πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
Α σημεῖον , πρὸς τὴν ἐν τῇ ἑτέρᾳ σφαίρᾳ ὁμοιοταγῆ πυραμίδα τριπλασίονα λόγον ἔχει , ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς | ||
ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ βάσις |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
ὁμώνυμος τῇ χερσαίᾳ ὑαίνῃ ἐστί . ταύτης οὖν τὴν δεξιὰν πτέρυγα εἰ ὑποθείης ἀνθρώπῳ καθεύδοντι , εὖ μάλα ἐκταράξεις αὐτόν | ||
. καὶ δὴ συλλαβὼν τὰ ὄρνεα θατέρου μὲν τὴν δεξιὰν πτέρυγα , τοῦ γυπὸς δὲ τὴν ἑτέραν ἀπέτεμον εὖ μάλα |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ , | ||
πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν |
τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
τὸ αὐτὸ παραληφθῆναι λέγομεν , ὅτι ῥὶς σιμή ἐστι ῥὶς κοιλότητα ἔχουσα ἐν ῥινί . * * * τῇ ῥινὶ | ||
διαφορήσεως γινομένης , ὥστε μηδὲ τὴν τῶν ὀφθαλμῶν ἐν αὐτοῖς κοιλότητα διαφαίνεσθαι . οὐκοῦν οὐδὲ οἱ σφυγμοὶ μειωθήσονται , τῆς |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει | ||
ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
πτηνὸν ἅρμα ἐλαύνων φέρεται , κατασπάσας αὐτὸς ἤδη κατὰ τὴν ἁψῖδα πετόμενον καὶ ἀναβαίνοντα ὑπὲρ τὰ νῶτα τοῦ οὐρανοῦ καὶ | ||
φωσφόρος Ἁρμονίης Φαέθων στήριζε γενέθλην : καὶ νοερὴν κόσμοιο μέσην ἁψῖδα κομίζων ζωογόνωι σπινθῆρι περίρρυτα πάντα φυλάσσει . ἔνθεν πρωτογόνοιο |
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
εἰρημένον φέρεσθαι σημεῖον κατὰ τῆς ΑΒ εὐθείας γράψει τὴν μονόστροφον ἕλικα : τοῦτο γὰρ Ἀπολλώνιος ὁ Περγεὺς ἀπέδειξεν . [ | ||
Γ τυμπάνου . κηʹ . Πῶς δὲ κατασκευάζεται κοχλίας τὴν ἕλικα ἁρμοστὴν ἔχων τοῖς λοξοῖς ὀδοῦσι τοῦ δοθέντος τυμπάνου , |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
ἐπιπέδων . Ἀναξιμένης τραπεζοειδῆ . Λεύκιππος τυμπανοειδῆ τῷ πλάτει , κοίλην δὲ τῷ μεγέθει . Οἱ ἀπὸ Θαλοῦς μέσην τὴν | ||
Ἰουδαίας ὑπὸ τοῦ πατρὸς τοῦ βασιλέωςἐκεῖνος γὰρ ἐπελθὼν τὰ κατὰ κοίλην Συρίαν καὶ Φοινίκην ἅπαντα , συγ - χρώμενος εὐημερίᾳ |
τὰ ἐμπρόσθια γόνατα : μετὰ δὲ τὸν ἀφανῆ πόλον τὴν καμπήν τε τοῦ Ποταμοῦ καὶ τοῦ Κήτους τὴν κεφαλὴν καὶ | ||
: καὶ περᾷ τὸν μηρὸν παρὰ τὴν πρὸς τὸ γόνυ καμπήν : ἑτέρην δὲ παρὰ τὸν βουβῶνα καθῆκε πυκινόῤῥιζον καὶ |
ὁ φοῖνιξ , ῥήσσει ἑαυτὸν ἐπὶ τὴν γῆν , καὶ ὀπὴν ἐκ τοῦ ῥήγματος λαμβάνει , καὶ ἐκ τοῦ ἰχῶρος | ||
