! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει | ||
ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ |
ϘϠ , τῷ δὲ ἄξονι αὐτοῦ τύμπανον ἔστω συμφυὲς ΜαΜβ ὠδοντωμένον ὀδοῦσιν λοξοῖς , οὗ ἡ διάμετρος πρὸς τὴν τοῦ | ||
τῷ δὲ ἄξονι τοῦ ΥΦ τυμπάνου συμφυὲς γενέσθαι τὸ ΧΨ ὠδοντωμένον , οὗ ἡ διάμετρος πρὸς τὴν τοῦ ΥΦ τυμπάνου |
μὲν τοῦ ΕΖ ἄξονος βάρος ἐξάψωμεν , ἐκ δὲ τοῦ ΜαΜβ τυμπάνου τὴν ἕλκουσαν δύναμιν τὰ δʹ τάλαντα , οὐδοπότερον | ||
ΜαΜβ πρὸς τὸ ἀπὸ ϘΩ , τουτέστιν τὸ πεντεκαιδεκάκις ἀπὸ ΜαΜβ πρὸς τὸ πεντεκαιδεκάκις ἀπὸ ϘΩ . καὶ ἐπεὶ ἔχομεν |
μέχρι τῆς περιφερείας οὖσα τοῦ ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , | ||
δέ πως ἢ λελοιφωμένος ἐκ τῶν ἐφ ' ἑκάτερα τοῦ τυμπάνου μερῶν ] . ἐὰν ἄρα τὰ ἐκ τοῦ βάρους |
ὁ περὶ διάμετρον ἐκείνην γραφόμενος κύκλος ἴσος ἔσται τῷ ζητουμένῳ τυμπάνῳ ] . Ὀργανικῶς δὲ οὕτως : ἐκκείσθω τις εὐθεῖα | ||
μετὰ τοῦτ ' ἐκορυβάντιζ ' : ὁ δ ' αὐτῷ τυμπάνῳ ᾄξας ἐδίκαζεν εἰς τὸ Καινὸν ἐμπεσών . ὅτε δῆτα |
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
ἄρθρον , εἶτα καθιέναι τὴν ἀριστερὰν χεῖρα καὶ ἀπευθύναι τὸ κεφάλιον καὶ οὕτω κομίσασθαι τὸ ἔμβρυον . Εἰ δὲ ἀμφότεραι | ||
δάκτυλον , τῇ δεξιᾷ δὲ πιέζων τὸ ἐπιγάστριον πειρᾶται τὸ κεφάλιον κατάγειν , οὐχ ὁρῶν ὡς ἐν τῷ ἀπευθυσμένῳ ὁ |
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
, οὐκ ἀμφίβολος μέν , καθὸ ἐπὶ τέλει συντεθεῖσα ἡ πλάγιος δεόντως πρὸς τὸ σημαινόμενον ἐκλίνετο , ἀλλήλοις ἔδωκαν , | ||
ἡ πόλις : βόστριχες : γοσταὶ αἱ κριθαί : δόγμος πλάγιος , λοξός : δόχμη δῶρον : κόχλος : κόπρος |
γὰρ τὸ πάθος , βαρυτόνως δὲ τὸ σχοινίον καὶ ὁ βρόχος . Γ ἀγχονὴ τὸ πάθος , ἀγχόνη τὸ σχοινίον | ||
τοῖς τῆς τάσεως αἰτίοις . εὐθετεῖ δ ' οὗτος ὁ βρόχος πρὸς ἀπότασιν σφυροῦ καταρτιζομένου . Ὁ βρόχος ὁ καλούμενος |
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
: τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
. αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
εἰς τὴν μασχάλην . βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀγέσθωσαν πρὸς τὰς | ||
καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , τῷ δὲ βραχίονι περιτιθέσθω βρόχος ἰσότονος , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς |
βουβῶνος , ἐγκύκλιον δὲ κατὰ λαγόνων καὶ ἰσχίων , ἵνα ἁρμόσῃ ἐφ ' ὧν βουβῶνα ἐπιδῆσαι θέλομεν . μονομερὴς βουβωνιακός | ||
δὲ πρώτην αὐτοῦ κρᾶσιν , ὡς ἂν μάλιστα τοῖς πλείστοις ἁρμόσῃ , κατὰ τάδε χρὴ ποιεῖσθαι : ὄξους ἑνὶ μέρει |
ἐντεθῇ εἰς τὴν μασχάλην , βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , καὶ αἱ τοῦ βρόχου ἀρχαὶ | ||
[ καὶ ] πάλιν τοῦ πάσχοντος ὑπτίου ἐσχηματισμένου , βρόχος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ |
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου | ||
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
ἐπεστραμμένων , ἔλαθε Λαίλιος ἐπὶ θάτερα τοῦ Κώθωνος ἐς τὸ περιφερὲς αὐτοῦ μέρος ἀνελθών . βοῆς δ ' ὡς ἐπὶ | ||
ἐν αὐτῷ . υληʹ . Ἧλός ἐστιν ἕλκος ἐν πέλματι περιφερὲς καὶ τετυλωμένον . υλθʹ . Ἐκκρίνεται τὸ σπέρμα , |
σπαίρουσι καὶ ἐκδῦναι μεμάασι , νήπιοι , οὐδ ' ἔτι κύρτον ὁμῶς εὔοικον ἔχουσιν . Ἄδμωσιν δ ' ἐπὶ κύρτον | ||
αὐτὰρ ἔπειτα ἐς μυχὸν ἠΐχθησαν : ὁ δ ' αὐτίκα κύρτον ἀνέλκει ῥίμφα μεταπλώσας : σιγῇ δέ οἱ ἄνυται ἔργον |
. ἐμφύεται δ ' ὁ μῦς οὗτος εἰς τὸ τοῦ πήχεως ὀστοῦν , ὥσπερ ὁ προειρημένος ὁ μείζων εἰς τὸ | ||
ὁ ἀριστερὸς ὦμος , ὑπολειπόμενος τοῦ μεσημβρινοῦ ὡς δύο μέρη πήχεως καὶ τοῦ Κήτους ὁ ἐπὶ τῆς λοφίας . Δύνει |
τὴν χεῖρα , ἵνα πάλιν τὸ σφηνοειδὲς εἰς τὴν μασχάλην ἐντεθῇ , ἔπειτα βρόχος ὁ καρχήσιος ἢ ἄλλος τις ἰσότονος | ||
ἔπειτα ἱμάντος μαλθακοῦ πλάτος ἔχοντος ἱκανὸν , ὅταν ἡ σφαίρη ἐντεθῇ ἐς τὴν μασχάλην , περὶ τὴν σφαίρην περιβεβλημένου τοῦ |
ἔχοντά τινα ποικιλίαν , ὥσπερ πολλοὶ τοὺς ἀγωγοὺς μακροὺς καὶ λοξοὺς ποιοῦσιν , ἵνα περιστρεφόμενον τὸ ἰλυῶδες ἀπωθῆται τὸ ὕδωρ | ||
αὐτοῦ φερόμενον οὖρον . Δύο μὲν ἔχει πάνυ σμικροὺς μῦς λοξοὺς τὸ αἰδοῖον εἰς τὴν ἔκφυσιν ἐμβάλλοντας αὐτοῦ , δύο |
, ἡμικυκλίου ὄντος τοῦ ΞΟΠ , περὶ μέσον τὸ Ο συμφυὲς τῷ κανόνι μοιρογνωμόνιον ἔστω , ὥστε τὸ ἄκρον αὐτοῦ | ||
ἄλλου , παρὰ τίνος ψυχὴ καὶ τὸ ἐπακτὸν καὶ τὸ συμφυὲς τῇ οὐσίᾳ αὐτῆς κάλλος ἔχει ; Ἐπεὶ καί , |
. Ἔστι δὲ καὶ ἀμφίβιον γῆν τε πεζεῦον καὶ θάλασσαν τέμνον καὶ πλοῦν τὸν αὐτόστολον ναυτιλλόμενον : δεῆσαν γὰρ τὸ | ||
: πάλιν γὰρ χρόνου ἐστὶ τοῦ γενικωτάτου ἐμπεριεκτικόν , οὐ τέμνον τὸ ἐπιμεριζόμενον τοῦ χρόνου , διῆκον μέντοι δι ' |
ἐπὶ τὰ Ϛʹ τοῦ κροτάφου γίνονται ψκʹ : ὧν ἀεὶ κούφιζε τὸ γʹʹ : λοιπὰ υπʹ : ὧν τὸ ρϘβʹʹ | ||
τὰ ηʹ τοῦ ὕψους γίνονται ͵αφξʹ : ἐξ ὧν δὴ κούφιζε τὸ δʹʹ : λοιπὰ ͵αροʹ : ὧν τὸ ρϘβʹʹ |
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
ὁ προηγούμενος καὶ οἱ δύο οἱ ἐν τοῖς γόνασιν τοῦ Ὀφιούχου τρίγωνον ἰσοσκελὲς ποιοῦσιν , οὗ κορυφὴ τῶν ἐν τῷ | ||
πλευρὰν τοῦ γάλακτος ἀφορίζεται τῷ ἐπὶ τοῦ δεξιοῦ γόνατος τοῦ Ὀφιούχου , τὴν δ ' ἑπομένην τῷ ἐπὶ τοῦ αὐτοῦ |
πρίσμα πρὸς τὸ ΡΦΖΣΤΥ πρίσμα . ὡς δὲ τὸ ΛΞΓΜΝΟ πρίσμα πρὸς τὸ ΡΦΖΣΤΥ πρίσμα , οὕτως ἐδείχθη ἡ ΛΞΓ | ||
παραλληλόγραμμον , ἀπεναντίον δὲ ἡ ΟΜ εὐθεῖα , πρὸς τὸ πρίσμα , οὗ βάσις μὲν τὸ ΠΕΦΡ παραλληλόγραμμον , ἀπεναντίον |
ἡ ἀριστερὰ χεὶρ τὴν δεξιὰν συμπληροῖ οὔτε ἡ δεξιὰ τὴν ἀριστεράν , οὐχ ὁ ἀντίχειρ τὸν λιχανόν , οὐχ αἱ | ||
φαῦλα , ἐμπαθὴς δὲ ἔσται περὶ τὴν κεφαλὴν καὶ ὅρασιν ἀριστεράν . μάλιστα δὲ εἰσί τινες , οἳ καὶ ἐπηρεάζονται |
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
δὲ τὸ Κ σημεῖον , ἴση ἐστὶ πυραμίδι , ἧς βάσις τὸ ΑΕΗ τρίγωνον , κορυφὴ δὲ τὸ Θ σημεῖον | ||
: καὶ δέδεικται , ὅτι , εἰ ὑπερέχει ἡ ΘΓ βάσις τῆς ΓΛ βάσεως , ὑπερέχει καὶ τὸ ΑΘΓ τρίγωνον |
ταῖς πλευραῖς πεποιημέναι , αἷς ἑκάτερον τῶν μερῶν συμπορπηθὲν ὅλον σιδηροῦν ποιεῖ φαίνεσθαι τὸν ἱππέα , κωλύει δὲ οὐδὲν ὁ | ||
κάδον λαβών τιν ' οὔρει πίττινον . καὶ στόμωμα μὲν σιδηροῦν ὅστις ἐν τοῖς ἀποθέτοις σκεύεσιν ἀριθμοῖ , Κρατῖνος ἂν |
τὸν τρόπον ἐκτάξας τὸ στρατόπεδον κατέβαινεν ἐπὶ τοὺς πολεμίους , λοξὴν ποιήσας τὴν τάξιν : τὸ μὲν γὰρ δεξιὸν κέρας | ||
, ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος καὶ νώτου , λοξὴν δὲ κατὰ στέρνου καὶ κλειδός : εἶθ ' ὑπαγωγῇ |
' ὧν ἐξισῶσαι θέλομεν τὴν γένυν ἢ ἀμφοτέρας τὰς παρειὰς ἐπιδῆσαι θέλομεν . διμερὴς φορβεά . Θέντες τὴν ἀρχὴν ἐπὶ | ||
, ἵνα ἁρμόσῃ ἐφ ' ὧν βρέγμα ἀνατρηθὲν δίχα θλίψεως ἐπιδῆσαι θέλομεν . ῥόμβος . Θέντες τὴν ἀρχὴν ὑπὸ τὴν |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
μηχανὴν ἐμφερείας . διὰ τὸ ἄνω εἶναι τοῦ ἄρθρου τὸ κοῖλον , ὡς καὶ τῆς μύλης τὸ ὕπερθεν , καὶ | ||
κατὰ σφυροῦ : εἶτα ἀντίαν λοξὴν κατὰ σφυροῦ ὑπὸ τὸ κοῖλον τοῦ ποδὸς καὶ τῆς πτέρνης καὶ ἐγκύκλιον κατὰ σφυροῦ |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
τὸ εἶναι , οὗ καὶ νοουμένη ἀχώριστος , ὡς δὲ κοιλότης κεχωρισμένη καὶ οὐδὲν δεῖ τῷ νῷ προσεπινοεῖν τὸ ὑποκείμενον | ||
. καὶ ἡ γαστὴρ αὐτή . καὶ ἡ τῶν ἑλκῶν κοιλότης . κράδης : οἱ μὲν τὰ τῆς συκῆς φύλλα |
δὲ ἀσφαλῶς ἔχει ἅμα τὴν περὶ αὐτῶν ποιεῖσθαι διδασκαλίαν : ἀπονεύει γάρ πως πρὸς ἄλληλα καὶ κατὰ συζυγίαν προάγεται , | ||
παραλλήλων βάσεων ἰσοσκελῆ τρίγωνα συστῇ , ἀφ ' οὗ μέρους ἀπονεύει ὁ ἄξων , τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τῶν |
ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν | ||
τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ |
ἀρχαί . ἔστι δ ' ὁ βρόχος οὗτος τῇ δυνάμει ἀνισότονος , καὶ εὔχρηστος οὐ μόνον πρὸς τὴν τάσιν , | ||
τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , ὡς ἐρτὸς ἢ ναυτικός , οὗ αἱ ἀρχαὶ |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
ἐς τοῦτο γὰρ ἐπιφορώτερον αὐτὸ ἅμα τῷ ὤμῳ καὶ τῷ βραχίονι κάτω ῥέψαι μᾶλλον , ἢ ἐς τὸ ἄνω . | ||
ξυναυξάνεται . Ἐς δὲ τὸ εὔσαρκον τῇ χειρὶ καὶ τῷ βραχίονι ἡ ταλαιπωρίη τῆς χειρὸς μέγα προσωφελέει : ὅσα γὰρ |
, τὸν δὲ ἕτερον περιάγεσθαι συμμέτρως τῇ σφίγξει περὶ τὸ ἀξόνιον ἐν τῷ τοῦ μεσημβρινοῦ ἐπιπέδῳ . προσεθήκαμεν δὲ καὶ | ||
τὴν μείζονα ὀπὴν ἔχοντι πρισματίῳ καὶ ἐναρμόσαντες δι ' ἀμφοτέρων ἀξόνιον , ὥστε συνδεθῆναι μὲν ὑπ ' αὐτοῦ τὰς πρὸς |
ἐκείνη , τριὰς δὲ στερεοῦ σώματος , ὅτιπερ τριχῆ τὸ στερεὸν διαιρετόν . . § . : ἡ μὲν οὖν | ||
τοῦ εἰκοσαέδρου , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
δὲ δὴ βαρβάρους Κᾶρας ὑπονοήσαντας αὐτόματον ἀποδεδρακέναι πρός τι λύγου θωράκιον ἀπερείσασθαι καὶ τοὺς εὐμηκεστάτους τῶν κλάδων ἑκατέρωθεν ἐπισπασαμένους περιειλῆσαι | ||
κριόν . Ἐπὶ δὲ τοῦ ἐπικεφάλου καὶ τῆς κριοδόχης πήγνυται θωράκιον , ὥστε ἐν αὐτῷ ἀσφαλέστατα δύνασθαι ἑστάναι τοὺς ἐποπτεύοντας |
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ | ||
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ |
γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ] | ||
ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται : |
† λεία οὖσα τὸ σχῆμα ἢ ἐκ τῆς ἕδρας τροχοὺς σιδηροῦς ἔχουσα † ἵνα , ὅταν τίθηται , ἐμπηγνύηται τῇ | ||
μεμελετήκεσαν , ἐς τριακοσίους τὸν ἀριθμόν , καὶ πασσάλους μικροὺς σιδηροῦς , οἷς αἱ σκηναὶ καταπεπήγεσαν αὐτοῖς , παρασκευάσαντες , |
τὸ ὕψος διαθέσεως , ὥστε τὸ παραβαλλόμενον τοῦ τείχους μέγεθος ἰσόπεδον εἶναι τῷ ἐγκλίματι τοῦ ὑποκειμένου ὕψους τοῦ πύργου : | ||
: ὃ δ ' ἀσφαλέως θέει ἔμπεδον , εἷος ἵκηται ἰσόπεδον , τότε δ ' οὔ τι κυλίνδεται ἐσσύμενός περ |
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι | ||
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου |
δέκα σταδίων , κατάντης δὲ καὶ κρημνοῖς συγκλειόμενος εἰς στενὴν ἐντομήν , ἅπας δὲ τραχὺς καὶ φαραγγώδης , ἔτι δὲ | ||
τὰ μὲν διὰ τὴν ἐν τῇ ῥάχει αὐτῶν ὀπὴν καὶ ἐντομήν , δι ' ἧς φθέγγονται , τὰ δὲ διὰ |
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας | ||
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν |
ὁ βραχίων ἀσφαλιζέσθω πρὸς τὸν ἄξονα , καὶ τότε τῷ πήχει βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω , οὗ | ||
βραχίων ἀσφαλιζέσθω βρόχῳ πρὸς τὴν ὑπερκειμένην φλιάν , τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , |
καὶ τὰ ἄλλα ποτήρια , ἄλλα δὲ δύο κατὰ τὸ κύρτωμα μέσον ἐξ ἀμφοῖν τοῖν μεροῖν μικρά , παρόμοια ταῖς | ||
μᾶλλον εἰς τὰ ἀριστερά , ὅμοιος δέ ἐστι κατὰ τὸ κύρτωμα βοείῳ . οὔτε πολυσχιδής ἐστιν οὔτε λεῖος , ἀλλὰ |
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
παραληγόμενα σπάνιά ἐστι μονογενῆ ὄντα : οἷον , λύκος : κρίκος : Μύκος , ὄνομα ἔθνους . Εἰς κος λῆγον | ||
, τὸ δὲ ῥάμμα κεχαλασμένον ἁμματιζέσθω , ἵνα φανῇ ὡς κρίκος . ταῖς δ ' ἑξῆς ἡμέραις παράγεται τὸ ῥάμμα |
ἰνίου . τὸ σπείραμα λοξῶς ἐπὶ κορυφὴν , βρέγμα , μεσόφρυον , εἶτ ' ἐκ πλαγίων τῆς ῥινὸς παρὰ μέγαν | ||
, ἵνα ἁρμόσῃ ἐπὶ τῶν κατὰ τὸν αὐτὸν καιρὸν πασχόντων μεσόφρυον γένειόν τε καὶ μέτωπον . φάλαρα . Ἐπιδήσαντες τὸν |
φρενῶν , τὸ μὲν ἕτερον τῶν περάτων τῷ κατὰ τὸ στέρνον χόνδρῳ προσκείμενον ἐχουσῶν , τὸ δ ' ἕτερον ὀπίσω | ||
μέλη δὲ σώματος ὁμοίως ἰσάριθμα : κεφαλή , τράχηλος , στέρνον , χεῖρες , κοιλία , ἦτρον , πόδες . |
, καὶ ἐφ ' ἑκάστης ἁλώσεως τοὺς δεσμοὺς μὴ παυέσθω διπλασιάζων τὸν ἔμπροσθεν χρόνον . δεύτερος μὴν νόμος : Μέτοικον | ||
παλαιστής : μὴ ὢν γὰρ ἕτερος ἑαυτοῦ , καὶ μὴ διπλασιάζων ἑαυτὸν κατὰ τὴν πρόσθεσιν , οὐκ ἂν ἑαυτῷ προστεθείη |
Ἀργώ , Ὕδρος , Κρατήρ , Κόραξ , Κένταυρος , Θηρίον , ὃ κρατεῖ ὁ Κένταυρος καθ ' Ἵππαρχον , | ||
τῆς Ἀργοῦς τὸ ἔδαφος καὶ τὸ πηδάλιον : εἶτα τὸ Θηρίον καὶ τὸ Θυμιατήριον : ἔτι δὲ τοῦ Τοξότου τὰ |
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
ἤτοι : οὗ ἡ μὲν ὀσμὴ παραπλησία ταῖς τῶν ἰχθύων λεπίσι , καὶ τῷ ἀποπλύματι αὐτῶν ἔοικεν , ἡ δὲ | ||
Σὺν τῷ κάμακι οἱ πρῶτοι καὶ μέσοι καὶ ἔσχατοι βαθμοὶ λεπίσι σιδηραῖς περιειληθέντες προσηλούσθωσαν . Συντεθήσονται δὲ οὕτως . Ἵσταται |
τὸ δέρμα καὶ τὴν διαίρεϲιν φλογίζοντεϲ . ἔϲτω δὲ τὸ καυτήριον τρίγωνον . μετὰ δὲ ταῦτα φακῷ μετὰ μέλιτοϲ χρῶνται | ||
, τὸ ἔξωθεν τῶν ὀδόντων ὑπερέχειν δακτύλοις τρισίν . ἔπειτα καυτήριον κατασκευαστέον ὁμοιόσχημον τῷ αὐλίσκῳ πρὸς τὸ διοδεύειν δύνασθαι δι |
καὶ ὑπὸ τοῦ διαξύλου ἐπαίρεται καὶ ὀρθοῦται καὶ τὴν δευτέραν περόνην λαμβάνει : ἵνα δὲ μὴ περινεύωσιν , ἄνωθεν λαμβάνουσι | ||
Ἤτοι ἐξοχήν , περόνην . διόλου τῶν στέρνων αὐτοῦ βάλε περόνην , δεσμεῖ ἀσφαλῶς . ἢ τὴν ἀναιδῆ καὶ στώμυλον |
ἡδονὴν τῇ ψυχῇ . δεῖ δὲ κατὰ μὲν τὰς ἀρχὰς ὀρθοὺς ἐλαύνειν τοὺς κρίκους , μετὰ δὲ τὸ ἀναθερμανθῆναι τὸ | ||
τὴν διάνοιαν φυλάσσουσι καὶ τὴν ἐξέτασιν τῶν λόγων ἐπὶ τοὺς ὀρθοὺς κανόνας ἀναφέρουσιν , εἴ τε φυσικῆς τινος κρίσεως μετειληφότες |
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
μηροῦ κωλύῃ κατατείνεσθαι τὸ κῶλον . τούτου δὲ γενομένου , καρχήσιος βρόχος ἢ ἄλλος ἰσότονος περιτίθεται τῷ μηρῷ κατὰ τὰ | ||
. τοῦ δὲ σφηνοειδοῦς ἐντεθέντος εἰς τὴν μασχάλην , ὁ καρχήσιος βρόχος τῷ βραχίονι περιτίθεται , οὗ αἱ ἀρχαὶ ἄγονται |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων | ||
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ |
' αὐτῇ δέρμα , ὡς ἀκροποσθία καὶ ἀκροπόσθιον τὸ πόσθης προῦχον . ᾧ δὲ τὴν πόσθην ἀπέδουν , τοῦτον τὸν | ||
κουφότεραί τε οὖσαι καὶ ναυτικωτέρων ἀνδρῶν , ταχυτῆτι καὶ ἐμπειρίᾳ προῦχον , αἱ δὲ Ῥωμαίων ἅτε βαρύτεραι καὶ μείζους ἐμόχθουν |
. * χλοάοντος : γράφεται καὶ κλώθοντος * κλώθοντος : στρεφομένου καὶ ἠρτημένου ἐν ἀρπέζαισιν ἐρίνου : ἐρινεὸν Ἀθηναῖοι ὀνομάζουσιν | ||
πῆχυς πρὸς τὴν σπάθην τῆς χειρὸς κεκαμμένης , ὅτε λοιπὸν στρεφομένου τοῦ ἐν τοῖς σκέλεσιν ἄξονος ὑπὸ τοῦ κάλου καθελκομένη |
ἐπὶ μεσόφρυον κατ ' αὐτοῦ χίασμα γίγνεσθαι καὶ τὰς ἀρχὰς λοξῶς ἐπὶ κορυφῆς ἐπὶ ἰνίον ἀφάψαντές τε πρὸς τὸ αὐτὸ | ||
τὸ δὲ ” δυσκρίτως εἰρημένους “ ἀντὶ τοῦ αἰνιγματωδῶς καὶ λοξῶς λεχθέντας . ὕστερον δὲ ἦλθε τῷ Ἰνάχῳ μαντεία φανερὰ |
κλιμακίῳ ἑνί τινι κλίμακος πρὸς κράτημα . γενομένου δὲ τοῦ κρατήματος , καθὼς ἐδηλώθη , στρέφεται ὁ ἄξων , ὅτε | ||
ἐπ ' ὀφθαλμοῦ παραλαμβάνομεν , ἤτοι προπεσεῖν κινδυνεύοντος , ἢ κρατήματος ἕνεκα τῶν ἐπικειμένων αὐτῷ : τὸν δὲ ῥόμβον ἐπὶ |
μῆλον . εἶτα διπλώσαντες λοξὴν κατὰ βρέγματος ἄχρι ἰνίου ἄγοντες ἐπιπλέκομεν τὴν διμερῆ φορβεάν , ἵνα ἁρμόσῃ ἐφ ' ὧν | ||
κατὰ μεσόφρυον τὸν χιεστὸν βρόχον κατὰ τῶν κροτάφων τὸν διάγκυλον ἐπιπλέκομεν τὴν προπαραδεδομένην ἡμίρομβον ἢ λαγωὸν δίχα ὤτων ἐπίδεσιν , |
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
πρὸς τὰ κβ δʹ , καὶ ἐπὶ τούτου τοῦ κυκλίσκου κινείσθω ὁ ἀστὴρ περὶ τὸ κέντρον αὐτοῦ ἰσοταχῶς , ὡς | ||
τοῦ Δ κέντρου πρὸς ὀρθὰς ἀνήχθω ἡ ΔΒ , καὶ κινείσθω κανόνιόν τι περὶ τὸ Α σημεῖον οὕτως ὥστε τὸ |
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
χαλκοῦν παρήχθη καὶ κατέκλεισεν αὐτήν , ὥστε καταγομένην ἕξειν τὴν τοξῖτιν οὖσαν κατακεκλεισμένην : ὅτε δὲ καταχθείη ἐπὶ τὸν τεταγμένον | ||
τοῦ ἑτέρου μέρους οὐθὲν ὑπερεῖχεν . ὅτε οὖν ἔδει τὴν τοξῖτιν καταχθῆναι , ἀνωθεῖτο ἡ διώστρα ὑπερέχουσα καὶ διὰ τοῦ |
τὴν δὲ ” ζώνην ὑπὲρ τοῦ Κριοῦ , πλὴν τὸ Τρίγωνον , ὅ ἐστι „ μεταξύ : τὸν δ ' | ||
τὰ δὴ ἐν δεξιῷ , καὶ τὸ ὑπὲρ τὸν Κριὸν Τρίγωνον , νοτόθεν τοῦ νοτίου Ἰχθύος ἡ κεφαλή . . |
ἐκ πάντων συλλοχισμὸς φάλαγξ , ἧς τὸ τῶν λοχαγῶν τάγμα μέτωπον καὶ μῆκος καὶ πρόσωπον καὶ στόμα καὶ παράταξις καὶ | ||
κατάπλασσε τούτοις καὶ τοὺς μυκτῆρας καὶ τὰς παρειὰς καὶ τὸ μέτωπον . ἄλλο . διφρυγὲς καύσας καὶ λειοτριβήσας μετὰ ὄξους |
προεθέμεθα καθ ' Ἱπποκράτη , δεδήλωταί σοι : περὶ δὲ γόνατος καὶ σφυροῦ τῷν [ ] τὸν καταρτισμὸν αὐτῶν ἁπλούστερον | ||
ἐν τοῖς δυσί * ἰγνύσι : ἰγνὺς ὁ ὑποκάτω τοῦ γόνατος τόπος ἀσκελές : ἀδιαλείπτως , σκληρῶς , ἢ ἴσον |
τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
λύωσι τὴν κατάσεισιν : τὰς δὲ χεῖρας παρὰ τὰς πλευρὰς παρατείναντα προσκαταλαβεῖν πρὸς αὐτὸ τὸ σῶμα , καὶ μὴ πρὸς | ||
κἄπειτα πρηνέα κατακλῖναι κατατεταμένον , καὶ τὰς μὲν χεῖρας αὐτοῦ παρατείναντα κατὰ φύσιν προσδῆσαι πρὸς τὸ σῶμα : ἱμάντι δὲ |
κάτω γένηται , ὡϲ πρὸϲ τῷ μήλῳ , τὸ δὲ πλατὺ ἄνω πρὸϲ τὰϲ βλεφαρίδαϲ . εἶτα ἐκκοπτέον τὸ λαμβδοειδὲϲ | ||
εἶναι ⋮ Λέγεται καὶ τοῦτο περὶ αὐτοῦ , ὅτι κάρφος πλατὺ καὶ στερεὸν ἐνδακὼν ἑαυτὸν ἐπιστρέφει , καὶ ἀντιπρόσωπος ὁμόσε |
τοῦ βρόχου ] περίθεσιν τῆς καιρίας αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν κατ ' εὐθὺ τῷ τύλῳ τοῦ | ||
ἀγκύλαι ἢ διπλῶν καιριῶν μεσότητες περιτιθέσθωσαν , ὧν αἱ ἀρχαὶ ἀγέσθωσαν ἔμπροσθεν ὡς ἐπὶ τὸ τόνιον . τῷ δὲ πήχει |
ὀϲτέου κατὰ μέν τι μέροϲ εὐθεῖα , κατὰ δὲ τὸ πέραϲ μηνοειδήϲ : ἡ δὲ αὐτὴ καὶ καλαμηδὸν λέγεται . | ||
ὑπαχθήϲεται καταρτιϲμῷ . τὸ δὲ πρὸϲ τὸν ὦμον διαρθρούμενον αὐτῆϲ πέραϲ οὐ πάνυ τι διεκπίπτει κωλυόμενον ὑπό τε τοῦ δικεφάλου |
εἶτ ' ἐπ ' ἰνίον , ἀπ ' ἰνίου κυκλοτερῆ μετωπιαίαν περιείλησιν ἐπιτελέσαι , καὶ τότε τῇ κατ ' ἰνίον | ||
λοβὸν ὠτὸς , εἶτ ' ἐπὶ ἰνίον , ἀπὸ ἰνίου μετωπιαίαν προσαποδίδομεν . Κεφ . νηʹ . Ἀρχὴ κατ ' |
μεθέπων οἰήϊα νηός : τῷ δ ' ἕτερος κατὰ νῶτον ἐρειδόμενος μετόπισθε δειρὴν ἠδὲ κάρηνον ὁμαρτεῖ ποντοπορεύων : ἄλλος δ | ||
περὶ πρέμνοισιν ἑλίσσεται ἔρνεϊ χαίρων . ἔνθεν ἔπειτ ' ἄκρῃσιν ἐρειδόμενος κοτύλῃσιν ὑψός ' ἀνερπύζει λελιημένος , ἀμφὶ δὲ χαίτας |
θεός . Εὐρείας φάρυγος , ὦ Κύκλωψ , ἀναστόμου τὸ χεῖλος : ὡς ἕτοιμά σοι ἑφθὰ καὶ ὀπτὰ καὶ ἀνθρακιᾶς | ||
μοι . Μἀλλά μοι δὸς ἓν μόνον , κοτυλίσκιον τὸ χεῖλος ἀποκεκρουμένον . Φθείρου λαβὼν τόδ ' : ἴσθ ' |