. Ἐκ τοῦ σχήματος ἔλαβε τὴν ἀρχὴν , εἰπὼν ὑπὸ γλωχῖνα : ἐπὶ γὰρ τῶν ἐχόντων γωνίας ἡ λέξις , | ||
. ληθαῖον : τὸ λήθην τῶν κακῶν ἐμποιοῦν . ποτὶ γλωχῖνα : πρὸς τὴν γωνίαν τοῦ θρόνου . λέχριος : |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
' ἡ ἔκφυσις αὐτῶν ἰσχνὴ καὶ πλατεῖα , κατὰ γραμμὴν ἐγκαρσίαν ἐπ ' ὦτα φερομένη : οὐ μὴν ἐξικνεῖταί γε | ||
ὀστοῦ τῆς κεφαλῆς ἐκφυομένους , ἐφεξῆς ἐστιν ἑτέρα τὴν ἔκφυσιν ἐγκαρσίαν τε ἅμα καὶ σαρκώδη καὶ πλατεῖαν ἄχρι τῶν ὤτων |
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ | ||
πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω |
κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας | ||
διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
ὀργάνῳ : ἀπὸ γὰρ τῆς μεσότητος τὸ ξύλον ἐκ τῶν διαπηγμάτων ἀντιθέτοις ἕλιξι τέτμηται , ὥστε κατὰ ποιὰν τοῦ κοχλίου | ||
μεσότητος ἐπὶ τὰ διαπήγματα ὁρμᾶν τὰς χελώνας ἢ ἀπὸ τῶν διαπηγμάτων εἰς τὸν μέσον τόπον συντρέχειν . ἔστι δὲ καὶ |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
λι : τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν ἄλλῃ λοξῇ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . τὸ δὲ | ||
οὕτω ] σφαιρῶν , ὁμαλῇ καὶ ἁπλῇ καὶ τεταγμένῃ , λοξῇ δὲ καὶ διὰ βραδυτῆτα μόνον ὑπολειπομένῃ τῶν ἀπλανῶν ἢ |
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
ἑνὸς σημείου μετ ' ὀλίγων καβαλλαρίων , τοὺς δὲ ἐκ πλαγίων ἑκατέρωθεν αὐτῆς περιπατεῖν , ἵνα μὲν καὶ σκουλκεύουσιν καὶ | ||
. Εἰ δὲ καὶ βαρυθῶσιν ὑπὸ τῶν ἐχθρῶν διὰ τῶν πλαγίων καὶ τοῦ νώτου τῆς παρατάξεως προστρέχειν , καὶ μὴ |
τὸ πέλαγος χρώννυσι λύθρῳ , ὡς ἀπ ' ἐρυθρῶν τινων λόφων κατενεχθέντος χειμάρρου καὶ ποιοῦντος ἐρυθρὸν ἅπαντα τὸν κόλπον , | ||
ἐὰν μὲν ᾖ ὑποκοριστικόν , δηλοῖ τὸν ἐλάττονα τῶν τριῶν λόφων : ἐὰν δὲ διὰ τῆς ει διφθόγγου , προπερισπᾶται |
ἀγρῶν νυκτὸς ἐπελθόντες λῃσταὶ συνελάμβανον , οἱ δὲ ἐκ τῶν πύργων ἔβαλλον καὶ πῦρ ἐνέβαλλον οἱ κλῶπες εἰς τὰ οἰκία | ||
τῶν δὲ τάχ ' ἀμφὶ πύλας ὅμαδος καὶ δοῦπος ὀρώρει πύργων βαλλομένων : τὸν δὲ λίσσοντο γέροντες Αἰτωλῶν , πέμπον |
