ΑΕ : γωνία ἄρα ἡ ὑπὸ ΑΒΕ γωνίᾳ τῇ ὑπὸ ΕΔΑ ἐστιν ἴση . ὀρθὴ δὲ ἡ ὑπὸ ΑΒΕ : | ||
ὀρθάς ἐστιν , ἡ ΒΓ ἄρα καὶ τῷ διὰ τῶν ΕΔΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν . καί ἐστιν αὐτῇ παράλληλος |
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω | ||
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως |
ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ , ἡ ΘΤ πρὸς ΤΟ καὶ ἡ ΘΒ πρὸς | ||
τῆς ΚΓ : ἡ δὲ ΦΧ πρὸς ἐλάσσονα ὁμοίως τῆς ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ . |
περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας | ||
ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ |
τῇ Θ , ἰσογώνιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΒΑ πρὸς τὴν | ||
ἄρα ἐστὶν καὶ ἡ ὑπὸ ΑΚΓ , τουτέστιν ἡ ὑπὸ ΔΕΘ , τῇ ὑπὸ ΑΒΓ . ἀλλὰ καὶ ἡ ὑπὸ |
ἐστὶν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΧΑ πρὸς ΑΞ , καί ἐστιν ὡς ἡ ΟΞ πρὸς | ||
μείζονα λόγον ἔχει ἤπερ πρὸς τὴν ΗΚ : καὶ ἡ ΧΑ πρὸς ΑΖ ἄρα μείζονα λόγον ἔχει ἤπερ ἡ ΘΚ |
πρὸς τὸν ΗΕΚ . διὰ τὰ αὐτὰ δὴ καὶ ὁ ΣΟΤ πρὸς τὸν ΗΕΚ ὀρθός ἐστιν . καὶ ἐπεὶ ἀσύμπτωτόν | ||
εἰσίν , καὶ γωνία ἡ ὑπὸ ΜΛΝ γωνίας τῆς ὑπὸ ΣΟΤ μείζων ἐστίν , βάσις ἄρα ἡ ΜΝ βάσεως τῆς |
λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ , | ||
πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν |
, οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον | ||
ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς |
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ | ||
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση |
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ | ||
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ |
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ | ||
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ |
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ | ||
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ |
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ . | ||
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ |
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
ἐφαπτομένας τῶν ἐπικύκλων τὰς ΖΘ , ΖΟ , ΖΗ : συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ὑπὸ ΓΖΗ , ΑΖΘ | ||
τὸ Σ , ὅταν ἐπιζητῶμεν τὴν γινομένην αὐτῆς παράλλαξιν , συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ΑΖ , ΖΓ ὑπεροχὴν |
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ | ||
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω |
σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
ΒΑ πρὸς τὴν ΑΔ . μείζων δὲ ἡ ΔΒ τῆς ΒΑ : μείζων ἄρα καὶ ἡ ΒΑ τῆς ΑΔ . | ||
ὀξεῖα ἄρα ἡ ὑπὸ ΞΑΗ γωνία . καὶ ἐπεὶ ἡ ΒΑ τῆς ΑΓ οὔκ ἐστιν ἐλάττων , καὶ ἡ ὑπὸ |
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ | ||
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ |
συμπιπτέτω κατὰ τὸ Ζ . μείζων ἄρα ἔσται ἡ ὑπὸ ΖΔΕ γωνία τῆς ὑπὸ ΖΧΔ . δεήσει ἄρα εἰς τὴν | ||
δὲ τὸ ὑπὸ ΒΔΑ : δοθὲν ἄρα καὶ τὸ ὑπὸ ΖΔΕ . καὶ ἔστι δοθεῖσα ἡ ΔΕ : δοθεῖσα ἄρα |
καὶ ὡς ἡ ΔΑ πρὸς τὴν ΑΒ , οὕτως ἡ ΗΑ πρὸς τὴν ΑΕ : καὶ ὡς ἄρα ἡ ΗΑ | ||
δειχθέντα ἡ ΖΗ πρὸς ΖΒ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΗΑ πρὸς ΑΒ . ἐπεὶ οὖν ἡ ΖΒ ἴση οὖσα |
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ | ||
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ | ||
καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς |
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν | ||
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν , |
ΓΕ ἡ ΗΚΘ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΓΕΖ τῇ ὑπὸ ΘΕΚ , ἡ δὲ ὑπὸ ΖΕΓ τῇ | ||
ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ . καὶ ἔχει τὴν ὑπὸ ΓΕΖ γωνίαν ἴσην τῇ δοθείσῃ τῇ Δ . Τῷ ἄρα |
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ | ||
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ |
πρὸς τὸν ΖΚ καὶ ὁ ΖΚ πρὸς τὸν ΖΘ . διελόντι , ὡς ὁ ΕΛ πρὸς τὸν ΛΖ , οὕτως | ||
ΘΖ πρὸς ΖΛ , οὕτως ἡ ΖΚ πρὸς ΚΕ . διελόντι ἄρα ἐστὶν ὡς ἡ ΕΛ πρὸς ΛΖ , οὕτως |
. Πάλιν , ἐπεὶ διπλῆ ἐστιν ἡ μὲν ΟΞ τῆς ΞΩ , ἡ δὲ ΡΟ τῆς ΨΩ , ὅλη ἄρα | ||
, Ω , Ϛ , καὶ συμπεπληρώσθω τὰ ΖΦ , ΞΩ στερεά : λέγω , ὅτι καὶ οὕτως ἴσων ὄντων |
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον | ||
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ |
τὸ ἱστίον , μέσουροι λέγονται , οἱ δὲ ἑλκόμενοι εἰς πρώραν καὶ πρύμναν ἐξ ἑκατέρου μέρους τοῦ ἱστοῦ πρότονοι , | ||
ἀκάτιον , ἤτοι ἀμφοτέρωθεν ὑπὸ ἑνὸς ἐρεττόμενον , ἤτοι μήτε πρώραν μήτε πρύμναν ἔχον ἀνηγμένην , ἀλλὰ στρογγύλον καὶ περιφερὲς |
καὶ μὴ ὑπάρχοντος φαύλου ὁ σοφός : ταῦτα γὰρ κατὰ σύμβλησιν νοεῖται , καὶ ὃν τρόπον μὴ ὄντος δεξιοῦ τινος | ||
' ἴσως δυνήσεται κατὰ τὴν ὡς πρὸς ἄλλο καὶ ἄλλο σύμβλησιν , εἶναι δὲ καὶ ὑπάρχειν οὐχ οἷόν τε . |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ | ||
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ |
τὴν ΑΣ , διὰ τὸ παραλλήλους εἶναι τὰς ΣΑ , ΥΧ : καὶ ἡ ΥΑ ἄρα πρὸς τὴν ΑΣ μείζονα | ||
ΟΦ , ἀπὸ δὲ τοῦ Υ ἐπὶ τὴν ΜΞ ἡ ΥΧ , καὶ ἐπεζεύχθω ἡ ΦΧ . ἐπεὶ οὖν ἡ |
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
ἄρα ἀπὸ τῆς ΜΓ ἔλασσόν ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . τὸ δὲ ἀπὸ τῆς ΜΓ τοῦ ἀπὸ τῆς | ||
τῶν ΓΩ , ΩΜ ἐλάσσονά ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . ἀλλὰ τὸ ἀπὸ τῶν ΓΩ , ΩΜ ἴσον |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας | ||
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ |
ἢ ὁμοία : ἐν πλείονι ἄρα χρόνῳ τὸ Κ τὴν ΚΟ περιφέρειαν διελθὸν ἐπὶ τὸ Ο παραγίγνεται , ἤπερ τὸ | ||
, ΚΛ , καὶ ἐπεζεύχθωσαν αἱ ΚΜ , ΚΞ , ΚΟ . ἐπεὶ οὖν ἀπὸ μετεωροτέρου τοῦ Κ ἐπὶ τὸ |
ἀπὸ ΖΔ , οὕτως τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ ΒΖΑ πρὸς | ||
: λοιπὸν ἄρα τὸ ἀπὸ ΘΖ ἔλασσόν ἐστιν τοῦ ἀπὸ ΗΕ : ἐλάσσων ἄρα ἐστὶν ἡ ΘΖ τῆς ΗΕ . |
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ | ||
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν |
τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός | ||
διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ |
γραφήσεται δὲ καὶ ὑφ ' ἡμῶν , ἵνα μηδὲν ἔξωθεν ἐπιζητῶμεν . λʹ . Νοείσθω γὰρ κοχλίας ὁ ΑΒ , | ||
ἄλλο περὶ τῶν αὐτῶν : κἂν μὴ καθ ' ἓν ἐπιζητῶμεν τὰ καθ ' ἕκαστον εἶδος ἐκτιθέμενα περὶ αὐτοῦ , |
ΒΓ ΕΖ τοῖς Η Θ , καὶ ἐπεζεύχθωσαν αἱ ΑΗ ΔΘ , καὶ ἔστωσαν ἴσαι , καὶ μηδετέρα τῶν ΑΗ | ||
ΓΘ τῇ Ε : τὸ ἄρα ΒΗ ἴσον ἐστὶ τῷ ΔΘ . καί ἐστιν ἰσογώνια . τῶν δὲ ἴσων καὶ |
φαινόμενα . οἷον ἐνηνέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριαίαν περιφέρειαν περὶ ἔγκεντρον κύκλον τὴν μο , καὶ μετενηνοχέτω τὸν | ||
ἴσαι εὐθεῖαι ὑποτείνουσιν : ὅπερ ἔδει δεῖξαι . Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν . Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ |
, Ζ ἴσα εἰσίν . ὡσαύτως καὶ τὰ ΗΒ , ΘΔ ἴσα τοῖς Ε , Ζ . ὅσα ἄρα ἐστὶν | ||
πλῆθος τῶν ΑΗ , ΗΒ τῷ πλήθει τῶν ΓΘ , ΘΔ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ μὲν ΑΗ τῷ |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
ΖΕ καὶ τοῦ τῆς ΓΑ πρὸς ΗΕ ὁ τοῦ ἀπὸ ΓΑ ἐστὶν πρὸς τὸ ὑπὸ ΖΕ ΗΕ , τουτέστιν πρὸς | ||
ΓΑ , ΑΒ τετραγώνων μεῖζόν ἐστι τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐν ἄρα τοῖς ἀμβλυγωνίοις |
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
, δῆλον , ὅτι τὰς ἀπεναντίον ἀπέφηνε παραλλήλους καὶ τὰς ἐπιζευγνυούσας καὶ τὰς ἐπιζευγνυμένας . τὸ δὲ ὑπὸ παραλλήλων περιεχόμενον | ||
τῶν ἀνταιρόντων μερῶν τῆς οἰκουμένης ποιήσουσί τι παραλληλόγραμμον πρὸς τὰς ἐπιζευγνυούσας διὰ τῶν ἄκρων αὐτάς . ὅτι μὲν οὖν ἐν |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ | ||
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ |
τῆς ὑπὸ ΑΔΒ . ἐπεὶ παράλληλοι μὲν αἱ ΒΓ , ΔΖ καὶ πρὸς ὀρθὰς τῇ ΒΖ , οὐκ ἐλάττων δὲ | ||
καὶ τὸ ἄρα ἀπὸ τῆς ΕΔ πρὸς τὸ ἀπὸ τῆς ΔΖ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΒΑ πρὸς τὸ |
. . . . πολλοῦ δεῖ Κυναιγείρῳ πρὸς Καλλίμαχον εἶναι παραβολήν : ὁ μὲν γὰρ ἅπαντας εἰς Μαραθῶνα ἦγε συνθήματι | ||
: Ἰστέον ὅτι τὸ ὡς τριάκοντα σημαίνει παρὰ Τρύφωνι . παραβολήν ‚ ὥς τε λέων ἐχάρη ‚ : ἀνταπόδοσιν , |
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ . | ||
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί |
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ | ||
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ |
ΒΓ . , ] ἐπεὶ γὰρ ἡ ΓΠ ἴση τῇ ΠΚ , ἡ ΓΝ μείζων τῆς ΝΚ . ὥστε καὶ | ||
ΟΚ , καὶ ἡ ΠΡ πρὸς ΡΟ , καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , |
ΚΗ . καὶ ἐπεὶ κῶνος , οὗ βάσις μὲν ὁ ΗΘΝ κύκλος , κορυφὴ δὲ τὸ Ζ σημεῖον , τέτμηται | ||
αὐτοῦ τοῦ ἐκκέντρου κινήσεως εἰς τὰ ἑπόμενα μετεβιβάσθη τὴν ὑπὸ ΗΘΝ γωνίαν μείζονα οὖσαν τῆς ὑπὸ ΚΘΗ , φανερόν , |
τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν . | ||
τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ , |
ὀρθαὶ τξ . τῶν δ ' αὐτῶν καὶ ἡ ὑπὸ ΒΖΛ ὑπέκειτο λζ ιϚ : καὶ λοιπὴ ἄρα ἡ ὑπὸ | ||
τῷ ὑπὸ ΗΒ ΒΘ , διὰ δὲ τὴν ὁμοιότητα τῶν ΒΖΛ ΒΕΔ τριγώνων ὡς ἡ ΔΒ πρὸς τὴν ΒΕ , |
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
ΑΔΓ μετὰ τοῦ δὶς ὑπὸ ΑΕΓ καὶ δὶς τῶν ἀπὸ ΒΔ ΒΕ τετραγώνων . Τοῦτο δὲ φανερόν : τὸ μὲν | ||
, ἀφ ' ἧς ἐπὶ τὴν ΑΓ βάσιν ἤχθω ἡ ΒΔ . λέγω , ὅτι ἡ ΒΔ πρὸς ΔΓ μείζονα |
τε οὐχ ἥκιστα αὐτῆς ἕνεκα τῆς δυσχερείας ἣν περὶ τὴν μακρολογίαν τὴν περὶ τὴν ὑφαντικὴν ἀπεδεξάμεθα δυσχερῶς , καὶ τὴν | ||
ἀνθρώπων σπεύδοντα . ἀλλ ' ἐνταῦθα πάλιν ἑτέραν κατηγορίαν φυλαττόμενος μακρολογίαν μὲν εἰσαῦθις ὑπερθήσομαι , νῦν δὲ ἐπιτρέψω τῷ λόγῳ |
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
καλείσθω δὲ μέσης ἀποτομὴ δευτέρα . Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ , καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ , ΒΓ | ||
τὸ ἄρα ΔΘ μέσον ἐστίν . καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΖ : ῥητὴ ἄρα ἐστὶ |
ἀπὸ ΓΗ . καὶ ὡς ἄρα ἐπὶ μὲν τῆς ἐλλείψεως συνθέντι , ἐπὶ δὲ τῶν ἀντικειμένων ἀνάπαλιν καὶ ἀναστρέψαντι τὸ | ||
ἄρα καὶ ὁ τῆς ΘΚ πρὸς τὴν ΚΑ δοθείς . συνθέντι ἄρα λόγος ἐστὶ τῆς ΘΑ πρὸς ΑΚ δοθείς . |
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων | ||
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς | ||
ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει |
, καὶ τοῦ ἡλίου ἀνατέλλοντος μὲν κατὰ τὸ Ο ἡ ΚΘΛ περιφέρεια θέσιν ἕξει ὡς τὴν ΟΠΡ , δύνοντος δὲ | ||
ὡς τὴν ΟΠΡ , δύνοντος δὲ κατὰ τὸ Μ ἡ ΚΘΛ περιφέρεια θέσιν ἕξει ὡς τὴν ΜΣΤ . Καὶ ἐπεὶ |
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς | ||
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς |
καὶ τὸ μέγα βαλλάντιον . καὶ τὴν κυνῆν ἔχειν με κυρβασίαν ἐρεῖς . ᾔτουν τι τὰς γυναῖκας ἀργυρίδιον . ἀλαβαστροθήκας | ||
πῖλος Μακεδονικὸς παρὰ Μενάνδρῳ , ὡς τιάρα Περσικός . καὶ κυρβασίαν δ ' Ἀριστοφάνης ἐν Τριφάλητι εἴρηκεν : καὶ τὴν |
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ | ||
ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν |
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι | ||
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ , |
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
τῶν ΑΒΓΔ , ΒΚΔ ἡ ΒΞΔ ὀρθή ἐστι πρὸς τὸν ΑΚΜΓ κύκλον : ὥστε καὶ πρὸς πάσας τὰς ἁπτομένας αὐτῆς | ||
τὴν ΑΓ , διὰ τὸ ὀρθὰ εἶναι πρὸς ἄλληλα τὰ ΑΚΜΓ , ΑΒΓΔ ἐπίπεδα , ἡ δὲ ἀπὸ τοῦ Ν |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ | ||
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ |
ὁ κομμὸς τοῦ χοροῦ τελῶν μέρος ὑποκριταῖς ἦν ὡς πολὺ συνηγμένος : κομμὸς δὲ θρήνου πενθικώτερον πλέον , ὁ θρῆνός | ||
περί που παρέχεται παλαιστῶν ἐννέα . Τὴν σπεῖραν οὐκ ἔστι συνηγμένος , ἀλλὰ ἐφήπλωται διὰ παντός . Φοβερὸς δὲ δοκεῖ |
κειμένη τῷ Μαιάνδρῳ κατὰ τὸ πρὸς τῇ Φρυγίᾳ μέρος , ἐπέζευκται δὲ γέφυρα : χώραν δ ' ἔχει πολλὴν ἐφ | ||
σημεῖον , ἀπὸ δὲ τοῦ Α ἐπὶ τὸ κέντρον αὐτοῦ ἐπέζευκται ἡ ΑΒ , ἡ ΑΒ ἄρα κάθετός ἐστιν ἐπὶ |
ΥΚ , ΦΧ . ὥστε ἐν ᾧ τὸ Θ τὴν ΘΝ διέρχεται , ἐν τούτῳ τότε Υ τὴν ΥΞ διαπορεύεται | ||
ΚΖ , ΖΛ , ΛΗ , ΗΜ , ΜΘ , ΘΝ , ΝΕ . δύο οὖν μεγεθῶν ἀνίσων ἐκκειμένων τοῦ |
ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί | ||
τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος |
τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ | ||
τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ |
ἀνατολῇ ὁ ἥλιος μείζονά τινα τῆς ΛΜ περιφερείας διελεύσεται . Διερχέσθω τὴν ΛΝ : τοῦ Μ ἄρα πρὸς ἀνατολαῖς ὄντος | ||
δύσει ὁ ἥλιος μείζονά τινα τῆς ΛΜ περιφερείας διελεύσεται . Διερχέσθω τὴν ΛΝ . Τοῦ Μ ἄρα πρὸς δυσμαῖς ὄντος |
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ , | ||
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ |
τὴν ΑΔΕ βάσιν , οὕτως ἡ ΑΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . δι ' ἴσου ἄρα ὡς ἡ ΑΒΓΔ | ||
τὴν ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ |
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
, Δ γωνίαι , καὶ ἴση ἐστὶν ἡ ΓΚ τῇ ΚΕ , δοθέν ἐστιν ἑκάτερον τῶν ΓΔΚ , ΕΖΚ τριπλεύρων | ||
, ὡς ἡ ΖΚ πρὸς τὴν ΓΔ , οὕτως ἡ ΚΕ πρὸς τὴν ΔΒ . ῥητὴ δὲ ἡ ΚΕ καὶ |
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ | ||
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ |
κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων | ||
ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς |
τὸ Ζ : δι ' ἴσου ἄρα ἐστὶν ὡς τὸ ΑΗ πρὸς τὸ Γ , οὕτως τὸ ΔΘ πρὸς τὸ | ||
ἐστὶ τῷ ΓΕ , λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΗ , ΗΒ ἴσον ἐστὶ τῷ ΖΛ . ῥητὸν δὲ |