: ψηλαφῶσιν . πόρον : ὀπήν . βρόχον εὐρύν : ὀπὴν εὑρεῖν . ἐν ἕρκει : τῷ περιφράγματι , δικτύῳ |
χαλκεύς , οὐ ποιεῖ τὸν χαλκόν , οὕτως οὐδὲ τὴν σφαῖραν , τουτέστι τὸ εἶδος αὐτὸ καθ ' αὑτό , | ||
ἑκάστῳ τῶν τριῶν πλανήτων Ἄρεος καὶ Ἀφροδίτης καὶ Ἑρμοῦ προσετίθει σφαῖραν , τίνος ἕνεκεν προσετίθει , συντόμως καὶ σαφῶς ὁ |
τοῦ ἀντίχειρος λεγομένου . Ἡ ἀρχὴ τοῦ ἐπιδέσμου κατὰ τὴν ἀντικειμένην λαγόνα τάσσεται , ἔπειτα ἀπὸ τῆς ὀσφύος ἄγεται λοξὴ | ||
γενέσθαι τὰς ἑκατέρωθεν ἐπεκτεταμένας διαιρέσεις . παραπλησίως δὲ καὶ τὴν ἀντικειμένην πλευρὰν τὴν ἐπὶ τῇ ὀφρύι ἐπιδιελοῦμεν ἐφ ' ἑκάτερα |
ἡ ἀριστερὰ χεὶρ τὴν δεξιὰν συμπληροῖ οὔτε ἡ δεξιὰ τὴν ἀριστεράν , οὐχ ὁ ἀντίχειρ τὸν λιχανόν , οὐχ αἱ | ||
φαῦλα , ἐμπαθὴς δὲ ἔσται περὶ τὴν κεφαλὴν καὶ ὅρασιν ἀριστεράν . μάλιστα δὲ εἰσί τινες , οἳ καὶ ἐπηρεάζονται |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ | ||
πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω |
σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
μέσῳ ἱδρῦσθαι . καὶ διὰ τὸ ἰσόρροπον φυλάσσειν τὴν αὐτὴν ἕδραν , καὶ δὴ Εὐριπίδης , ὡς Ἀναξαγόρου γενόμενος μαθητὴς | ||
, ἐπακούσατέ μου νῦν εὐχομένου . . αἵτε ναίετε καλλίπωλον ἕδραν : ἱππικοὶ λέγονται οἱ Ὀρχομένιοι . Ἐργῖνος γὰρ ἵππῳ |
ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς | ||
τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη |
καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
, οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον | ||
ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς |
ἐστὶν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΧΑ πρὸς ΑΞ , καί ἐστιν ὡς ἡ ΟΞ πρὸς | ||
μείζονα λόγον ἔχει ἤπερ πρὸς τὴν ΗΚ : καὶ ἡ ΧΑ πρὸς ΑΖ ἄρα μείζονα λόγον ἔχει ἤπερ ἡ ΘΚ |
πέτρας καὶ ἔλαιον ἐκ στερεᾶς πέτρας ” , πέτραν τὴν στερεὰν καὶ ἀδιάκοπον ἐμφαίνων σοφίαν θεοῦ , τὴν τροφὸν καὶ | ||
μὴν ὁμοίως γε τοῖς ἀκαύστοις συνάγειν τε καὶ πιλεῖν τὴν στερεὰν οὐσίαν ἔτι δύνανται . Ἀρμενιακὸν δύναμιν ἔχει ῥυπτικὴν ἅμα |
πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς | ||
βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας , |
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