τούτῳ δ ' ἀκολουθεῖν τὸ ἀφεστάναι ἴσον τὰς Κασπίους πύλας Θαψάκου τε καὶ τοῦ Κασπίου : τοῦ δὲ Κασπίου πολὺ | ||
τεινούσης πλευρᾶς καὶ τῆς ἀπὸ Βαβυλῶνος καθέτου ἐπὶ τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν ἠγμένης καὶ αὐτῆς τῆς διὰ Θαψάκου μεσημβρινῆς |
δὲ λοξὴ , ὡς τὰ ὀνόματα σημαίνει : ἄλλη δὲ στεφανιαία , ἡ δὲ μετωπιαία , ἡ δὲ παρείας , | ||
ὀστᾶ . ῥαφαὶ δὲ εὑρίσκονται ἐπὶ τῶν πλείστων πέντε . στεφανιαία ἡ διὰ τοῦ βρέγματος . ὀβολιαία ἡ διὰ τῆς |
μηρίνθου ἤτοι σχοίνου ἀνέρχομαι εἰς τὰς διεξόδους καὶ ὁδοὺς τῶν λοξῶν λογίων τῆς Κασάνδρας . ἄνειμι λοξῶν τουτέστιν ἀνέρχομαι καὶ | ||
Λυκόφρων : ἐγὼ δ ' ἄκραν βαλβῖδα μηρίνθου σχάσας ἄνειμι λοξῶν ἐς διεξόδους ἐπῶν , παρὰ τὸ βῶ , τὸ |
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
τῶν μεταξὺ τῶν Β , Γ σημείων τὰς βάσεις ἐχόντων ἰσοσκελῶν . Ἐὰν ἐπὶ τῆς αὐτῆς βάσεως δύο τρίγωνα συστῇ | ||
. Ἰστέον , ὡς τὸ θεώρημα τοῦτο ἐπὶ μὲν τῶν ἰσοσκελῶν καὶ ἰσοπλεύρων τριγώνων σῴζει τὸ οἰκεῖον , ἐπὶ δὲ |
καὶ ἀπὸ τῶν ξύλων ἡ ὁρμὴ πρὸς τὸ ἄνω οὐκ ὠθούντων : καὶ ἡμεῖς δὲ κινούμενοι τέμνομεν τὸν ἀέρα , | ||
τὰς προσηλωμένας ἁμάξας εἰς τὸν ποταμὸν , τῶν μὲν ὄπισθεν ὠθούντων , τῶν δὲ διανηξαμένων ἔμπροσθεν ἑλκόντων κάλοις μεγάλοις ἐξηρτημένοις |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
ἀκτῖνα ἐκπέμπει , ὡς τοῦτο πάρεστιν ὁρᾶν ἐπί τε τῶν ἐσόπτρων γινόμενον καὶ πάντων ἁπλῶς τῶν κατὰ ἀνάκλασιν φωτιζόντων . | ||
προσαγαγεῖν καὶ ἑτέρας διαφόρους ἀκτῖνας ἀπὸ ἐπιπέδων ὁμοίων καὶ ἴσων ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας |
, καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
: τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
δύσεως Παροπανισάδαις καὶ Ἀραχωσίᾳ καὶ Γεδρωσίᾳ παρὰ τὰς ἐκτεθειμένας αὐτῶν ἀνατολικὰς πλευρὰς , ἀπὸ δὲ ἄρκτων Ἰμάῳ ὄρει παρὰ τοὺς | ||
, ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν , Δράκοντος |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
τὸ ζῷον καθάπερ ὁ κύων , ἐπαίρων τὸ ἕτερον τῶν ὀπισθίων σκέλος οὐρεῖν καὶ ἀποπατεῖν πρός τι τῶν ἐξεχόντων τῆς | ||
πλάσσει σφαιροειδὲς παραπλήσιον τῷ κόσμῳ σχῆμα , ὃ ἐκ τῶν ὀπισθίων μερῶν κυλίσας ἀπὸ ἀνατολῆς εἰς δύσιν , αὐτὸς πρὸς |
καὶ καταπιμπράντες δᾳσὶ καὶ θείῳ καὶ πίσσῃ : τῶν δὲ κλιμάκων κατεκυλίνδουν δοκοὺς ἐγκαρσίας καὶ λίθους , ὡς ὑπὸ τῇ | ||
τῶν πυλῶν ἐκκοπὴν καὶ τὴν ἐπὶ τὰ τείχη διὰ τῶν κλιμάκων ἀνάβασιν , οὐδενὸς ἔτι τῶν πολεμίων ἀπείργοντος : οὕτως |
ἔσχατος δὲ ὁ βορειότερος τῶν ἐν τῇ ἑπομένῃ πλευρᾷ τοῦ ῥόμβου . Μεσουρανοῦσι δὲ τῶν λοιπῶν ἀστέρων πρῶτοι μὲν ὅ | ||
καὶ τούτῳ , καθόσον ἐστὶ παραλληλόγραμμον . ἐπὶ δὲ τοῦ ῥόμβου ἄνισοι μὲν αἱ διάμετροι , διχοτομοῦνται δὲ ὑπὸ τούτων |
σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
, ὡς εἶναι τὸ μὲν ἑκούσιον . οἱ πύκται , κλίμαξ εἰσεφέρετο , ὥστε διαστάντας καὶ χώραν λαβόντας μένειν ἐν | ||
καὶ λοξὰ τῇ θέσει ἔχουσα κλιμάκια , ἀλλ ' ἔστω κλίμαξ ἰσοπαχὴς ἔχουσα τετράγωνα τὰ κλιμάκια . χάριν δὲ τοῦ |
νευρώδης φανήσεται , ἅτε τοῦ μὲν αἵματος ἐκθλιβομένου εἰς τὰ ἑκατέρωθεν , μόνου δὲ τοῦ χιτῶνος ἐν τῇ περιτάσει καταλειπομένου | ||
αὐτοῦ ἰσημερινοῦ σημείου , τάς τε τοῦ ὁρίζοντος περιφερείας ἴσας ἑκατέρωθεν τοῦ ἰσημερινοῦ ποιεῖν καὶ τῶν νυχθημέρων ἐναλλὰξ ἴσα τὰ |
ἀδιάφορος οὖσα ὥσπερ καὶ ἡ κάθετος . διττὴ δὲ ἡ κάθετός ἐστιν , ἡ μὲν ἐπίπεδος , ἡ δὲ στερεά | ||
ὅλως τὸ τῆς ὀρθῆς εἶδος . σύμβολον γὰρ καὶ ἡ κάθετός ἐστιν ἀρρεψίας καὶ ἀχράντου καθαρότητος καὶ μέτρου θείου καὶ |
διαφόρως μὲν κατὰ Γεμῖνον καὶ ἄλλους τινὰς τῶν καὶ τὰς μικτὰς λαμβανόντων γραμμὰς εἰς τὴν διαίρεσιν . ὁ δὲ γεωμέτρης | ||
περιφεροῦς , μικτῆς δὲ οὐδαμοῦ μέμνηται : καίτοι γωνίας οἶδεν μικτὰς τὴν τῶν ἡμικυκλίων , τὴν κερατοειδῆ , καὶ σχήματα |
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ | ||
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν , |
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα | ||
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
καρπὸν ἐπείγεται , τὸ δ ' ὄρυγμα αὐτὴν θραυσθεισῶν τῶν δοκίδων ὑπεδέξατο . τὴν δὲ πάρδαλιν τρόποις τε τοῖς προειρημένοις | ||
δέ τις στερεῶν ἑτερογενῶν εὐταξία ἐστὶ τῶν λεγομένων κύβων , δοκίδων , πλινθίδων , σφηνίσκων , σφαιρικῶν , παραλληλεπιπέδων , |
Εὐφράτου νήσοις δένδρα φύεσθαι λιβάνου πνέοντα , ὧν τὰς ῥίζας κλωμένων ὀπὸν ῥεῖν : παγούρων δὲ καὶ ἐχίνων μεγέθη , | ||
. ῥάθαγός ἐστιν ὁ κτύπος ὁ γινόμενος ὑπὸ τῶν κυμάτων κλωμένων ἐπ ' ἑαυτῶν καὶ προσρηγνυμένων ἐν ταῖς πέτραις . |
ἑψηθὲν καὶ ποθὲν θερμὸν κυ . Ϛʹ καὶ πλῆθος ἑλμίνθων στρογγύλων ἐκβάλλει . καὶ ἀνδράχνης ὁ χυλὸς πινόμενος καὶ θαλασσία | ||
γνώρισμα δῆλον τῷ συνειθισμένῳ τὸ τῶν εὐρύθμων καὶ ἀποτετορνευμένων καὶ στρογγύλων ἀποδέχεσθαι λόγων , καὶ τετριμμένῳ τὰ ὦτα πρὸς τὴν |
Ἔννατον ἐπὶ τοῖς εἰρημένοις δεῖ ζητῆσαι κεφάλαιον , ἐκ πόσων κανόνων δεῖ θηρᾶν τὸν ἑκάστου διαλόγου σκοπόν . χρεία γάρ | ||
βάσεων , σκελῶν , διαπηγμάτων , ἀγκώνων , ἀξόνων , κανόνων , χελωνῶν , κοχλιῶν , τυμπάνων , τύλων , |
Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ | ||
τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι |
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν | ||
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ |
φέρεται . τῇ δὲ αὐτῇ θεωρίᾳ ὑπ ' ἀμφοτέρων τῶν ἑξαγώνων τοῦ Ἡλίου ἡ Σελήνη παρατυχοῦσα ὑπὸ σύνδεσμον φέρεται . | ||
μὲν γὰρ πρῶτον ὀκτάεδρόν ἐστιν περιεχόμενον ὑπὸ τριγώνων δʹ καὶ ἑξαγώνων δʹ . τρία δὲ μετὰ τοῦτο τεσσαρεσκαιδεκάεδρα , ὧν |
παραδοξότερον φανεῖται τὸ μὴ μόνον συναμφότερον συναμφοτέρῳ , ἀλλὰ καὶ ἑκατέραν τῶν συνισταμένων ἐντὸς ἑκατέρᾳ τῶν ἐκτὸς καὶ ἴσην εἶναι | ||
ἐστι τὸ ΑΒΓ τρίγωνον , φανερὰ ἡ δεῖξις διὰ τὸ ἑκατέραν τῶν πρὸς τῷ Δ γίνεσθαι ὀρθήν . ἀλλὰ δὴ |
γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
ἀριθμοῦ δεῖ ἥμισυ ἔχοντος , ἵν ' ὁ ἡμιόλιος αὐτοῦ τεινόμενος τρίτον ἀναγκαίως ἔχων ὑπεπίτριτον λόγον πρὸς ἄλλον τινὰ ὅρον | ||
δ ' ὑπὸ τῶ κινήματος ἀγκύλον εἶχον . τὼ χέρε τεινόμενος , περικλώμενος , εὗρον ἀγῶνα πῶς ἀνέλω μέγαν ἰχθὺν |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
λέγει , διὰ τὸ ἄνωθεν ἵστασθαι ταύτην τῶν τῆς πόλεως πυλῶν . . Ὄγκα ] Ἀθηνᾶ Φοινίκων γλώττῃ . ἑπτάπυλον | ||
ὅτε οἰχομένων τῶν πλείστων Ἀργείων εἰς τὴν Λακωνικὴν οὕτως ἐγγὺς πυλῶν προσῆλθεν ὥστε οἱ πρὸς ταῖς πύλαις ὄντες τῶν Ἀργείων |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
ἕωθεν κατὰ τῶν τεσσάρων μερῶν τοῦ τόπου , ἔνθα ἡ συμβολὴ γίνεται , ἀπὸ δύο ἢ καὶ τριῶν μιλίων ἐν | ||
τάξις καβαλλαρικὴ πεπυκνωμένη καὶ ἀδιάσπαστος ἀκολουθοῦσα : ἡ ἐκ χειρὸς συμβολὴ ἤτοι συμπλοκή : ἔφοδοι νυκτεριναὶ ἀσφαλῶς γινόμεναι , ἐφ |
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ | ||
γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι |
ἔχουσα ἢ ἐκ τῶν δεξιῶν : κἂν μὲν ἐκ τῶν εὐωνύμων μερῶν ἔχῃ τοὺς ἡγεμόνας , εὐώνυμος παραγωγὴ καλεῖται , | ||
. . τὸ ἑξῆς τοῦ λόγου οὕτως , δι ' εὐωνύμων τετυμμένοι ὁμοσπλάγχνων τε πλευρωμάτων . “ τετυμμένοι δῆθ ' |
γεγονότα χαλκοῦ τὴν χρύσωσιν ἐκ πυρὸς εἰλήφει . τῶν δὲ κιόνων τὰ μὲν σώματα ἦν κυπαρίσσινα , αἱ δὲ κεφαλαὶ | ||
μέγεθος . ὁ μὲν δὴ πρῶτός ἐστιν αὐτῷ κόσμος τῶν κιόνων Δώριος , ὁ δὲ ἐπὶ τούτῳ Κορίνθιος : ἑστήκασι |
ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον | ||
ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ |
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
κενώϲαντεϲ τὸ περιεχόμενον τῇ πυοποιῷ χρηϲόμεθα θεραπείᾳ ἄχριϲ ἀποπτώϲεωϲ τῶν βρόχων . εἰ δὲ κατὰ ῥῆξιν ἀρτηρίαϲ γένοιτο τὸ ἀνεύρυϲμα | ||
ἀχέτας ποταμίοις παρὰ χεύμασιν πατέρα φίλτατον καλεῖ , ὀλόμενον δολίοις βρόχων ἕρκεσιν , ὣς σὲ τὸν ἄθλιον , πάτερ , |
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
ἐν τῷ μέρει τοῦ χρόνου τούτου μέρος τι τοῦ ἐλαχίστου διήξει . ἀνάγκη τοίνυν καὶ χρόνους ἀμερεῖς ὑποτίθεσθαι τῷ συντιθέντι | ||
οὕτως : τὰ κτέανα ταῦτα , οἷον τὰ ὀνείδη , διήξει μέχρι τῶν ἐπιγόνων . κτέανα δὲ εἶπεν ὡς ἐπὶ |
αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν τὸν ὀπίσω τόπον | ||
τὸν ὀπίσω τόπον . ἐκπερισπασμὸς δέ ἐστιν ἡ ἐκ τριῶν ἐπιστροφῶν συνεχῶν τοῦ τάγματος κίνησις , ὥστε μεταλαμβάνειν , ἐὰν |
δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
Δομιτίου δ ' αὐτὴν ἱππεῦσι πολλοῖς καὶ ψιλοῖς εὐμαρῶς οἷα πλινθίον πυκνὸν κυκλώσαντος , οὔτε ἐκδραμεῖν ἔτι ἔχουσα οὔτε ἐξελίξαι | ||
συνεστήσατο μάχην . οἱ δ ' Ἰλλυριοὶ συντάξαντες ἑαυτοὺς εἰς πλινθίον ἐρρωμένως ὑπεστήσαντο τὸν κίνδυνον . καὶ τὸ μὲν πρῶτον |
ταύτην τὴν αἰτίαν καὶ ἡ ψυχὴ ἐκ τῶν δύο , περιφεροῦς καὶ εὐθείας , ὑπέστη ἐκ πέρατος καὶ ἀπείρου , | ||
ψυχροῦ . Κρύσταλλος συντελεῖται καὶ κατ ' ἔκθλιψιν μὲν τοῦ περιφεροῦς σχηματισμοῦ ἐκ τοῦ ὕδατος , σύνωσιν δὲ τῶν σκαληνῶν |
, ] δειχθήσεται δὲ ἑκατέρα τῶν ΒΧ , ΧΓ ἴση ἑκατέρᾳ τῶν ΒΥ , ΥΦ οὕτως : ἐπεζεύχθωσαν ἀπὸ τῶν | ||
ἡ ΑΗ τῇ ΗΕ , σύμμετρός ἐστι καὶ ἡ ΑΕ ἑκατέρᾳ τῶν ΑΗ , ΗΕ . ὑπόκειται δὲ καὶ ἡ |
κρείσσων ἐστὶ τῆς ἑτέρας . Ἀλλ ' ἐκ μὲν τῶν δεξιῶν κατ ' αὐτὸ τὸ στόμα τοῦ κόλπου παράκειται ταινία | ||
ἐς τὸν πλεύμονα , καὶ ἀφικνέονται ἡ μὲν ἀπὸ τῶν δεξιῶν ἐς τὰ ἀριστερὰ ὑπὸ τὸν μαζὸν καὶ ἐς τὸν |
, τὸ δὲ πλάτος δακτύλων ιβʹ , τὸ δὲ πάχος δακτύλων ιʹ . εὑρεῖν αὐτοῦ τὸ στερεόν : ποίει οὕτως | ||
καὶ δυσαισθήτων καὶ ὥσπερ ψοφούντων καὶ καπυρῶν αἰσθανόμενον τῶν ἑαυτοῦ δακτύλων . Οἱ δὲ συνήθεις αὐτοῦ ἰατροὶ κατεψύχθαι τοὺς δακτύλους |
. τὴν περὶ τὰς Αἰόλου νήσους ἀναζεῖν οὕτως ἐπὶ δύο πλέθρων τὸ μῆκος ὥστε μὴ δυνατὸν εἶναι διὰ τὴν θερμασίαν | ||
δὲ τὴν περὶ τὰς Αἰόλου νήσους ἀναζεῖν οὕτως ἐπὶ δύο πλέθρων τὸ μῆκος , ὥστε μὴ δυνατὸν εἶναι διὰ τὴν |
ἀριστερῶν . ἔστι δ ' ἡ ἔκφυσις αὐτῶν ἰσχνὴ καὶ πλατεῖα , κατὰ γραμμὴν ἐγκαρσίαν ἐπ ' ὦτα φερομένη : | ||
σεμνότητος καὶ ἔννοιαι . Λέξις δὲ σεμνὴ πᾶσα μὲν ἡ πλατεῖα καὶ διογκοῦσα κατὰ τὴν προφορὰν τὸ στόμα , ὥστε |
λέγεται πάντοτε . . . ἐπικαθέζηται : Ἀπὸ μεταφορᾶς τῶν ζυγῶν : ἐπικαθέζεσθαι γὰρ τὸ βαροῦν λέγομεν . ἐνυπάρχει . | ||
λέπω τὸ λεπίζω καὶ ἐκδέρω . οἱ δὲ τοὺς τῶν ζυγῶν φασι λώρους . ἀπὸ μέρους δὲ τὸν ὅλον ζυγὸν |
μείζους , αἱ λοιπαὶ αἱ ὑπὸ ΒΖΗ , ΔΗΖ δύο ὀρθῶν ἐλάσσους . ἀλλὰ καὶ δύο ὀρθῶν μείζους αἱ αὐταί | ||
ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ , ἐκβαλλομένας τὰς δύο εὐθείας ἐπ ' |
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
. Ἀρταουάσδης δὲ Ἀντωνίῳ χωρὶς τῆς ἄλλης ἱππείας αὐτὴν τὴν κατάφρακτον ἑξακισχιλίαν ἵππον ἐκτάξας ἐπέδειξεν , ἡνίκα εἰς τὴν Μηδίαν | ||
ἐπιπέδοις ἔθηκε κατὰ τὸ λαιὸν τῶν πολεμίων , ἔχοντα τὴν κατάφρακτον ἵππον , τοῦτον ἐκ τῆς ὀρεινῆς ἐπενεχθέντα τρέψασθαι τοὺς |
Ἴλιον . τοῦτο μὲν δὴ μεταξὺ τῆς τελευτῆς τῶν λεχθέντων ἀγκώνων εἶναι , τὸ δὲ παλαιὸν κτίσμα μεταξὺ τῆς ἀρχῆς | ||
τῶν λεχθέντων πεδίων ἀπὸ θατέρου μέγας τις αὐχὴν τῶν εἰρημένων ἀγκώνων ἐπ ' εὐθείας , ἀπὸ τοῦ νῦν Ἰλίου τὴν |
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
πολλαπλασίαν κατὰ τοὺς δοθέντας ἀριθμοὺς [ ἢ καὶ μείζονας ἢ πολλαπλασίας ] , καὶ περὶ κέντρον τὸ Η διὰ μὲν | ||
τοὺς εἰσιόντας τε καὶ πάλιν ἐξιόντας , κριοφόρους δὲ δύο πολλαπλασίας τοῖς μεγέθεσιν : εἶχε γὰρ ἑκατέραν πηχῶν ἑκατὸν εἴκοσι |
. Ἀλλ ' ἐν ᾧ μὲν χρόνῳ τὸ Ν τὴν ΝΒ περιφέρειαν διελθὸν ἐπὶ τὸ Β παραγίγνεται , ἡ ΑΕ | ||
ἡ τοῦ εἰκοσαέδρου πλευρὰ ἡ ΜΒ τῆς τοῦ δωδεκαέδρου τῆς ΝΒ , δείξομεν οὕτως . Ἐπεὶ γὰρ ἰσογώνιόν ἐστι τὸ |
ἀνθρώπων οἱ μὲν δίκαιοί εἰσιν οἱ δὲ ἄδικοι οἱ δὲ μέσην ἔχουσιν ἕξιν , φανερὸν ὅτι πάσας συμβήσεται τὰς προκειμένας | ||
πόδα , καὶ τὴν χεῖρα τὴν ὑπὲρ αὐτὸν ὑπτίαν ἀντειλημμένην μέσην τοῦ προβολίου προτεινόμενος , τῇ δεξιᾷ ἀντεστραμμένῃ τοῦ δόρατος |
ΓΒΑ , ΑΓΒ , ΒΑΓ , ΑΓΔ , ΓΔΑ , ΓΑΔ , ΑΔΒ , ΔΒΑ , ΒΑΔ ἓξ ὀρθαῖς ἴσαι | ||
καὶ ἀπὸ τοῦ Α τῇ ΑΒ πρὸς ὀρθὰς ἤχθω ἡ ΓΑΔ : τεταρτημορίου ἄρα ἐστὶν ἡ ΒΔ περιφέρεια . λέγω |
ταῦτα χρήσιμα καὶ πρὸς τὰς ἀναβάσεις καὶ πρὸς τὰς τῶν σκελῶν ὑποτμήσεις : πρὸς δὲ τοὺς ἀφιεμένους τροχοὺς καὶ λίθους | ||
' ἀκταίνειν στάσιν : τρέχω δὲ χερσίν , οὐ ποδωκείᾳ σκελῶν . δείσασα γὰρ γραῦς οὐδέν , ἀντίπαις μὲν οὖν |
δόνακα δέ τινα ὑπολύριον οἱ κωμικοὶ ὠνόμαζον ὡς πάλαι ἀντὶ κεράτων ὑποτιθέμενον ταῖς λύραις : ὅθεν καὶ Σοφοκλῆς εἴρηκεν ὑφῃρέθη | ||
μένωσιν οἱ ἀσκοὶ οὗπερ οὖν καὶ κατέθεσαν αὐτοὺς οἱ τῶν κεράτων τῶνδε θηραταί , οἱ δὲ ἀπίασιν ἐπ ' ἄλλην |
κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν | ||
ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται |
μήκη τίθησιν , εἴθ ' ὡς ἂν γωνίαν ποιοῦντα κατὰ Θάψακον , ἀλλ ' ὅτι γε οὐ παράλληλον οὐδέτερον τῷ | ||
πορείαν ποιεῖσθαι : ὁδοιπορήσας δ ' ἡμέρας εἴκοσι παρεγενήθη πρὸς Θάψακον πόλιν , ἣ κεῖται παρὰ τὸν ποταμὸν τὸν Εὐφράτην |
, ὃ ἡμεῖς ἡμίξεστον λέγομεν . λέγεται καὶ ἐπὶ τῶν ποδῶν τοῦ πολύποδος καὶ τὸ ἰσχίον τοῦ μηροῦ . Πενία | ||
: πατˈρὸς δὲ Θεσσαλοῖ ' ἐπ ' Ἀλφεοῦ ῥεέθροισιν αἴγλα ποδῶν ἀνάκειται , Πυθοῖ τ ' ἔχει σταδίου τιμὰν διαύλου |