σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ
μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ
8382034 ὀρθιαν
λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ ,
πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν
7930539 ὀρθια
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων .
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες ,
7632806 πλευραν
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου
7548439 κατηγμενη
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ
7385899 τομην
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο
7283549 ἀπολαμβανομενην
τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα
ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ
7211988 ΤΘ
, οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον
ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς
7158454 ΧΑ
ἐστὶν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΧΑ πρὸς ΑΞ , καί ἐστιν ὡς ἡ ΟΞ πρὸς
μείζονα λόγον ἔχει ἤπερ πρὸς τὴν ΗΚ : καὶ ἡ ΧΑ πρὸς ΑΖ ἄρα μείζονα λόγον ἔχει ἤπερ ἡ ΘΚ
7068867 καμπην
τὰ ἐμπρόσθια γόνατα : μετὰ δὲ τὸν ἀφανῆ πόλον τὴν καμπήν τε τοῦ Ποταμοῦ καὶ τοῦ Κήτους τὴν κεφαλὴν καὶ
: καὶ περᾷ τὸν μηρὸν παρὰ τὴν πρὸς τὸ γόνυ καμπήν : ἑτέρην δὲ παρὰ τὸν βουβῶνα καθῆκε πυκινόῤῥιζον καὶ
7010311 ΘΤ
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως
6976173 γωνιαν
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν
6972876 καθετον
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ
6970654 ὑποτεινουσαν
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν ,
6921864 διαιρεϲιν
ῥινῶν αἱμορραγούντων ἢ ἑτέρου τινὸϲ μέρουϲ , μικρὰν ϲφόδρα τὴν διαίρεϲιν ποιεῖϲθαι χρή : οὐ γὰρ κενώϲεωϲ δέονται , κενού
οἱ ἀρχαιότεροι τόνδε τὸν τρόπον : μετὰ τὸ δοθῆναι τὴν διαίρεϲιν ὅϲον δακτύλων τὸ μῆκοϲ τριῶν ἐγκαρϲίαν κατὰ τὸ ἐξογκούμενον
6867031 μεσημβρινην
διηκούσας κορυφὰς ] τοῦ Καυκάσου ὑπερβάλλουσαν ] ὑπερβᾶσαν , διελθοῦσαν μεσημβρινὴν ] † ἤγουν πρὸς νότιον ὁδεύειν : οὕτω γὰρ
: τὴν δ ' ἐκ Βαβυλῶνος εἰς τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν κάθετον μικρῷ πλειόνων ἢ χιλίων , ὅσων ἦν
6858042 πλαγια
τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν
, τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς
6818969 ΣΟΤ
πρὸς τὸν ΗΕΚ . διὰ τὰ αὐτὰ δὴ καὶ ὁ ΣΟΤ πρὸς τὸν ΗΕΚ ὀρθός ἐστιν . καὶ ἐπεὶ ἀσύμπτωτόν
εἰσίν , καὶ γωνία ἡ ὑπὸ ΜΛΝ γωνίας τῆς ὑπὸ ΣΟΤ μείζων ἐστίν , βάσις ἄρα ἡ ΜΝ βάσεως τῆς
6818901 ἑλικα
εἰρημένον φέρεσθαι σημεῖον κατὰ τῆς ΑΒ εὐθείας γράψει τὴν μονόστροφον ἕλικα : τοῦτο γὰρ Ἀπολλώνιος ὁ Περγεὺς ἀπέδειξεν . [
Γ τυμπάνου . κηʹ . Πῶς δὲ κατασκευάζεται κοχλίας τὴν ἕλικα ἁρμοστὴν ἔχων τοῖς λοξοῖς ὀδοῦσι τοῦ δοθέντος τυμπάνου ,
6792090 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
6791726 προσῳδιαν
αὶ οὐδ ' ὅτι σύνθετόν ἐστιν ἀναπέμπει [ ] τὴν προσῳδίαν κατεχομένην ὑπὸ [ τῆς ] γραφῆς : ὅτε γοῦν
ἕστηκεν ἄρα τὸ ζῷον λογικὸν ἐπιστήμης δεκτικόν . παρὰ τὴν προσῳδίαν τοῦτοἆρ . ' οὐχὶ † ὁ ἀβρααμ ' †
6761264 ΔΙ
καλείσθω δὲ μέσης ἀποτομὴ δευτέρα . Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ , καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ , ΒΓ
τὸ ἄρα ΔΘ μέσον ἐστίν . καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΖ : ῥητὴ ἄρα ἐστὶ
6751798 ἐπιστροφην
μὲν εὐθεῖ τὴν πρόοδον ὑφίσταται , τῷ δὲ περιφερεῖ τὴν ἐπιστροφήν . καὶ μὴν καὶ ὁ τῇ ψυχῇ ταύτας τὰς
αὐτοῦ γεννωμένης : κατὰ γὰρ τὴν οὐσιώδη εἰς ἐκεῖνο οὐσιώδη ἐπιστροφήν , ὡς ἀπ ' ἐκείνου προϊόντα ὁ νοῦς ἑαυτὸν
6751744 ΓΜ
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ
6751619 ΕΔΑ
ΑΕ : γωνία ἄρα ἡ ὑπὸ ΑΒΕ γωνίᾳ τῇ ὑπὸ ΕΔΑ ἐστιν ἴση . ὀρθὴ δὲ ἡ ὑπὸ ΑΒΕ :
ὀρθάς ἐστιν , ἡ ΒΓ ἄρα καὶ τῷ διὰ τῶν ΕΔΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν . καί ἐστιν αὐτῇ παράλληλος
6741205 κατατασιν
κράτημα καὶ ἀνάτασιν , τοῦ δὲ κατάγματος κατὰ κράτημα καὶ κατάτασιν , πρῶτον δὲ καταρτιζέσθω τὸ ἐξάρθρημα , καὶ τότε
κατὰ διάτασιν , ἔσθ ' ὅπῃ δὲ κατὰ κράτημα καὶ κατάτασιν ἢ κατὰ κράτημα καὶ ἀνάτασιν . μετὰ δὲ τὴν
6734908 ἀμβλειαν
καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ
πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω
6724059 ἀντικειμενην
τοῦ ἀντίχειρος λεγομένου . Ἡ ἀρχὴ τοῦ ἐπιδέσμου κατὰ τὴν ἀντικειμένην λαγόνα τάσσεται , ἔπειτα ἀπὸ τῆς ὀσφύος ἄγεται λοξὴ
γενέσθαι τὰς ἑκατέρωθεν ἐπεκτεταμένας διαιρέσεις . παραπλησίως δὲ καὶ τὴν ἀντικειμένην πλευρὰν τὴν ἐπὶ τῇ ὀφρύι ἐπιδιελοῦμεν ἐφ ' ἑκάτερα
6718674 ἐγκλισιν
' οὐδ ' ὅτε ἄρθρα εἰς σύνταξιν ἀντωνυμίας παραλαμβάνεται , ἔγκλισιν ἀναδέχεται , οὐ καθὸ γένους ἐστὶ παρεμφατικά , ἀλλὰ
τὴν αὐτὴν πανταχῇ , συμμεταβάλλειν δὲ τῇ καθ ' ἑκάστην ἔγκλισιν τῆς σφαίρας ὑπεροχῇ τῶν μεγίστων ἢ ἐλαχίστων ἡμερῶν ,
6715208 κλασιν
καὶ ποιεῖ τὴν δοτικὴν τῶν πληθυντικῶν οὐδὲ γὰρ λέγομεν τοῖς κλασίν ἀλλὰ τοῖς κλάδδις . Ταῦτα μὲν ἐν τούτοις .
καὶ ποιεῖ τὴν δοτικὴν τῶν πληθυντικῶν οὐδὲ γὰρ λέγομεν τοῖς κλασίν ἀλλὰ τοῖς κλάδδις . Ταῦτα μὲν ἐν τούτοις .
6701936 ΗΝ
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ .
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ :
6701551 ΓΚ
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ
6701489 τασιν
τούτου στροφῇ ἡ κατάτασις γένηται . μετὰ δὲ τὴν αὐτάρκη τάσιν δοκιμάζονται αἱ μοχλεῖαι αἱ ἐπὶ τῶν ἄλλων ὀργάνων δεδηλωμέναι
διπλάσιον αὔξεται , κατανοητέον . ὅταν γὰρ ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε λιχανὸς ἀνιεμένη καὶ ἡ παρυπάτη ἐπιτεινομένη
6699558 βασιν
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα .
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν
6694030 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
6683373 ἐπιπλεκομεν
μῆλον . εἶτα διπλώσαντες λοξὴν κατὰ βρέγματος ἄχρι ἰνίου ἄγοντες ἐπιπλέκομεν τὴν διμερῆ φορβεάν , ἵνα ἁρμόσῃ ἐφ ' ὧν
κατὰ μεσόφρυον τὸν χιεστὸν βρόχον κατὰ τῶν κροτάφων τὸν διάγκυλον ἐπιπλέκομεν τὴν προπαραδεδομένην ἡμίρομβον ἢ λαγωὸν δίχα ὤτων ἐπίδεσιν ,
6681067 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
6676450 ΔΑ
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ
6672864 ἡλιακην
μοίρας καὶ τῶν προτεταγμένων κανονίων λαμβάνεται , πρότερον ἐπισκεψώμεθα τὴν ἡλιακὴν μοῖραν κατὰ τὸ ὁλοσχερέ - στερον οὕτως : τὰ
ἡ ἀκριβὴς συζυγία τῆς μέσως θεωρουμένης μόνῳ τῷ παρὰ τὴν ἡλιακὴν ἀνωμαλίαν διαφόρῳ . ὑποκείσθω δὴ ὁ μὲν ἥλιος τὴν
6653661 ἀγκυλην
ἐξελκύϲωμεν ἄνω τὸν τύλον καὶ δῶμεν πλαγίαν διαίρεϲιν ἀπολύοντεϲ τὴν ἀγκύλην , φεύγοντεϲ δὲ τὴν διὰ βάθουϲ τῶν ϲωμάτων τομήν
ἐὰν μὲν ἡ τοῦ βλεφάρου θρὶξ εἱρχθῇ , ἀναϲπῶμεν τὴν ἀγκύλην , ἐὰν δὲ ἐκπέϲῃ ἢ μία ἢ πλείουϲ ,
6636817 ὀρθην
κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ
γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι
6634616 ΞΖ
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς
6623557 ΔΗ
ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ
παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ
6614398 λοιπην
περιθεῖναι καὶ μεῖζον ἀξίωμα ; καὶ τὰ τοιαῦτα : μηδὲ λοιπὴν αἰτίαν τὸ εἰκὸς βούλεσθαί σε ζητοῦντα τοὺς ἐχθροὺς ἀμύνεσθαι
βοήθεια παραγένοιτο τοῖς Αἰκανοῖς ἑτέρα μήτε τροφαί , τὴν δὲ λοιπὴν δύναμιν αὐτὸς ἔχων προῆγεν ἐκτεταγμένην ὡς εἰς μάχην .
6610934 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
6610072 ΑʹϚ
ὡς ἡ πλαγία πρὸς τὴν ὀρθίαν , ἡ ΩΑʹ πρὸς ΑʹϚ , καὶ δίχα τετμήσθω ἡ ΩϚ κατὰ τὸ Ϙ
ἤπερ ἡ ΡΟ πρὸς ΟΝ , καὶ ἡ ΩΑʹ πρὸς ΑʹϚ μείζονα λόγον ἔχει ἤπερ ἡ ΡΟ πρὸς ΟΝ .
6600585 ΖΗ
κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων
ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς
6596747 διπλασιονα
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ
6585579 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
6581530 ὠμοπλατην
ὡς καὶ ἐνταῦθα χίασμα γίγνεσθαι καὶ παρὰ τράχηλον ἐπ ' ὠμοπλάτην καὶ ἐπὶ μασχάλην , ἵνα τέσσαρα γένηται χιάσματα ,
Ταῦρον ἀμόρφωτοι . ὁ ὑπὸ τὸν δεξιὸν πόδα καὶ τὴν ὠμοπλάτην . . . . . . . . Κριοῦ
6579255 εὐθειαν
γραμμὴ ἡ εὐθεῖα οὑτωσὶ καὶ ποσόν . Εἰ γὰρ τὴν εὐθεῖαν οὐ ποσὸν μόνον , τί κωλύει καὶ τὴν πεπερασμένην
ὀπίσω ὁδόν , ὡς δὲ Πτολεμαῖος ὁ Λάγου , ἄλλην εὐθεῖαν ὡς ἐπὶ Μέμφιν . Εἰς Μέμφιν δὲ αὐτῷ πρεσβεῖαί
6575076 ΖΕ
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω
6573325 ΗΑ
καὶ ὡς ἡ ΔΑ πρὸς τὴν ΑΒ , οὕτως ἡ ΗΑ πρὸς τὴν ΑΕ : καὶ ὡς ἄρα ἡ ΗΑ
δειχθέντα ἡ ΖΗ πρὸς ΖΒ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΗΑ πρὸς ΑΒ . ἐπεὶ οὖν ἡ ΖΒ ἴση οὖσα
6572859 ΘΦ
ΣΠ τῇ ΥΘ ἐστιν ἴση , ἡ δὲ ΠΞ τῇ ΘΦ : καὶ ἡ ΥΘ ἄρα τῆς ΘΦ ἐστι μείζων
ἐποίησεν ἐν τῷ αὐτῷ λόγῳ καὶ τὴν ΤΘ πρὸς τὴν ΘΦ . πᾶσα δὲ ἀνάγκη μήτ ' ἐκεῖνον εὑρίσκειν τὸ
6569667 μασχαλην
οὖν τὸν τοῦ ἐξαρθρήματος καταρτισμὸν τὸ σφηνοειδὲς ἐντιθέσθω εἰς τὴν μασχάλην , ἀναγέσθωσάν τε ὑπὲρ κεφαλῆς αἱ τῶν κάλων ἀρχαί
ἡ λεγομένη θερμαστρίς , μῆκος ἔχουσα πηχῶν γ , ἔχουσα μασχάλην συνδεδεμένην λεπίσι ψυχρηλάτοις , εἰς ἣν ἀρθρεμβολεῖται ὁ λεγόμενος
6560058 ΝΟ
ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν
ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς
6552284 ΔΖ
τῆς ὑπὸ ΑΔΒ . ἐπεὶ παράλληλοι μὲν αἱ ΒΓ , ΔΖ καὶ πρὸς ὀρθὰς τῇ ΒΖ , οὐκ ἐλάττων δὲ
καὶ τὸ ἄρα ἀπὸ τῆς ΕΔ πρὸς τὸ ἀπὸ τῆς ΔΖ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΒΑ πρὸς τὸ
6551258 κυκλωσιν
, ὅπως μὴ λίαν βαθείας τὰς φάλαγγας ποιούμεναι αἱ πόλεις κύκλωσιν τοῖς πολεμίοις παρέχοιεν , ἐν τούτῳ οἱ Λακεδαιμόνιοι καὶ
ἐμβαλεῖν τοῖς περιϊππεύουσι τὸ κέρας σφῶν τὸ δεξιὸν ὡς ἐς κύκλωσιν : αὐτὸς δὲ τέως μὲν ἐπὶ κέρως τοὺς ἀμφ
6549817 ΕΔ
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ
6539062 διπλασιαν
ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα
ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς
6533726 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν
6528703 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
6519968 ΕΓ
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον
6512253 ἐθυμωθην
καθ ' ἣν ἠποροῦμεν , τίνα ὑπογράφει νοῦν τὸ „ ἐθυμώθην ὅτι ἐποίησα αὐτούς „ . ἴσως οὖν τοιοῦτόν τι
ὅσῃ καὶ περὶ τὴν προφορὰν κέχρηται προφυλακῇ , „ ὅτι ἐθυμώθην , ὅτι ἐποίησα αὐτοὺς „ εἰπών , ἀλλ '
6502733 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
6499024 ἠκται
, καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ
: τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω
6497541 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
6496656 ΑΝΘΡΩΠΟΙΣΙΝ
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς
6495251 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
6491948 πλευρα
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ
6488548 καταληγουσαν
δισύλλαβα , εἰ ἔχοι τὴν πρὸ τέλους συλλαβὴν εἰς Ε καταλήγουσαν , βαρύνεται , ἀρχόμενα ἀπὸ συμφώνου μὴ μέσου ,
λήγοντα ἔχοντα τὴν πρὸ τέλους συλλαβὴν βραχεῖαν μὴ εἰς σύμφωνον καταλήγουσαν , εἰ μὲν κύρια ὦσιν ἢ οὐσίαν σημαίνοι ,
6478640 συγχρωμεθα
ἐφαπτομένας τῶν ἐπικύκλων τὰς ΖΘ , ΖΟ , ΖΗ : συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ὑπὸ ΓΖΗ , ΑΖΘ
τὸ Σ , ὅταν ἐπιζητῶμεν τὴν γινομένην αὐτῆς παράλλαξιν , συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ΑΖ , ΖΓ ὑπεροχὴν
6478626 ΓΖ
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ
6477463 ἀριστεραν
ἡ ἀριστερὰ χεὶρ τὴν δεξιὰν συμπληροῖ οὔτε ἡ δεξιὰ τὴν ἀριστεράν , οὐχ ὁ ἀντίχειρ τὸν λιχανόν , οὐχ αἱ
φαῦλα , ἐμπαθὴς δὲ ἔσται περὶ τὴν κεφαλὴν καὶ ὅρασιν ἀριστεράν . μάλιστα δὲ εἰσί τινες , οἳ καὶ ἐπηρεάζονται
6470336 ἐπιβασιν
” δὲ ἔχει τινὰ ἔμφασιν τῆς πλημμυρίδος , ἐχούσης τὴν ἐπίβασιν πραεῖαν καὶ οὐ τελέως ῥοώδη . Ποσειδώνιος δὲ καὶ
ὦμον ἐντὸς ἐπιστρέφηται : οὕτω γὰρ τοῦ ξύλου τεθέντος καὶ ἐπίβασιν ἐπὶ τὴν ἐξοχὴν αὐτοῦ τῆς τοῦ ὤμου κεφαλῆς ποιησαμένης
6465821 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
6458704 πυραμιδα
Α σημεῖον , πρὸς τὴν ἐν τῇ ἑτέρᾳ σφαίρᾳ ὁμοιοταγῆ πυραμίδα τριπλασίονα λόγον ἔχει , ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς
ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ βάσις
6456682 γραμμην
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει ,
6453389 ΞΠ
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση
6452843 προσπιπτουσαν
ἐπὶ τῆς . ΛΒ εὐθείας δείξομεν τὴν ΒΞ θερινὴν ἀκτῖνα προσπίπτουσαν ἐπὶ τὸ διὰ τῆς ΜΞΟ ἐπίπεδον ἔσοπτρον καὶ ἀνακλωμένην
πνέων ζέφυρος ἀπὸ δυσμῆς ἰσημερινῆς τὴν ὑπὸ τοῦ ἡλίου θερμότητα προσπίπτουσαν τοῖς ὄρεσιν ἀνακλωμένην ἐξέτραπεν εὐθὺς εἰς πεδίον καὶ ἀπέκαυσεν
6452317 συμβολην
δυνατοῦ , ὥστε καὶ πλείστοις συμπλέκεσθαι , μετὰ δὲ τὴν συμβολὴν ὑπὸ δύο ἡττωμένου . φασὶ γὰρ τὸν Ἡρακλέα θέντα
καὶ ὀχυρώματι προστρεχόντων χρεία διανυκτερεῦσαι ἢ προσεδρεῦσαι αὐτοῖς ἢ τὴν συμβολὴν μέχρις ἑσπέρας παρατείνεσθαι , καὶ ἀναγκαῖόν ἐστιν ἐπιφέρεσθαι δαπάνην
6436825 ΣΞ
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς
6436414 τεταγμενως
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν ,
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ
6428885 κατηγμενην
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ
6421143 ΥΑ
ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ , ἡ ΘΤ πρὸς ΤΟ καὶ ἡ ΘΒ πρὸς
τῆς ΚΓ : ἡ δὲ ΦΧ πρὸς ἐλάσσονα ὁμοίως τῆς ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ .
6414788 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
6407510 λειπουσαν
δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν
Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους
6396641 τετραγωνικην
πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε :
τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν
6393433 τμητεον
ἐσθίειν . Ἐὰν δὲ δύσπνοιαν ἔχῃ , τὰ ὦτα σιδήρῳ τμητέον , καὶ μετακτέον αὐτὰ εἰς ἄλλους τόπους . Ἐὰν
εἰ μὲν οὖν αἵματος πλῆθος εἴη τὸ διατεῖνον , φλέβα τμητέον αὐτίκα μεγάλην τὴν ἐγγὺς τοῦ πάσχοντος μέρους : κακοχυμίας
6383869 ΘΖ
ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ
καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς
6383728 ἐπιδεσιν
, τῷ αὐτῷ τρόπῳ ἰητρεύουσιν : οὐ γὰρ οἴονται τὴν ἐπίδεσιν τὴν ἔνθεν καὶ ἔνθεν , καὶ τὴν ἀνάψυξιν τοῦ
, τῷ τρόπῳ τῶν ὀθονίων ἐπὶ πᾶσι τοῖσι τοιουτέοισι τὴν ἐπίδεσιν ποιέεσθαι , ἐκ μέσου τοῦ ὀθονίου ἀρχόμενον ὡς ἐπὶ
6375417 παρωρειαν
παραδίδωσιν αὐτὸς ὁ ποιητής : τὴν γὰρ ὑπὲρ τοῦ Ἰλίου παρώρειαν τῆς Τροίας καταλέξας τὴν ὑπ ' Αἰνείᾳ ἣν Δαρδανίαν
Κασπιανὴν καὶ Φαυνῖτιν καὶ Βασοροπέδαν , Ἰβήρων δὲ τήν τε παρώρειαν τοῦ Παρυάδρου καὶ τὴν Χορζηνὴν καὶ Γωγαρηνήν , πέραν
6375224 ΒΜΖ
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ
6373537 ΘΚ
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ
6372124 ἐκκοπην
φησὶ διαφέρειν . θυραία μὲν γάρ ἐστι τὸ μέλλον πρὸς ἐκκοπὴν θύρας , θύρα δὲ ἡ ἐξ ἀρχῆς γινομένη ,
τις γένηται τοῦ νευρώδους : ἡμεῖς δὲ τὸν κατ ' ἐκκοπὴν ἐγκρινοῦμεν τρόπον , ὃν ἤδη τε ἐπὶ τῶν ἐριωδῶν
6371896 ΕΑ
περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας
ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ
6369178 ΚΖ
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν
6362471 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
6361218 περιττολογιαν
λάλον οὔτε τὸ κομψὸν θεατρικόν . ὅταν δὲ εἰς τὴν περιττολογίαν καὶ τὸ καλλιεπεῖν , ὃ πολλάκις εἴωθε ποιεῖν ,
ταῦτα τἀναγκαῖα συνάγηται . οὐ γὰρ ὥσπερ τὴν ἐξαλλαγὴν καὶ περιττολογίαν καὶ πάντας τοὺς ἐπιθέτους ἐκδύεται κόσμους , οὕτως καὶ
6350351 διφαλαγγιαν
. Ὅτι Ἀγησίλαος πλῆθος ἱππέων βουλόμενος τοῖς πολεμίοις παραδεῖξαι εἰς διφαλαγγίαν τοὺς πρωτοστάτας τῶν ἱππέων τάξας ὑπέταξεν ὄνους τε καὶ
μέρη καθ ' ἑαυτὰ παρέρχεσθαι , δύο μέρη ποιεῖν εἰς διφαλαγγίαν . Εἰ δὲ μηδὲ δύο χωροῦσιν , κατὰ ἓν
6346165 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ

Back