δέκα σταδίων , κατάντης δὲ καὶ κρημνοῖς συγκλειόμενος εἰς στενὴν ἐντομήν , ἅπας δὲ τραχὺς καὶ φαραγγώδης , ἔτι δὲ | ||
τὰ μὲν διὰ τὴν ἐν τῇ ῥάχει αὐτῶν ὀπὴν καὶ ἐντομήν , δι ' ἧς φθέγγονται , τὰ δὲ διὰ |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
. πρὸς τὸν ὁπλισμόν : πρῶτος γάρ ἐστι πρὸς τὴν ἐπιφάνειαν ὁ ζωστήρ , καὶ κατὰ τοῦ στατοῦ καὶ κατὰ | ||
χρώματος καὶ τῶν μυῶν ἡ θέσις συστήσεται τοῦ μὲν τὴν ἐπιφάνειαν , ἥτις ποτ ' ἂν εἴη , δεικνύντος τῶν |
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων | ||
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ |
καύματος ὑπερβολήν , καὶ μάλιστα ἡ περὶ μέσην τὴν διακεκαυμένην ζώνην , ψεῦδός ἐστιν . Οἱ μὲν γὰρ τὰ πέρατα | ||
, ὃ μὴ πέπτωκεν ἐπὶ τὴν γῆν , τὴν δὲ ζώνην ἐᾶν : εἶναι γὰρ ταύτην ἐπὶ τῆς γῆς . |
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου | ||
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ |
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
μὲν τοῦ ΕΖ ἄξονος βάρος ἐξάψωμεν , ἐκ δὲ τοῦ ΜαΜβ τυμπάνου τὴν ἕλκουσαν δύναμιν τὰ δʹ τάλαντα , οὐδοπότερον | ||
ΜαΜβ πρὸς τὸ ἀπὸ ϘΩ , τουτέστιν τὸ πεντεκαιδεκάκις ἀπὸ ΜαΜβ πρὸς τὸ πεντεκαιδεκάκις ἀπὸ ϘΩ . καὶ ἐπεὶ ἔχομεν |
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
καὶ Δήμητρος καὶ Ἑστίας καὶ Ἥρας : τὴν δὲ τοῦ δωδεκαγώνου Διός : τὴν δ ' ἑκκαιπεντηκονταγώνου Τυφῶνος , ὡς | ||
ἐὰν δὲ ἀπολάβωμεν ἑκατέ - ραν τῶν ΓΗ ΓΘ περιφερειῶν δωδεκαγώνου , καὶ ἐπιζεύξωμεν τὴν ΗΘ καὶ τὰς ΕΗ ΕΘ |
κατατρίβονται τὸν βίον οἱ φυγάδες ἀρετῆς λογισμοί . ” δάκνων πτέρναν ἵππου . ” ἐχομένως πτερνιστής ἐστιν ὁ τὴν στάσιν | ||
συνερεισθεῖσαι , καθὰ λέγομεν , παρὰ τὴν τοῦ ἀγκῶνος παρετίθεντο πτέρναν , ὁ δὲ ἀγκὼν τὴν πτέρναν εἶχεν ἐπηρεισμένην ἐπὶ |
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
οὖν τὸν τοῦ ἐξαρθρήματος καταρτισμὸν τὸ σφηνοειδὲς ἐντιθέσθω εἰς τὴν μασχάλην , ἀναγέσθωσάν τε ὑπὲρ κεφαλῆς αἱ τῶν κάλων ἀρχαί | ||
ἡ λεγομένη θερμαστρίς , μῆκος ἔχουσα πηχῶν γ , ἔχουσα μασχάλην συνδεδεμένην λεπίσι ψυχρηλάτοις , εἰς ἣν ἀρθρεμβολεῖται ὁ λεγόμενος |
ἐς βάθος τῷ ἀριθμῷ ἐνδέον : ὥστε ἤδη τινὲς καὶ τριπλασίονα τὸν ἀριθμὸν τῶν ἐν τῷ μήκει ταττομένων ἐποίησαν πρὸς | ||
στερεὸν πολύεδρον πρὸς τὸ ἐν τῇ ἑτέρᾳ σφαίρᾳ στερεὸν πολύεδρον τριπλασίονα λόγον ἔχει , ἤπερ ἡ τῆς ΒΓΔΕ σφαίρας διάμετρος |
δὲ αὐτὸν περιέρχονται χρυσῷ προσεικασμέναι ἀπὸ τῶν βραγχίων ἐς τὴν οὐρὰν καθήκουσαι , μέση δὲ αὐτὰς διατέμνει ἀργύρῳ προσεικασμένη . | ||
κύνας τοὺς οἰκουροὺς ἵνα μὴ ἀποδιδράσκωσι τετέχνασται ἐκεῖνο . τὴν οὐρὰν αὐτῶν καλάμῳ μετρήσαντες χρίουσι τὸν κάλαμον βουτύρῳ , εἶτα |
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον | ||
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ |
ϘϠ , τῷ δὲ ἄξονι αὐτοῦ τύμπανον ἔστω συμφυὲς ΜαΜβ ὠδοντωμένον ὀδοῦσιν λοξοῖς , οὗ ἡ διάμετρος πρὸς τὴν τοῦ | ||
τῷ δὲ ἄξονι τοῦ ΥΦ τυμπάνου συμφυὲς γενέσθαι τὸ ΧΨ ὠδοντωμένον , οὗ ἡ διάμετρος πρὸς τὴν τοῦ ΥΦ τυμπάνου |
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
ὁ περὶ διάμετρον ἐκείνην γραφόμενος κύκλος ἴσος ἔσται τῷ ζητουμένῳ τυμπάνῳ ] . Ὀργανικῶς δὲ οὕτως : ἐκκείσθω τις εὐθεῖα | ||
μετὰ τοῦτ ' ἐκορυβάντιζ ' : ὁ δ ' αὐτῷ τυμπάνῳ ᾄξας ἐδίκαζεν εἰς τὸ Καινὸν ἐμπεσών . ὅτε δῆτα |
ἔθαψαν αὐτὸν οἱ ἑταῖροι ἐπάνω τοῦ τάφου αὐτοῦ κώπην ἢ σανίδα πήξαντες ἐκ τῆς Ἀργοῦς . καὶ ὁ μὲν Μόψος | ||
δηλοῦσιν ἀγγεῖον , ἀλλὰ καὶ δέλτον παρ ' Ὁμήρῳ καὶ σανίδα ἄλυτον καί που καὶ τὰ τῶν ζῳγράφων πινάκια , |
κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ | ||
γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι |
οἱ μὲν γλωσσογράφοι ταῖς θριξὶν ἀγαλλόμενε : κέρα γὰρ τὴν τρίχα λέγεσθαι . ὁ δὲ Ἀρίσταρχος κυρίως ἀκούει τὸ τοῦ | ||
δεικνύμενος Αἰακόν τε ἄγων εἰς ἀκμὴν καὶ νεότητα δευτέραν καὶ τρίχα τὴν ταύτης , ἣν παρ ' Ὁμήρου λαβὼν ἡμῖν |
φερόμενος διὰ τῆς Ἀφρικῆς , εἰσβάλλει εἰς τὴν θάλασσαν κατὰ θέσιν . . . . . . λδ λβ γοʹ | ||
χειμερινὸς δὲ ὁ ΒΓ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΒΕΔ , καὶ ἀπειλήφθωσαν ἴσαι τε καὶ |
νεφριτικοῖϲ ἧττον , καὶ τοῖϲ μὲν κωλικοῖϲ κατὰ τὴν δεξιὰν λαγόνα μᾶλλον εἶναι τὴν ὀδύνην καὶ ἀνιέναι μέχρι ϲτομάχου καὶ | ||
καί , εἰ βουληθείης , μετὰ κατοχῆς πνεύματος πληρῶσαι τὴν λαγόνα , περιχέοντα δ ' ἔλαιον ἀποθεραπεύειν τοὐντεῦθεν . διττὴ |
ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα | ||
ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς |
καὶ ποιεῖ τὴν δοτικὴν τῶν πληθυντικῶν οὐδὲ γὰρ λέγομεν τοῖς κλασίν ἀλλὰ τοῖς κλάδδις . Ταῦτα μὲν ἐν τούτοις . | ||
καὶ ποιεῖ τὴν δοτικὴν τῶν πληθυντικῶν οὐδὲ γὰρ λέγομεν τοῖς κλασίν ἀλλὰ τοῖς κλάδδις . Ταῦτα μὲν ἐν τούτοις . |
ἐξελκύϲωμεν ἄνω τὸν τύλον καὶ δῶμεν πλαγίαν διαίρεϲιν ἀπολύοντεϲ τὴν ἀγκύλην , φεύγοντεϲ δὲ τὴν διὰ βάθουϲ τῶν ϲωμάτων τομήν | ||
ἐὰν μὲν ἡ τοῦ βλεφάρου θρὶξ εἱρχθῇ , ἀναϲπῶμεν τὴν ἀγκύλην , ἐὰν δὲ ἐκπέϲῃ ἢ μία ἢ πλείουϲ , |
μὲν εὐθεῖ τὴν πρόοδον ὑφίσταται , τῷ δὲ περιφερεῖ τὴν ἐπιστροφήν . καὶ μὴν καὶ ὁ τῇ ψυχῇ ταύτας τὰς | ||
αὐτοῦ γεννωμένης : κατὰ γὰρ τὴν οὐσιώδη εἰς ἐκεῖνο οὐσιώδη ἐπιστροφήν , ὡς ἀπ ' ἐκείνου προϊόντα ὁ νοῦς ἑαυτὸν |
παραλαμβάνει τὸν τοιοῦτον μὲν ἐπὶ κολυμβήθρας εὐρυτέρας , ὅπως ἂν εὐρυχωρίαν ἡ φύσις ἔχουσα εἰς τὸ νήχεσθαι καὶ ἀποτεί - | ||
ἐμουμένων ὁ ἀρυταινοειδὴς χόνδρος : ἔστραπται γὰρ κἀκεῖνος εἰς τὴν εὐρυχωρίαν τοῦ λάρυγγος , ὥστε ἡ ῥύμη τῶν ἀναφερομένων ἐκ |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
ἑξήκοντα ψήφοις . πόπανα : πλακούντια πλατέα καὶ λεπτὰ καὶ περιφερῆ . πρεσβύτερος Κόδρου : παροιμία ἐπὶ τῶν πάνυ παλαιῶν | ||
αὐτοῦ ἱστορεῖ οὕτως : πόα θαμνοειδής , ὀλίγα φύλλα ἔχουσα περιφερῆ , μείζονα ἡδυόσμου , μέλανα , λιπαρά , ἐγγίζοντα |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
ἐϲ τὸ πρόϲωπον ϲκληροί , ὀξέεϲ : ἄλλοτε μὲν ἐϲ κορυφὴν λευκοί , ποιωδέϲτεροι δὲ τὴν βάϲιν . ϲφυγμοὶ ϲμικροί | ||
αὐτῶν ἴσαι εἰσὶν διὰ τὸ ιεʹ , αἱ δὲ κατὰ κορυφὴν αὐτῶν εἰσιν ἐναλλάξ : ὀρθαὶ ἄρα : ὅπερ ἔδει |
ἡ ΨΟ : λοιπὴ ἄρα ἡ ͵ΑΨ ἴση ἐστὶν τῇ ΟΡ . Διπλῆ δὲ ἡ ΟΡ τῆς ΩΨ : διπλῆ | ||
ἐπεί ἐστιν ὡς ἡ ΝΟ πρὸς τὴν ΟΡ , ἡ ΟΡ πρὸς τὴν ΡΝ , καὶ τὰ διπλάσια : τὰ |
μυρμηκία ἐπανάϲταϲίϲ ἐϲτι τῆϲ ἐπιφανείαϲ μικρὰ τυλώδηϲ ϲτρογγύλη παχεῖα κατὰ βάϲιν ἐγκαθημένη καὶ πρὸϲ τὰϲ παραψήξειϲ ὁμοίαν αἴϲθηϲιν ἐμποιοῦϲα δήγμαϲι | ||
: ἄλλοτε μὲν ἐϲ κορυφὴν λευκοί , ποιωδέϲτεροι δὲ τὴν βάϲιν . ϲφυγμοὶ ϲμικροί , βαρέεϲ , νωθροί , ὅκωϲ |
παραφερομένων κατὰ τὴν πρώτην καὶ ἀπ ' ἀνατολῶν ἐπὶ δυσμὰς περιαγωγὴν πρὸς τὴν διῃρημένην τοῦ μεσημβρινοῦ πλευρὰν τῶν ἐπιζητουμένων ἀστέρων | ||
ἀπαλλαγὴν τῶν ἀνθρωπίνων δεσμῶν παρέχειν καὶ λύσιν τῆς γενέσεως καὶ περιαγωγὴν ἐπὶ τὸ ὂν καὶ γνῶσιν τῆς ὄντως ἀληθείας καὶ |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι | ||
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου |
κίνησιν καὶ συμπεριλαμβάνων τὰ ἄστρα συμπεριῆγεν αὐτὰ καὶ τὴν νῦν περιφορὰν αὐτῶν μετέωρον ἐφύλαττε : κἄπειτα ἐκ μὲν τῶν ὑποκαθιζόντων | ||
κίνησιν καὶ συμπεριλαμβάνων τὰ ἄστρα συμπεριῆγε ταῦτα καὶ τὴν νῦν περιφορὰν αὐτῶν μετέωρον ἐφύλαττε . κἄπειτα ἐκ μὲν τῶν ὑποκαθιζόντων |
ὡς καὶ ἐνταῦθα χίασμα γίγνεσθαι καὶ παρὰ τράχηλον ἐπ ' ὠμοπλάτην καὶ ἐπὶ μασχάλην , ἵνα τέσσαρα γένηται χιάσματα , | ||
Ταῦρον ἀμόρφωτοι . ὁ ὑπὸ τὸν δεξιὸν πόδα καὶ τὴν ὠμοπλάτην . . . . . . . . Κριοῦ |
τὴν ΑΣ , διὰ τὸ παραλλήλους εἶναι τὰς ΣΑ , ΥΧ : καὶ ἡ ΥΑ ἄρα πρὸς τὴν ΑΣ μείζονα | ||
ΟΦ , ἀπὸ δὲ τοῦ Υ ἐπὶ τὴν ΜΞ ἡ ΥΧ , καὶ ἐπεζεύχθω ἡ ΦΧ . ἐπεὶ οὖν ἡ |
δέδεικται , ὅτι , ἐὰν δύο πρίσματα ὑπὸ τὸ αὐτὸ ὕψος , καὶ τὸ μὲν ἔχει βάσιν παραλληλόγραμμον , τὸ | ||
τὸ δὲ εὖρος ᾗ πλατύτατον λʹ πηχῶν : τὸ δὲ ὕψος σὺν τῷ τῆς σκηνῆς ἀναστήματι μικρὸν ἀπέδει τεσσαράκοντα πηχῶν |
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως | ||
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν |
ΑΕ : γωνία ἄρα ἡ ὑπὸ ΑΒΕ γωνίᾳ τῇ ὑπὸ ΕΔΑ ἐστιν ἴση . ὀρθὴ δὲ ἡ ὑπὸ ΑΒΕ : | ||
ὀρθάς ἐστιν , ἡ ΒΓ ἄρα καὶ τῷ διὰ τῶν ΕΔΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν . καί ἐστιν αὐτῇ παράλληλος |
δὲ τὸ Κ σημεῖον , ἴση ἐστὶ πυραμίδι , ἧς βάσις τὸ ΑΕΗ τρίγωνον , κορυφὴ δὲ τὸ Θ σημεῖον | ||
: καὶ δέδεικται , ὅτι , εἰ ὑπερέχει ἡ ΘΓ βάσις τῆς ΓΛ βάσεως , ὑπερέχει καὶ τὸ ΑΘΓ τρίγωνον |
σπαίρουσι καὶ ἐκδῦναι μεμάασι , νήπιοι , οὐδ ' ἔτι κύρτον ὁμῶς εὔοικον ἔχουσιν . Ἄδμωσιν δ ' ἐπὶ κύρτον | ||
αὐτὰρ ἔπειτα ἐς μυχὸν ἠΐχθησαν : ὁ δ ' αὐτίκα κύρτον ἀνέλκει ῥίμφα μεταπλώσας : σιγῇ δέ οἱ ἄνυται ἔργον |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
: πλήρης οὖν βδελλῶν γενόμενος ὁ κροκόδειλος , ἐπὶ τὴν ὄχθην προελθὼν κατὰ τοῦ ἀκτῖνος κέχηνεν : ὁ τοίνυν τροχίλος | ||
μὴ βουλομένους ποιεῖσθαι . Καὶ διὰ τοῦτο χρὴ εἰς τὴν ὄχθην τὴν ἐπὶ τὸ μέρος τῶν ἐχθρῶν τὸ ἄπληκτον γίνεσθαι |
κεφαλὴν καὶ τὸ ὑπαυχένιον Ἵππου ὁπλὰς Περσέως ὦμον ἀριστερὸν καὶ κνήμην ἀριστερὰν Ἀνδρομέδας χεῖρα δεξιὰν Διδύμων κεφαλὰς Καρκίνον μέσον Λέοντα | ||
πολύ τε κατωτέρω κατὰ τὸ σφυρόν , αὐτήν τε τὴν κνήμην πιεζοῦντες εὖ μάλα , ὥστε πάντοθεν τὸ ἐν ταῖς |
” δὲ ἔχει τινὰ ἔμφασιν τῆς πλημμυρίδος , ἐχούσης τὴν ἐπίβασιν πραεῖαν καὶ οὐ τελέως ῥοώδη . Ποσειδώνιος δὲ καὶ | ||
ὦμον ἐντὸς ἐπιστρέφηται : οὕτω γὰρ τοῦ ξύλου τεθέντος καὶ ἐπίβασιν ἐπὶ τὴν ἐξοχὴν αὐτοῦ τῆς τοῦ ὤμου κεφαλῆς ποιησαμένης |
οὐδενός . ἔτι δ ' εἰ ἡ φθίσις διὰ τὴν ἀπορροήν , ὧιπερ χρῆται κοινοτάτωι σημείωι , συμβαίνει δὲ καὶ | ||
ὄνομα οὐ περιεῖδον ἐν μύθου τάξει γενόμενον , ἀλλ ' ἀπορροήν τινα τῆς αὑτῶν τύχης ἀφεῖσαν εἰς αὐτὴν , καὶ |
διηκούσας κορυφὰς ] τοῦ Καυκάσου ὑπερβάλλουσαν ] ὑπερβᾶσαν , διελθοῦσαν μεσημβρινὴν ] † ἤγουν πρὸς νότιον ὁδεύειν : οὕτω γὰρ | ||
: τὴν δ ' ἐκ Βαβυλῶνος εἰς τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν κάθετον μικρῷ πλειόνων ἢ χιλίων , ὅσων ἦν |
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
, καὶ οὐκ ἐᾷ τὸν ἀέρα τὸν ἔξωθεν πλήττειν τὴν μήνιγγα , ἀλλὰ αὐτὸς ὑποδεχόμενος τὰ εἴδη τῶν ψόφων διὰ | ||
ῥητέον οὖν ὅτι φυσικῶς πάλλοντος τοῦ ἐγκεφάλου , συμβαίνει τὴν μήνιγγα προστρίβεσθαι τοῖς ὀστέοις τοῖς περικειμένοις , ἀφ ' ὧν |
' αὖ φιλοσοφούντων τῷ χαίρειν ἐᾶν πώγωνα καὶ τρίβωνα καὶ βακτηρίαν . Εἴη σε τὴν στοὰν ταυτηνὶ τὴν εὐρεῖάν τε | ||
' ἀθάνατον ἕξειν ἔφη . ἐὰν ἐγὼ φῶ νῦν ἔχειν βακτηρίαν χρυσῆν , τί μοι σεμνότερον ἔσται τὸ ξύλον ; |
ἄρθρον , εἶτα καθιέναι τὴν ἀριστερὰν χεῖρα καὶ ἀπευθύναι τὸ κεφάλιον καὶ οὕτω κομίσασθαι τὸ ἔμβρυον . Εἰ δὲ ἀμφότεραι | ||
δάκτυλον , τῇ δεξιᾷ δὲ πιέζων τὸ ἐπιγάστριον πειρᾶται τὸ κεφάλιον κατάγειν , οὐχ ὁρῶν ὡς ἐν τῷ ἀπευθυσμένῳ ὁ |
μῆλον . εἶτα διπλώσαντες λοξὴν κατὰ βρέγματος ἄχρι ἰνίου ἄγοντες ἐπιπλέκομεν τὴν διμερῆ φορβεάν , ἵνα ἁρμόσῃ ἐφ ' ὧν | ||
κατὰ μεσόφρυον τὸν χιεστὸν βρόχον κατὰ τῶν κροτάφων τὸν διάγκυλον ἐπιπλέκομεν τὴν προπαραδεδομένην ἡμίρομβον ἢ λαγωὸν δίχα ὤτων ἐπίδεσιν , |
Ω , καὶ ἀπὸ τοῦ βόμβυκος ἐπὶ τὴν ὀξυτάτην [ νεάτην ] ἐν αὐλοῖς , ἧς [ ? ] ὁ | ||
ἄρτιοι καὶ περισσοὶ καὶ ἀρτιοπέρισσοι . | τὴν μὲν γὰρ νεάτην ἔχει ἀρτίαν ἐκ δώδεκα μονάδων , τὴν δὲ παραμέσην |
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ | ||
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
. τῶν δὲ πρὸς αὐτὸν πρεσβευσαμένων περὶ διαλύσεως ὡμολόγησε καὶ δεξιὰν αὐτοῖς ἔπεμψε νόμῳ Περσικῷ καὶ τὴν πολιορκίαν διαλύσας παρεκάλει | ||
σημαίνει : χρὴ γὰρ τὸν ἔφηβον ἐν τῇ χλαμύδι τὴν δεξιὰν ἔχειν ἐνειλημένην διὰ τὸ ἀργὴν εἶναι εἰς ἔργα καὶ |
χειρὶ δ ' ἔνθες ὀξύην , λαιόν τ ' ἔπαιρε πῆχυν , εὐθύνων πόδα . ἦ παιδαγωγεῖν γὰρ τὸν ὁπλίτην | ||
παλαιστὴν αʹ , ὅ ἐστι πήχεως Ϛʹʹ . Ἐὰν δὲ πῆχυν ἐπὶ δάκτυλον , ποίει χυδαῖον δάκτυλον αʹ , ὅ |