| μηρίνθου ἤτοι σχοίνου ἀνέρχομαι εἰς τὰς διεξόδους καὶ ὁδοὺς τῶν λοξῶν λογίων τῆς Κασάνδρας . ἄνειμι λοξῶν τουτέστιν ἀνέρχομαι καὶ | ||
| Λυκόφρων : ἐγὼ δ ' ἄκραν βαλβῖδα μηρίνθου σχάσας ἄνειμι λοξῶν ἐς διεξόδους ἐπῶν , παρὰ τὸ βῶ , τὸ |
| τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
| διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
| κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
| γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
| ' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
| αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
| ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
| καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
| δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
| Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
| ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι | ||
| τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ |
| τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν | ||
| , τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
| καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
| εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
| ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
| διηκούσας κορυφὰς ] τοῦ Καυκάσου ὑπερβάλλουσαν ] ὑπερβᾶσαν , διελθοῦσαν μεσημβρινὴν ] † ἤγουν πρὸς νότιον ὁδεύειν : οὕτω γὰρ | ||
| : τὴν δ ' ἐκ Βαβυλῶνος εἰς τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν κάθετον μικρῷ πλειόνων ἢ χιλίων , ὅσων ἦν |
| τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
| κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
| τρίτην ἑκατέρας τῶν δυεῖν ἐλάσσονα , ἰσάκις ἴσοι ἐλαττονάκις , πλινθίδες ἐκλήθησαν : οἱ δὲ δύο μὲν ἴσας , τὴν | ||
| , ἢ ἰσάκις ἴσων ἀνισάκις , ἵνα ἢ δοκίδες ἢ πλινθίδες ὦσιν , εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί |
| ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς | ||
| τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη |
| φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
| Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
| πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
| τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
| ἡ μεσότης αὐτοῦ προστίθεται τῷ ἰνίῳ , ἔπειτα ἀπάγονται δύο λοξαὶ ὑπὸ λοβοὺς ὤτων κατὰ τῶν ὀφθαλμῶν ὡς ἐπὶ τὸ | ||
| ὑπ ' ἀνθερεῶνα , εἶτα παρειαὶ καὶ ἐπὶ βρέγμα , λοξαὶ ἐπὶ ἰνίον , εἶτα γενειὰς καὶ μετωπιαίας . Κεφ |
| . 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
| τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
| : ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
| ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
| τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
| ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
| ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
| ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
| οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
| ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
| ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
| δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
| λαμπάδες . ὁπότε δὲ ἐπίμηκες ἔχουσι τὸ φῶς , καλοῦνται δοκίδες . ὁπότε δὲ ἰκματῶδες φῶς ὁρᾶται , καλεῖται ἶρις | ||
| κρεμάστραν ἐν ταῖς Νεφέλαις . σὺν δὲ τούτοις λεγέσθωσαν δοκοί δοκίδες , ἰκρία , στρωτῆρες , καλυμμάτια . καὶ μετὰ |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος | ||
| μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω |
| ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
| ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
| ⊣ # Ϝ Ϲ Ι # # Ν Ζ # Ιʹ # ʹ # ʹ Νʹ Ζʹ ⊣ [ Η | ||
| δεῖ τὴν ἐπιλογὴν καὶ ὀρδινατιόνα τῶν πεζικῶν ταγμάτων γίνεσθαι ; Ιʹ . Ποῖα δεῖ μανδάτα περὶ καθοσιώσεως διδόναι ; ΙΑʹ |
| ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
| δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
| ἁλιευτικῆς , δι ' ἀγκίστρων , διὰ δικτύων , διὰ κύρτων , διὰ τριαίνης : τούτων δὲ τῶν τεσσάρων ὁ | ||
| Ἰλ β ρλε : σπάρτοι δὲ λέλυνται . εἰς δὲ κύρτων πλοκὴν ἔτι χρησιμώτερον ἡ σπάρτη : εἰ δὲ μὴ |
| ὧν ὁ μὲν τράχηλος ἐκ τεσσάρων συνέστηκε , ἡ δὲ ῥάχις ἐξ εἴκοσιν , ἡ δὲ ὀσφὺς ἐκ πέντε . | ||
| τῶν Ἀπεννίνων ὀρῶν κατέχουσι . ταῦτα δ ' ἐστὶν ὀρεινὴ ῥάχις διὰ τοῦ μήκους ὅλου τῆς Ἰταλίας διαπεφυκυῖα ἀπὸ τῶν |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
| , ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
| ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι τέμνουσαι τὰς παραλλήλους , τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν ἀποτεμνομένων | ||
| εὐθεῖαι ἐφαπτόμεναι συμπίπτωσιν , ἀχθῶσι δὲ παράλληλοι ταῖς ἐφαπτομέναις ἀλλήλας τέμνουσαι καὶ τὴν τομήν , ἔσται , ὡς τὰ ἀπὸ |
| αὐτοῦ προστίθεται τῷ ἰνίῳ , ἔπειτα ἀπάγονται δύο λοξαὶ ὑπὸ λοβοὺς ὤτων κατὰ τῶν ὀφθαλμῶν ὡς ἐπὶ τὸ βρέγμα , | ||
| μετὰ τῶν ἀπὸ τῆς καρδίας ἀγγείων εἰς ἅπαντας αὐτοῦ τοὺς λοβοὺς διανεμομένη . οὐ μὴν ἐξίσταταί γε τῆς ἄνωθεν φύσεως |
| , ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
| δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
| ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
| αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
| ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
| τὸ καὶ Ὄκριον ἄκρον ιβʹ ναʹ ∠ ʹʹ Τῆς ἐφεξῆς μεσημβρινῆς πλευρᾶς περιγραφὴ , ᾗ ὑπόκειται Πρεττανικὸς Ὠκεανός : μετὰ | ||
| ἐν παντὶ τόπῳ καὶ χρόνῳ δείκνυται προχείρως ἥ τε τῆς μεσημβρινῆς γραμμῆς θέσις , καὶ διὰ ταύτης αἱ τῶν ἀνυομένων |
| εἰρημένον φέρεσθαι σημεῖον κατὰ τῆς ΑΒ εὐθείας γράψει τὴν μονόστροφον ἕλικα : τοῦτο γὰρ Ἀπολλώνιος ὁ Περγεὺς ἀπέδειξεν . [ | ||
| Γ τυμπάνου . κηʹ . Πῶς δὲ κατασκευάζεται κοχλίας τὴν ἕλικα ἁρμοστὴν ἔχων τοῖς λοξοῖς ὀδοῦσι τοῦ δοθέντος τυμπάνου , |
| ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
| καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
| ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
| τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
| : ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
| τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
| , καί τι τῆϲ τοῦ πνεύμονοϲ οὐϲίαϲ ἢ βρόγχιον ἢ φλὲψ ἀνενεχθήϲεται : οἶδα δέ τινα τῶν ἐκ τοῦ πνεύμονοϲ | ||
| μονοειδῆ , ἄρτον καὶ ὕδωρ , καὶ ἐκ ταύτης τρέφεται φλὲψ ἀρτηρία σὰρξ νεῦρα ὀστᾶ καὶ τὰ λοιπὰ μόρια . |
| παράκειται . ἰστέον ὅτι ἑτερόμηκες νῦν καλεῖ κοινότερον καὶ τοὺς προμήκεις κατὰ τὸν καθόλου γεωμετρικὸν κανόνα τὸν νῦν ἡμῖν δεδειγμένον | ||
| δυάδος μονάδι μόνῃ μείζων ἐστί : καὶ ἐφεξῆς ὁμοίως . προμήκεις δέ εἰσιν οἱ πλείοσι μονάσιν ἔχοντες τὸ ἄνισον . |
| τὰ κήτη . τὸ κεῖσθαι τοὺς ὀδόντας ἐν τοῖς σιαγόσι στοιχηδόν ? τὸ δὲ παῶν ἔρημοι οἱ νεώτεροι κοινῶς καὶ | ||
| ἀθρόα μετ ' ἀλλήλων εἶναι , τὰ δὲ διεστῶτα καὶ στοιχηδόν , ὥσπερ τὰ τῆς κολοκύντης καὶ σικύας καὶ τῶν |
| καὶ ἐκκεκλιμένου τὴν κλίσιν εἰπεῖν , τουτέστιν ἐν ποίᾳ γωνίᾳ κέκλιται τὸ ἐπίπεδον πρὸς τὸ παράλληλον τῷ ὁρίζοντι . ιʹ | ||
| , ἡ δὲ ὑπὸ τῶν λνθʹ γωνία ἡ κλίσις ἣν κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ |
| Λαπίθαις ὥρμων καὶ οὗτοι οἱ Κένταυροι , καὶ ὥσπερ ζῶντες ἐκινοῦντο κατ ' ἀλλήλων ἐν τοῖς ὅλοις . . ΚΑΙ | ||
| . ἀλλὰ μὴν εἰ καὶ κατὰ τὸ τέλος ἐν προσώποις ἐκινοῦντο , σαφὲς ὅτι παρηκολούθησεν ἂν συγχύνεσθαι τὴν πτῶσιν διὰ |
| νευρώδης φανήσεται , ἅτε τοῦ μὲν αἵματος ἐκθλιβομένου εἰς τὰ ἑκατέρωθεν , μόνου δὲ τοῦ χιτῶνος ἐν τῇ περιτάσει καταλειπομένου | ||
| αὐτοῦ ἰσημερινοῦ σημείου , τάς τε τοῦ ὁρίζοντος περιφερείας ἴσας ἑκατέρωθεν τοῦ ἰσημερινοῦ ποιεῖν καὶ τῶν νυχθημέρων ἐναλλὰξ ἴσα τὰ |
| γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
| ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
| ἀντὶ τοῦ ἡ καθέδρα τῶν Αἰακιδῶν ἡ καλῶς τῇ θαλάττῃ περιειλημμένη , ἤγουν ἡ Αἴγινα , ἔνθα ἐτελεῖτο τὰ Αἰάκεια | ||
| μέρους , ἀφ ' οὗ ποιούμεθα τὴν ἀνάβασιν , Μεσοποταμία περιειλημμένη δυσὶ ποταμοῖς , τῷ τε Εὐφράτῃ καὶ Τίγριδι , |
| πεμπόμενον . Ἐπίκουρος δὲ κισηροειδῆ αὐτὸν ἔφη ἐκ πυρὸς διὰ τρημάτων τινῶν τὸ φῶς ἐκπέμποντα . τινὲς δέ , ὧν | ||
| καὶ ἐκκοπτέσθω : πρὸς δὲ τὴν ἀσφαλῆ ἀνάτρησιν στίχος εὐθὺς τρημάτων διδόσθω μεταξὺ τῆς ῥαφῆς καὶ τῆς ῥωγμῆς , ἔπειτα |
| φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
| καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
| : ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
| , καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
| γένοιτο τῆς ἰδιότητος πρὸς ἑτέραν μεμιγμένης καὶ συμπλεκομένης οὐχὶ συμφώνους ἁφάς ; εἶτα ἐπάγει . τὸ ταῦτα διορᾶν ἐστιν ἐμψύχου | ||
| ἔτι τῆς ἰδιότητος πρὸς ἑτέραν μεμιγμένης καὶ συμπλεκομένης οὐχὶ συμφώνους ἁφάς ; τὸ ταῦτα διορᾶν ἐστιν ἐμψύχου τέχνης , οὐ |
| ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
| , ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
| παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
| γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
| ΒΔ διὰ τὸ ἴσην εἶναι ἑκατέραν τῶν ΒΕ ΕΑ τῇ ἐπιζευγνυούσῃ τὰ Δ Ε . ἔστιν δὲ καὶ ἡ πρὸς | ||
| αἱ ἐπὶ τὰς τομὰς ἀγόμεναι παράλληλοι ἔσονται τῇ τὰς ἁφὰς ἐπιζευγνυούσῃ . ἔστω γὰρ ἢ ὑπερβολὴ ἢ ἀντικείμεναι ἡ ΑΒ |
| , τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
| ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
| κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ | ||
| καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν , |
| [ βορείοις ] , τουτέστιν οἱ ἀντίχθονες . οἱ δὲ ἀντίποδες πάντα ἐναντία καὶ μαχόμενα ἔχουσιν : ὅτε μὲν γὰρ | ||
| ἢ χειμερινῶι τροπικῶι οἰκοῦσιν . ἄνω δὲ οἱ αὐτοὶ καὶ ἀντίποδες λέγονται , ἀντίχθονες μὲν διὰ τὸ ἄνω εἶναι καὶ |
| πέτρας καὶ ἔλαιον ἐκ στερεᾶς πέτρας ” , πέτραν τὴν στερεὰν καὶ ἀδιάκοπον ἐμφαίνων σοφίαν θεοῦ , τὴν τροφὸν καὶ | ||
| μὴν ὁμοίως γε τοῖς ἀκαύστοις συνάγειν τε καὶ πιλεῖν τὴν στερεὰν οὐσίαν ἔτι δύνανται . Ἀρμενιακὸν δύναμιν ἔχει ῥυπτικὴν ἅμα |
| Ἑκάτης κέντρον πεφορῆσθαι . Δεξιτερῆς μὲν γὰρ λαγόνος περὶ χήραμα χόνδρων πολλὴ ἅδην βλύζει ψυχῆς λιβὰς ἀρχιγενέθλου ἄρδην ἐμψυχοῦσα φάος | ||
| ἢ λάρυγξ . συνέστηκε δὲ ὁ πᾶς πόρος , ἐκ χόνδρων οἷον κρικοειδῶν , ἢ κυκλοτερῶν , ἵνα ἀσύμπτωτος μένῃ |
| λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
| τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
| πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
| Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
| διὰ τὸ ψῦχός εἰσιν , ἀφορίζονται δ ' ὑπὸ τῶν ἀρκτικῶν πρὸς τοὺς πόλους . Αἱ δὲ τούτων ἑξῆς , | ||
| δ ' αὐτὸν τρόπον καὶ περὶ τῶν τροπικῶν καὶ τῶν ἀρκτικῶν , παρ ' οἷς εἰσιν ἀρκτικοί , διορίζουσιν ὁμωνύμως |
| ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
| περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
| ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
| ' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
| τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
| παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
| μικρὸϲ , τῷ πληϲίον ϲυνδεϲμείϲθω , εἰ δέ τιϲ τῶν μέϲων , τοῖϲ παρ ' ἑκάτερα ἢ καὶ πάνταϲ ἐφεξῆϲ | ||
| τελεϲθείϲ , πόνοι τῆϲ ὀϲφύοϲ ἀμφὶ τὰϲ ψόαϲ μέϲφι τῶν μέϲων πλευρέων . πολλοῖϲι γοῦν ἀπάτη πόνου , ὡϲ ἀπὸ |
| αἱ ἀρχαὶ ἀνάγονται καὶ διὰ τῶν ἄνω τροχίλων ἔσωθεν ἔξω ἐκλαμβάνονται , εἶτα φέρονται κάτω καὶ ταῖς σκυτάλαις τοῦ ἄξονος | ||
| , οὗ αἱ ἀρχαὶ διὰ τῶν τρημάτων τοῦ ἐμπροσθίου ἄξονος ἐκλαμβάνονται καὶ διέλκονται , ἵνα τὸ μέσον τοῦ κάλου κατὰ |
| ἑνὸς σημείου μετ ' ὀλίγων καβαλλαρίων , τοὺς δὲ ἐκ πλαγίων ἑκατέρωθεν αὐτῆς περιπατεῖν , ἵνα μὲν καὶ σκουλκεύουσιν καὶ | ||
| . Εἰ δὲ καὶ βαρυθῶσιν ὑπὸ τῶν ἐχθρῶν διὰ τῶν πλαγίων καὶ τοῦ νώτου τῆς παρατάξεως προστρέχειν , καὶ μὴ |
| , καὶ ἀπὸ τοῦ Μ σημείου , καθ ' ὃ τέμνουσιν ἀλλήλους οἱ κύκλοι , ἐπεζεύχθωσαν αἱ ΜΑ , ΜΒ | ||
| ἐπεὶ γὰρ ἐν σφαίρᾳ δύο κύκλοι οἱ ΩΒΓ , ΗΘΚ τέμνουσιν ἀλλήλους , διὰ δὲ τῶν πόλων αὐτῶν γέγραπται μέγιστος |
| ἀμαλδύνεται τῆς γονῆς : ἔστι γὰρ δι ' αὐτῶν τῶν ὀρχίων ἡ ὁδός : καὶ νεῦρα τείνει λεπτὰ καὶ πυκνὰ | ||
| ποιέεσθαι πρὸς τὰς ὀδύνας τὰς ἀπὸ τῶν ψοῶν καὶ τῶν ὀρχίων , ἀπὸ τῶν ἰγνύων καὶ ἀπὸ τῶν σφυρῶν ἔσωθεν |
| γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
| παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
| διὰ τῶν ἰσοδυναμούντων τριῶν σημείων τὰς ἐσομένας ἀντὶ τῶν λοιπῶν μεσημβρινῶν περιφερείας ὡς τὰς ἀφοριζούσας τὸ πᾶν μῆκος τήν τε | ||
| , ὥστε κἀνταῦθα τῶν ὁμοίων μερῶν ὑφαιρεθέντων καταλείπεσθαι τὴν τῶν μεσημβρινῶν διάστασιν σταδίων μὲν ἐννακοσίων , μοίρας δὲ μιᾶς καὶ |
| πρῶτος κύβος ᾖ , καὶ ὁ δεύτερος κύβος ἔσται . Δύο γὰρ ἀριθμοὶ οἱ Α , Β πρὸς ἀλλήλους λόγον | ||
| αὐτοῦ ὥρμων , ἐπιθυμοῦντες ἰχθύων , ὅμοιοι τοῖς κολυμβῶσι . Δύο δὲ δελφῖνες ἐξ ἀργύρου κατεσκευασμένοι ἀναφυσῶντες , ἤσθιον ἰχθύας |
| ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν | ||
| ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει : |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| τῶν κεράτων ἀκρεμόνες ἄχρι τινὸς , μετὰ δὲ ἐκεῖθεν καμπτόμενοι νεύουσι κατόπιν ἐπὶ τὰ νῶτα τοῦ φέροντος . Ἐξαίρετον δὲ | ||
| ἀκρέμονες προτενεῖς , ὑψοῦ δ ' αὖθις ποτὶ νῶτον ἄψορρον νεύουσι παλιγνάμπτοισιν ἀκωκαῖς . ἔξοχα δ ' αὖ τόδε φῦλον |
| ' ἐκεῖνον μὲν σχεδόν τι διπλασίαν ἀποφαίνειν τὸ πλάτος τὴν διακεκαυμένην [ τῆς μεταξὺ τῶν τροπικῶν ] ὑπερπίπτουσαν ἑκατέρων τῶν | ||
| ὡς παρακεῖσθαι μακρὸν ἀγκῶνα τῆς ἀοικήτου . Λέγει δὲ τὴν διακεκαυμένην . πρὸς νότον . Ὅτι ἀπὸ Γαδείρων ἀρχόμενος παύεται |
| τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
| πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
| κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν | ||
| ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται |
| ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ | ||
| συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ |
| ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν , καὶ ἀπ ' αὐτῶν μέχρι Συήνης . , φησὶ δὴ [ . Ἵππαρχος ] τοῖς | ||
| τοῦ οἰκείου κύκλου . Δεῖ οὖν ἀναγκαίως καὶ τὸ ἀπὸ Συήνης εἰς Ἀλεξάνδρειαν διάστημα πεντηκοστὸν εἶναι μέρος τοῦ μεγίστου τῆς |
| ; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
| νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
| δ ' ὅπου μὲν ἀρχαὶ δύο , ὅπου δὲ μία ἀγκύλη . Ἐπεὶ πολλάκις ἐκ τῶν εὐτόνων σωμάτων σφοδρᾶς τάσεως | ||
| μὲν ἀρχαὶ τῇ εὐωνύμῳ χειρὶ διακρατοῦνται , ἡ δ ' ἀγκύλη διὰ τῆς δεξιᾶς χειρὸς ἀνακλασθεῖσα ταῖς ἀρχαῖς ἐπιτίθεται . |
| σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
| μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
| λελεασμένην ἔχοντας : καλείσθωσαν δ ' ἡμῖν οἱ προειρημένοι κανόνες ἐπιζυγίδες . . νόησον δὲ καὶ ἀνὰ μέσον τῆς καταζυγίδος | ||
| μεσοστάτης συνεχόμενος ὑπὸ τῶν παραστατῶν : τὰ δὲ λοιπὰ ὁμοίως ἐπιζυγίδες τε καὶ ζυγὰ κατὰ πᾶσαν στέγην . Ὁ δὲ |
| τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
| ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
| ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
| θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
| . Ταινίᾳ τετρασκελεῖ περὶ τὴν ῥαφὴν τῆς μεσότητος ἑτέραν ταινίαν ἐπικάρσιον προσράπτομεν : εἶτα τὰς ἀρχὰς μετὰ τὸ ἐπιδεθῆναι , | ||
| πύργοις ἤρεμος ἀσπιδόεσσαν ὑπόπτερον , εὖτε βροτοῖσιν ἀσπὶς ὑπὲρ κεφαλῆς ἐπικάρσιον ἀσπίδ ' ἐρείδει , ὁππότ ' ἐέλδονται δηΐων πόλιν |
| τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις | ||
| διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| . ἡ μήτηρ πρὸς τὸν καρκίνον : ” τί δὴ λοξή , ἥν , ὦ παῖ , βαδίζεις ὁδόν , | ||
| μὲν εὐθεῖα γένηται , καλὰ ἔσεσθαι μαντευόμενοι , εἰ δὲ λοξή , ἀποτρόπαια . * † μαντεῖον . μαντείου ἢ |
| ἀέρι διὰ παντὸς φαινόμενος , διὰ δὲ τὴν λευκόχροιαν ὀνομαζόμενος γαλαξίας . καὶ τῶν Πυθαγορείων τινὲς ἀστέρος εἶναι διάκαυσιν ἐκπεσόντος | ||
| μὲν γράφονται πρὸς αἴσθησιν , ὅ τε ζωιδιακὸς καὶ ὁ γαλαξίας , οἱ δὲ ὁρίζοντες ἐπινοίαι μόνον λαμβάνονται , τῶν |
| φλεβὸς καὶ ἐμφράττει αὐτούς , καὶ ἐντεῦθεν οὐ γίνεται ἡ πάροδος τοῦ πνεύματος , ἀλλὰ πνιγμωδῶς κινδυνεύουσι . τὰ δὲ | ||
| τῷ μέσῳ μηνὶ ἡ μὲν κατὰ μῆκος ἑκατέρου τῶν φώτων πάροδος ἐπιλαμβάνει μέσως μοίρας κθ Ϛ , ἡ δὲ κατὰ |
| τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
| ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |