ ΑΓ , ἀγαγεῖν παρὰ θέσει τὴν ΔΕ | ||
| Ἕρμαρχος ζῇ . “ Ἐκ δὲ τῶν γινομένων προσόδων τῶν δεδομένων ἀφ ' ἡμῶν Ἀμυνομάχῳ καὶ Τιμοκράτει κατὰ τὸ δυνατὸν |
| , λαβὼν ὑμῖν ἀναγνώσομαι . οὗτος ὁ νόμος ἐστὶν ὁ συνέχων τὴν πόλιν , οὗτος ὁ πλείστους αὐτῇ προξενῶν εὐεργέτας | ||
| Ποσειδῶν , ὁ μεγάλην ἔχων ἰσχύν , ὁ τὴν γῆν συνέχων : ἐπεὶ γὰρ ἐπ ' αὐτῷ ἐστι τὸ κινεῖν |
| εἴγε ἕκαστον αὐτῶν ὁμοίως κατὰ περιωρισμένους τόπους τὰς μεταβάσεις τῶν κινήσεων ποιεῖται . εἰ δὲ φήσουσιν , ὅτι μικρὸν μέν | ||
| κινήσεως . ἀναμνησθῶμεν πρῶτον ἐπὶ τοῦ παντὸς σώματος δυοῖν τούτων κινήσεων ἀλλήλαις μὲν παρακειμένων , οὐχ ὁμοίως δὲ γινομένων : |
| δηλοὶ καὶ τὴν προβολήν : τῶν ὀρέων καὶ ἡμῶν τῶν ὄψεων : ὀρσοθύρη : θυρὶς δι ' ἧς εἰς ὑπερῶον | ||
| χρησάμενος εἰς τὴν συνήθη καὶ ἀνθρωπίνην αἴσθησιν ἀπὸ τῶν ἀλλοκότων ὄψεων ἐπανῆλθε . , . . Ἀσκληπιόδοτος εὐφυὴς δὲ ἐκ |
| τειχῶν ἑστῶτες τὸ μὲν πρῶτον ὤκνουν τοῖς βέλεσι χρήσασθαι , προκειμένων αὐτοῖς σκοπῶν πολιτικῶν ἀνδρῶν , ὧν ἦσάν τινες καὶ | ||
| τῶν κυβερνητῶν τῶν ἐχομένων ἄλλων ἀκρωτηρίων ἀλλ ' οὐ τῶν προκειμένων , δέον εὐθυπλοεῖν κατὰ λιμένα . τουτέστι , μὴ |
| συνιεὶς τῆς καθολικῆς τῶν σφαιρῶν καὶ τῶν κατ ' αὐτὰς κινουμένων ἀστέρων ἁρμονίας τε καὶ συνῳδίας , πληρέστερόν τι τῶν | ||
| δὲ ἤγαγον τοὺς ἵππους πλησίον αὐτῶν , τῶν ἵππων δὲ κινουμένων , ἤχει ἡ γῆ , κοπτομένη τοῖς ποσὶν αὐτῶν |
| , διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν | ||
| ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι |
| Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
| : λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
| ἄχρι τῶν γῆς καὶ θαλάττης ἀλλὰ καὶ ἀέρος καὶ οὐρανοῦ περάτων ἐλθὼν οὐδ ' ἐνταῦθα ἔστη , βραχὺν ὅρον τοῦ | ||
| ὁμοίως οὐδὲ μέχρι πόσου ἡ δειλία . οὔτε ἐπὶ τῶν περάτων τὸ μέσον ἡ ἀρετὴ ζητεῖ , ἀλλὰ τῶν ἐκτροπῶν |
| ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα . | ||
| τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ |
| τῆς ἡμέρας ἢ καὶ τῆς νυκτός . ἐπὶ μέντοι τῶν μειζόνων ἤδη παιδίων , ὅσα καὶ πληγαῖς καὶ ἀπειλαῖς καὶ | ||
| ' ἀνθρώπων εἰκάζων ἐνισταμένους , καὶ ῥᾳδίως αὐτοὺς ἀξιοῦντας τῶν μειζόνων ἢ κατ ' αὐτούς . ἐπεὶ καὶ τοῦτο ἔμοιγε |
| τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
| τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
| τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ | ||
| σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν |
| τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
| κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
| [ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
| αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
| ἄνω κατὰ τὸ Γ . Τὰ πλάγια μήκη ἀπὸ τῶν κοίλων ἐνόπτρων , ὅσα μὲν ἐντὸς τῆς συμπτώσεως κεῖται τῶν | ||
| γὰρ κοιλότητα ἥ τε ἰκμὰς καὶ τὸ μέγεθος παραμυθοῦνται : κοίλων καὶ μικρῶν ἤθη δόλια , ἐπίβουλα ἐν ἀνθρώποις , |
| χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
| καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
| κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν | ||
| ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται |
| ὄντοϲ θερμόν . ἐναντιώτατα τούτοιϲ ἐϲτὶ βαλανεῖα . εἰ δὲ ϲυγκοπτομένων ἔτι κληθείηϲ , ἀφλεγμάντων ὄντων , ὧν εἶπον , | ||
| ὠμῶν ϲυγκοπτομένων . λζʹ . Περὶ τῶν ἐπὶ λεπτοῖϲ χυμοῖϲ ϲυγκοπτομένων . ληʹ . Περὶ τῶν ἄλλων προφάϲεων , ἐφ |
| ὅσα μοναχὴν ἔχει τοῖς φαινομένοις συμφωνίαν : ὅπερ ἐπὶ τῶν μετεώρων οὐχ ὑπάρχει , ἀλλὰ ταῦτά γε πλεοναχὴν ἔχει καὶ | ||
| ὡς εἰ τοῦτο μὴ πραχθήσεται , ἅπασα ἡ περὶ τῶν μετεώρων αἰτιολογία ματαία ἔσται , καθάπερ τισὶν ἤδη ἐγένετο οὐ |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| εὑρήσεται καταφυγήν , ἀποτροπὴν κακῶν , εἰ καὶ μὴ μετουσίαν προηγουμένων ἀγαθῶν . αἵδ ' εἰσὶν αἱ ἓξ πόλεις , | ||
| μέχρι μὲν οὖν τινος ἐλάνθανε τοὺς ὑστέρους προσιόντας ὁ τῶν προηγουμένων ὄλεθρος : ἐπεὶ δὲ φῶς ἐγένετο σελήνης ἀνισχούσης οἱ |
| μέγιστα καὶ κάλλιστα τῶν ἔργων τῶν σῶν ὥσπερ τινὰ τῶν ἀφανῶν καὶ ἀδόξων μηδεμιᾶς γοῦν μνήμης ἢ ξυγγραφῆς Ἑλληνικῆς ἀξιῶσαι | ||
| ἐρχομένη ἐκεῖθεν τοὺς ἐχθροὺς ἀντιπερισπᾷ , ἡ δὲ διὰ τῶν ἀφανῶν καὶ ἀλλήλους διὰ σκουλκῶν καὶ σημείων καὶ εἰκασμοῦ κανονίζειν |
| ' αὐταῖς συγχωρεῖν παραδόσεσιν ἐπιμίγνυσθαι . Δείξας ἱκανῶς διὰ τῶν προειρημένων ὡς κατ ' οὐδένα τρόπον ἐνδέχεται συλλογιστικῶς τὸν ὁρισμὸν | ||
| τροφῆς δύναιτ ' ἂν λέγειν , οὐδ ' ἐκ τῶν προειρημένων τριγενῶν ἀγγείων πεπλέχθαι . κατὰ δὲ Ἀσκληπιάδην στοιχεῖα ἀνθρώπου |
| οὐδὲ ἐπεχείρησαν τούτους ἀμύνασθαι . τριάκοντα γὰρ ναυσὶ τῶν Ῥωμαίων προσφερομένων τῇ χώρᾳ καὶ μήτε τάξεως μήτε συστήματος ἁδροῦ γενομένου | ||
| τε καὶ ἱδρώτων . ἁρμόζει δὲ καὶ ἡ συστολὴ τῶν προσφερομένων καὶ περιπάτων πλῆθος ἐπιπέδων μὴ ταχέων . ” ὡμολόγησε |
| ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
| τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
| μοι δέον , ἀλλὰ μᾶλλον εἰπεῖν καὶ μνησθῆναι περὶ τῶν κατεχομένων , πρὸς οὐδένα οὔτ ' ἐμνήσθην οὔτε λόγον ἐποιησάμην | ||
| ἀνατραπεῖσαν , ἐν δὲ τοῖς ἱεροῖς καταλύμασι τῶν ὑπὸ νόσων κατεχομένων τινὲς ἐτύγχανον ὄντες . μικρὸν δὲ ἄνω τοῦ ποταμοῦ |
| χειρουργίας ἢ φαρμακείας προσπεσεῖν . γίνεται δὲ τὰ πολλὰ ἐξ ἀποστημάτων μὴ κατὰ τρόπον θεραπευθέντων . τὰς μὲν οὖν πλαγίας | ||
| ἑξηκοστὰ μϚʹ . ἐντεῦθεν αὐτοῖς οἱ λόγοι διάφοροι καὶ τῶν ἀποστημάτων καὶ τῶν μεγεθῶν ἡλίου καὶ σελήνης ἐπιλελογισμένοι εἰσίν . |
| , καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
| διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
| μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
| ' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
| ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
| ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
| τῶν λεγομένων κύβων , δοκίδων , πλινθίδων , σφηνίσκων , σφαιρικῶν , παραλληλεπιπέδων , τὴν τῆς προβάσεως τάξιν ἔχουσα τοιαύτην | ||
| κύκλοι , δείκνυταί πως διὰ τοῦ Ϛʹ τοῦ πρώτου τῶν σφαιρικῶν : ὅτι δὲ καὶ ἐπὶ τὰ κέντρα τῶν κύκλων |
| πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
| τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
| γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
| γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
| Ἴδοι δ ' ἄν τις αὐτοῦ τὴν ἀρετὴν κἀκ τῶν τελευταίων ῥημάτων . ἁπάντων γὰρ τῶν περιεστηκότων εἰς θρῆνον πεπτωκότων | ||
| πάντα ἕστηκεν . ὥστε καὶ τῶν ὁδοιπόρων ὅσοις ἐπὶ τῶν τελευταίων συσκοτάζει σταθμῶν , θαρροῦντες ἐλαύνουσιν ἐπὶ τὴν πόλιν , |
| τοῦ διὰ μέσων ἐπὶ τοῦ αὐτοῦ κύκλου μοίρας ἀπὸ τῶν συνδέσμων ιε ιβ , καὶ ἑκατέρα τῶν ἀνεκλείπτων περιφερειῶν συνάγεται | ||
| σχῆμα οἱονδήποτε . Ἐπικάμπια δὲ λέγει τὰ τετράγωνα τῶν ἐκλειπτικῶν συνδέσμων . οὕτω καὶ παρὰ τῷ Δωροθέῳ ἔχεις εἰρημένον : |
| βλάβην παρέχεται πρὸ τοῦ τὸ ϲύμπαν ϲῶμα κενωθῆναι διὰ τῶν πεπονθότων μερῶν ἀφαιροῦϲα τοῦ αἵματοϲ , ἀλλὰ καὶ ϲικύα : | ||
| τὰς οὐσίας . Πολλοὺς δ ' ὑπερβὰς ἑνὸς τῶν δεινὰ πεπονθότων μνησθήσομαι . Κατιδὼν γὰρ οἰκίαν πλουσίαν καὶ οὐκ εὐνομουμένην |
| τὰ πράγματα , ἐξαγγέλλονται δὲ ὑπὸ τῶν φωνῶν καὶ τῶν γραφομένων . πάλιν αἱ φωναὶ κατὰ τὸν αὐτὸν τρόπον ἐξαγγέλλουσι | ||
| ὀνομάτων ἔχοντα τὴν γένεσιν , τῶν διὰ τῆς ει διφθόγγου γραφομένων , διὰ τοῦ ι γράφονται : οἷον , μηνιῶ |
| δὲ λεπτὰ ϲηϲθέντα κρηϲέρῃ . μέγα δὲ ἐϲ δύναμιν τῶν παρέτων καὶ τὸ καϲτόριον καὶ ἄλειμμα ξύν τινι λίπαϊ τῶν | ||
| τε τῶν ψυχροτέρων ἕξεων καὶ ἡλικιῶν καὶ νοϲημάτων , οἷον παρέτων ἀποπλήκτων παρῳδηκότων οἰδήμαϲι ϲομφοῖϲ ἐπί τε τῶν πολλὰ ἀπομυττομένων |
| μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων | ||
| μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ |
| ἀποφαίνεται λέγων ὅτι τῶν ἑτερογενῶν καὶ μὴ ὑπ ' ἄλληλα τεταγμένων ἕτεραι τῷ εἴδει καὶ αἱ διαφοραί , τῶν δὲ | ||
| εἰ παραβάλλοιμεν αὐτὸ κριτηρίοις τισὶ τῶν ἰδίως ὑπ ' αὐτὸ τεταγμένων : ἐπὶ τὰ καθόλου πάντα προοδοποιεῖσθαι μάλιστα πέφυκε διὰ |
| ἐξ ἀρχῆς μετρούντων . Ἐλάχιστος γὰρ ἀριθμὸς ὁ Α ὑπὸ πρώτων ἀριθμῶν τῶν Β , Γ , Δ μετρείσθω : | ||
| στρατιωτικῇ πέφυκε γίνεσθαι . ὅταν δὲ ὑπάρξηται ἡ ἐκ τῶν πρώτων κίνησις , ἐνταῦθα οἱ λοιποὶ ἕπονται . λέγουσι δὲ |
| εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι | ||
| ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς |
| δὲ δυὰς μήκους ἐστὶν ἀπεργαστική . καθάπερ γὰρ ἐπὶ τῶν γεωμετρικῶν ἀρχῶν ὑπεδείξαμεν πρῶτον , τίς ἐστιν ἡ στιγμή , | ||
| ' εὐθείας ἔσονται ἀλλήλαις αἱ εὐθεῖαι . Ἕν τι τῶν γεωμετρικῶν ἐστιν ὀνομάτων τὸ πόρισμα . καλοῦσι δὲ πορίσματα καὶ |
| ταῦτά τοι κἀπειδάν τινος χεῖρα ἢ σκέλος ἤ τινα τῶν μικροτέρων μερῶν , παθόντας ἤδη εἰς κίνησιν καὶ αἴσθησιν , | ||
| διάνοιαν ῥυθμοὶ βραχεῖαν δέ τινα διανάπαυσιν ποιούμενοι τῆς ἐννοίας διὰ μικροτέρων τε κώλων ἐξαγόμενοι καὶ λέξεων βραχυτέρων καὶ εἰς βραχεῖαν |
| , οὐ δι ' ἀκινήτων οὐδὲ ἐφ ' ἑνὸς σχήματος πεπηγότων ἀλλὰ δι ' ἐμψύχων , ἃ καθ ' ἕκαστον | ||
| ὀφθαλμῷ θεωρήϲομεν τὸ ὑπόχυμα : ἐπὶ μὲν γὰρ τῶν μηδέπω πεπηγότων χύϲιϲ τιϲ ἐκ τῆϲ θλίψεωϲ τοῦ δακτύλου προϲγίνεται , |
| οὐκ ἂν εἴη αὐτῶι παράλογον ἀντιποιουμένωι τῶν πρωτείων , οὐκ ἐλαττόνων μὲν ἢ δισμυρίων ἐπῶν τοὺς ἐπιδεικτικοὺς τῶν λόγων συγγραψαμένωι | ||
| προσφερομένων . τὸ δὲ ῥᾴδιον συνίσταται ἐκ τούτων , τοῦ ἐλαττόνων πόνων ἢ δαπάνης ἢ κινδύνων ἤ τινος ἄλλου τῶν |
| , ἀναφωνήσεσιν , ἀλείμμασι , σικύαις καὶ δρώπαξι κατὰ τῶν ὑπερκειμένων , παροπτήσεσιν , ἡλιώσεσι καὶ τρίψεσι , ψιλώθροις , | ||
| ψιλῷ ἐγχυματίζειν θερμανθέντι . φερόμενον γὰρ τὸ δάκρυον ἐκ τῶν ὑπερκειμένων μερῶν πρὸϲ τῷ βλεφάρῳ τὴν ϲύϲταϲιν ποιεῖται καὶ φανταϲίαν |
| , τὸ ἀξίωμα ἀνύπαρκτον εὑρίσκεται , συνεστηκὸς ἐκ λεκτῶν μὴ συνυπαρχόντων ἀλλήλοις . οἷον γοῦν ἐπὶ τοῦ εἰ ἡμέρα ἔστι | ||
| εἰ οὖν τὰ μὲν συγκείμενα ἔκ τινων ἀδύνατον ὑπάρχειν μὴ συνυπαρχόντων ἀλλήλοις τῶν μερῶν αὐτῶν , τὰ δὲ ἐξ ὧν |
| καὶ λογίοις καὶ ἀστείοις καὶ πολιτικοῖς καί τινα ἐπιγνώσεται τῶν κεκρυμμένων μυστηρίων καί ποτε λυπηθήσεται δι ' ἃ προείπομεν . | ||
| δεξιᾶς : οἴμοι , κακῶν ὡς ἐννοοῦμαι δή τι τῶν κεκρυμμένων . ἆρ ' , ὦ τέκν ' , οὕτω |
| εἰ ὀρθῶς δοκεῖ καὶ εὕρεσις κανόνος τινός , οἷον ἐπὶ βαρῶν τὸν ζυγὸν εὕρομεν , οἷον ἐπὶ εὐθέων καὶ στρεβλῶν | ||
| καὶ ἑαυτῶν δυνα - μικώτεραι γίνονται , ὡς ἐπὶ τῶν βαρῶν ἔστιν ἰδεῖν : συνιόντα γὰρ τὰ βάρη βαρύτερα γίνεται |
| ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
| δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
| δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
| , καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |