παραδοξότερον φανεῖται τὸ μὴ μόνον συναμφότερον συναμφοτέρῳ , ἀλλὰ καὶ ἑκατέραν τῶν συνισταμένων ἐντὸς ἑκατέρᾳ τῶν ἐκτὸς καὶ ἴσην εἶναι | ||
ἐστι τὸ ΑΒΓ τρίγωνον , φανερὰ ἡ δεῖξις διὰ τὸ ἑκατέραν τῶν πρὸς τῷ Δ γίνεσθαι ὀρθήν . ἀλλὰ δὴ |
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ | ||
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
ἢ ἰσοπαχῶν μέν , κατὰ δὲ τὴν κολόβωσιν συμμετρηθεισῶν πρὸς ἀλλήλας , ἢ ἀνάπαλιν ἰσομηκῶν μέν , ἀναλόγως δὲ παχυνθεισῶν | ||
, τὰς δὲ μεσογείους οὐκέτι , μηδαμῆ σημαινομένης τῆς πρὸς ἀλλήλας αὐτῶν ἢ πρὸς ἐκείνας σχέσεως πλὴν ὀλίγων , ἐφ |
Καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΓΒ , ΒΗ , ΗΘ ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ ΑΘΗ , ΑΗΒ , | ||
, ἀνδρειοτέρας ἡγῇ τὰς γυναῖκας , ὅτι ἐγγύτατα μάχονται ἐπιπεσοῦσαι ἀλλήλαις ; ὁ δὲ Ἀχιλλεὺς ταῦτα ἀκούων ἅμα θυμοῦ καὶ |
καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ | ||
πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω |
τοῦτον ἂν ζῆν τὸν βίον ἢ τὴν Σελεύκου τοῦ βασιλέως ὑπεροχήν . ῥοφεῖν φακῆν ἐσθ ' ἡδὺ μὴ δεδοικότα , | ||
Μο ε . καί εἰσιν ὧν τὸ ὑπὸ ποιεῖ τὴν ὑπεροχήν , ὃς μὲν ʂ α Μο α , ὃς |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
, ὡς τὸ λίαν θερμὸν καὶ ψυχρόν . καθ ' ἑκάστην μὲν οὖν περὶ τῶν αἰσθήσεων εἴρηται τύπῳ : τεύξονται | ||
τῷ δένδρῳ διαμένειν . . . εἰς καινὰς χύτρας ἐμβάλλουσιν ἑκάστην ῥοιάν , καὶ πωμάσαντες καὶ ἀσφαλισάμενοι , ὥστε μηδὲ |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
τὴν τῶν Ε Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι | ||
τὸν ἠδικημένον , καὶ προστεθὲν τῷ ἠδικημένῳ , ἰσότητα καὶ μεσότητα ἐποίησε . καὶ διὰ τοῦτο καὶ δίκαιον καλεῖται , |
σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
τῇ ηʹ ἐξωστρακίσθαι φησίν . Ὑπερήμεροι : οἱ δίκην ὀφλόντες ὁποιανοῦν καὶ τὰ ἐπιτίμια τοῖς ἑλοῦσι μὴ ἀποδιδόντες ἐν ταῖς | ||
λέγε , καὶ τάχα εἰσόμεθα . Λέγω δὴ τὸ καὶ ὁποιανοῦν [ τινα ] κεκτημένον δύναμιν εἴτ ' εἰς τὸ |
ΕΖ ἄρα ἴσον ἀπέχουσαι τοῦ τε ἰσημερινοῦ καὶ τῶν τροπικῶν συναφῶν ἐν ἴσῳ χρόνῳ ἀνατέλλουσιν : ἀλλ ' ἐν ᾧ | ||
τὰ φῶτα ἀλλήλων καὶ τῆς ὥρας ἀλλοτριωθῇ τῷ σχήματι τῶν συναφῶν πρὸς κακοποιοὺς γινομένων καὶ τῶν κέντρων ἢ τῶν ἐπαναφορῶν |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
τοῦτο ἔχουσι μόνον . ὅρα οὖν τῶν ὄντων τὴν εὔτακτον ὑπόβασιν : τὰ μέν εἰσιν αὐτοενέργειαι μεταβολῆς πάσης καὶ τῆς | ||
παράγει . καὶ τῷ εἴδει δὲ διάφοροι ὑπάρχουσι κατὰ τὴν ὑπόβασιν , οὐκ ἔστι δὲ ἄπειρα τὰ εἴδη αὐτῶν , |
τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
συμπαραλάβοι δ ' ἄν τις ἐνταῦθα καὶ τὴν τῶν αἰσθήσεων παραλλαγήν : ἄλλοι γὰρ ἄλλων εἰσὶν ὀξυωπέστεροι , καὶ ὃν | ||
γὰρ τὰ μεταξὺ ἀρετῆς καὶ κακίας ἀδιάφορα μὴ ἔχειν μηδεμίαν παραλλαγήν , μηδὲ τινὰ μὲν εἶναι φύσει προηγμένα , τινὰ |
περιθεῖναι καὶ μεῖζον ἀξίωμα ; καὶ τὰ τοιαῦτα : μηδὲ λοιπὴν αἰτίαν τὸ εἰκὸς βούλεσθαί σε ζητοῦντα τοὺς ἐχθροὺς ἀμύνεσθαι | ||
βοήθεια παραγένοιτο τοῖς Αἰκανοῖς ἑτέρα μήτε τροφαί , τὴν δὲ λοιπὴν δύναμιν αὐτὸς ἔχων προῆγεν ἐκτεταγμένην ὡς εἰς μάχην . |
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν | ||
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν , |
ὑπάγουσι μὲν ἡσυχῇ : πλῆθος δ ' ἀρκεῖ τοῦ σπέρματος ἑκατέρας ὅσον ὀξύβαφον ἐν μελικράτῳ . σικύου δὲ ῥίζα ἁρμόζει | ||
ὑπὸ ΒΑΓ . ἡ ἄρα ΒΓ μεῖζον ἢ διπλάσιον δύναται ἑκατέρας τῶν ΒΑ ΑΓ , ὥστε καὶ τῆς ΓΔ . |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
δὲ αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ | ||
μικρὸν σαλευομένης τῆς σκάφης ἢ τῆς βαυκάλης κρεμαμένης ἢ ἐπὶ διαγωνίων λίθων ἐπηρεισμένης , εἰς ὕστερον δὲ καὶ διὰ φορείου |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
ὧν νοεῖται , οἷον ἀπὸ τοῦ κοινοῦ μεγέθους ἀνθρώπου κατὰ παραύξησιν ἐνοήσαμεν τὸν Κύκλωπα καὶ ἀπὸ τοῦ αὐτοῦ πάλιν κατὰ | ||
: τὴν μέντοι τῶν μεταξὺ τμημάτων παράθεσιν καθ ' ὁμαλὴν παραύξησιν τῆς τῶν ἑξαμοιριαίων ὑπεροχῆς πεποιήμεθα μηδεμιᾶς ἐν αὐτοῖς ἀξιολόγου |
δυσὶ ταῖς ΔΗ , ΗΖ ἴσαι εἰσίν , καὶ γωνίας ὀρθὰς περιέχουσιν , βάσις ἄρα ἡ ΑΘ βάσει τῇ ΖΔ | ||
καὶ διὰ τοῦ Ζ ἐπὶ τὰ ἐναντία τῇ ΗΘ πρὸς ὀρθὰς γωνίας τῇ ΑΓ εὐθεῖα ἡ ΖΜΝ , ἐφ ' |
; Ἢ δύναται μᾶλλον καὶ ἧττον τὰ τῆς ψυχῆς ἑκατέρας ἑκάτερα τὰ σώματα παρέχεσθαι , ἐπεὶ καὶ αἱ ἄλλαι ἔξωθεν | ||
αὖ γε ἀμφότερα γίγνηται ταῦθ ' ἡμῖν ἄκαιρα , μεταβάλλοντες ἑκάτερα αὐτῶν ψέγομεν ἐπὶ τἀναντία πάλιν ἀπονέμοντες τοῖς ὀνόμασιν . |
μήτε τελείτω μήτε τελείσθω τῶν Μωυσέως φοιτητῶν καὶ γνωρίμων : ἑκάτερον γὰρ καὶ τὸ διδάσκειν καὶ τὸ μανθάνειν τελετὰς οὐ | ||
αὐτῶν καὶ παραβαλόντες εἰς τὸν τότε τῆς σελήνης δρόμον χωρὶς ἑκάτερον τὰς μὲν ἐκ τῶν ἐν τῷ τρίτῳ σελιδίῳ συναγομένας |
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις | ||
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς |
πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε : | ||
τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν |
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος | ||
μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω |
τὰς πρακτικὰς τὸ πρακτικόν . Τούτων οὕτως ἐχόντων εἴπωμεν τὴν ὑποδιαίρεσιν τοῦ θεωρητικοῦ . καὶ ἐνῆν μὲν προτάξαι θάτερον θατέρου | ||
αὐτοῦ καὶ τῶν κατ ' αὐτὸ ἀρετῶν ἤδη εἰρηκώς , ὑποδιαίρεσιν δὲ τοῦ λόγου ἔχοντος ποιεῖ καὶ φησί : Καὶ |
κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
παντάπασιν ἀπήλλακται , μέθοδον δ ' ἐπιζητεῖ τινα πρὸς τὴν ὁμοιότητα τῆς σφαιρικῆς εἰκόνος , ἵνα τὰς ἐπ ' αὐτῆς | ||
ἰσότης αὕτη οὐκ ἄλλως σώζεται ἢ κατὰ τὴν τοῦ ἤθους ὁμοιότητα : τὸ γὰρ ὅμοιον τῷ ὁμοίῳ μετρίῳ ὄντι φίλον |
κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ | ||
γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι |
πέτρας καὶ ἔλαιον ἐκ στερεᾶς πέτρας ” , πέτραν τὴν στερεὰν καὶ ἀδιάκοπον ἐμφαίνων σοφίαν θεοῦ , τὴν τροφὸν καὶ | ||
μὴν ὁμοίως γε τοῖς ἀκαύστοις συνάγειν τε καὶ πιλεῖν τὴν στερεὰν οὐσίαν ἔτι δύνανται . Ἀρμενιακὸν δύναμιν ἔχει ῥυπτικὴν ἅμα |
τῷ κατὰ τὰ αὐτὰ τῷ κόσμῳ φέρεσθαι καὶ καθ ' ὑπόλειψιν τοὺς πλάνητας ἡ Σελήνη ὑπάτη . ὁ μὲν γὰρ | ||
αἵτινες διὰ τὴν ἐπὶ τὰ ἐναντία μετάπτωσιν τῶν σφαιρῶν ἢ ὑπόλειψιν αἱ αὐταὶ γίνονται ταῖς λ ξ διχοτομίαις τοῦ τε |
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας | ||
διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται |
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν | ||
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν | ||
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς |
δὲ τὰς ὑπὸ τὰς καθ ' ἡμιμοίριον παραυξήσεις τῶν περιφερειῶν ὑποτεινομένας εὐθείας , τουτέστι πόσων εἰσὶν τμημάτων ὡς τῆς διαμέτρου | ||
ὀρθῆς ὑποτεινουσῶν , ὡς εἶναι τὰς ὑπὸ τῶν β πλευρῶν ὑποτεινομένας β γωνίας ἡμισείας ὀρθὰς μίαν ὀρθήν . εἰ δὲ |
ἀπαρέμφατον τὸ διττὸν ἠκολούθησεν . παρὰ δὲ στιγμῆς θέσιν ἢ ὑπέρβασιν λέξεως ἢ ἔλλειψιν ἐκεῖνα : “ πεντήκοντ ' ἀνδρῶν | ||
μελῳδίαν , πλοκὴ δέ , ὅτε διὰ τῶν καθ ' ὑπέρβασιν λαμβανομένων . ἔτι τῆς μελῳδίας ἡ μὲν εὐθεῖα καλεῖται |
, ] δειχθήσεται δὲ ἑκατέρα τῶν ΒΧ , ΧΓ ἴση ἑκατέρᾳ τῶν ΒΥ , ΥΦ οὕτως : ἐπεζεύχθωσαν ἀπὸ τῶν | ||
ἡ ΑΗ τῇ ΗΕ , σύμμετρός ἐστι καὶ ἡ ΑΕ ἑκατέρᾳ τῶν ΑΗ , ΗΕ . ὑπόκειται δὲ καὶ ἡ |
δὲ μισθοφόροις καὶ συμμαχικαῖς παμμιγέσι , καὶ τῶν διὰ τὴν συμφωνίαν δυσυποστάτων περιεγένετο διὰ τῆς ἰδίας ἀγχινοίας καὶ στρατηγικῆς ἀρετῆς | ||
ἐν ἐπογδόῳ γίνεσθαι λόγῳ , καὶ τὸ τὴν διὰ τεσσάρων συμφωνίαν ἐλάττονα συνίστασθαι δύο καὶ ἡμίσεος τόνων , ἀλλ ' |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
δευτέρα πάντα , ἡ δὲ τρίτη ἓν πάντα καθ ' ἕνωσιν . Τοσαῦτα μὲν ἐπικεχειρήσθω πρὸς ἔνδειξιν τῶν πρώτων λεγομένων | ||
καὶ πᾶσιν ἐξ ἴσου παρόντα καὶ τοῖς μὲν ψυχικοῖς τὴν ἕνωσιν ἐπάγοντα , τὴν δ ' ἐν τοῖς σώμασιν παράλλαξιν |
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
τὰ δ ' ἐλάττω . Καὶ τὰ μὲν καθ ' αὑτὰ , τὰ δὲ ποιητικά : καὶ τὰ μὲν προηγμένα | ||
τῶν ἐχομένων ἐπιζητεῖν . ἐχόμενα δέ ἐστι τὰ καθ ' αὑτὰ ὑπάρχοντα ἑκάστῃ δυνάμει . εἰ δὲ χρὴ λέγειν , |
, ἐὰν λέγωσιν . . ὁμοφωνεῖ δὲ ἁπάντοτε κατὰ δευτέραν συζυγίαν τῶν περισπωμένων , ἐπί τε πρώτων προσώπων τῶν κατ | ||
διποδίαν ἰαμβικὴν καθαρὰν καὶ τὴν ἑπτάσημον , σπανίως δὲ καὶ συζυγίαν [ καὶ ] τὴν ἰσόχρονον αὐτῷ : ἄρχεται δ |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
[ καὶ καθ ' ὃ πίπτει σημεῖον ] καὶ τὴν ἐλαχίστην ἀποτεμνομένην ἀπὸ τῆς καθέτου μεταξὺ τῶν δύο σημείων τοῦ | ||
. τροφὴν δὲ τῷ σώματι παρέχουσιν αἱ μὲν ῥοιαὶ παντάπασιν ἐλαχίστην , αἱ δ ' ἄπιοι , καὶ μάλιστα αἱ |
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον | ||
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
πλῆρες αἰσθητοῦ σώματος κατὰ τὴν ἁφήν . τὴν μὲν οὖν στιγμὴν οὗτοί γε ἀποφεύξονται , θέα δὲ ἕτερον ἀπορώτερον , | ||
καὶ τὸ ὅλον ἀμερές ἐστιν . ὥστε ἢ κατὰ μίαν στιγμὴν τοῦ σώματος ἔμψυχον ἔσται τὸ ζῶον , εἰ πᾶσαι |
πολλαπλασίαν κατὰ τοὺς δοθέντας ἀριθμοὺς [ ἢ καὶ μείζονας ἢ πολλαπλασίας ] , καὶ περὶ κέντρον τὸ Η διὰ μὲν | ||
τοὺς εἰσιόντας τε καὶ πάλιν ἐξιόντας , κριοφόρους δὲ δύο πολλαπλασίας τοῖς μεγέθεσιν : εἶχε γὰρ ἑκατέραν πηχῶν ἑκατὸν εἴκοσι |
ῥινῶν ἐναργέστερον , καὶ αἱ ἄλλαι αἰσθήσεις τῶν καθ ' αὑτὰς ἀντιλαμβάνονται , καθαρώτερον δὲ καὶ εἱλικρινέστερον ἡ διάνοιακυρίως γὰρ | ||
ὂν καὶ τὸ ἓν οὐσίας εἶναι καὶ αὐτὰς καθ ' αὑτὰς ὑπάρχειν καὶ μὴ δεῖσθαι ἑτέρου πρὸς ὕπαρξιν , συμβήσεται |
ἐστι ψυχῆς : ἄψυχα δὲ αὐτὰ λέγομεν ὡς πρὸς τὴν μερικὴν ψυχὴν ἀφορῶντες : ἐπειδὴ γὰρ οὐχ ὁρῶμεν ἔχοντα αὐτὰ | ||
τῇ ἡμετέρᾳ τῇ μερικῇ : ψυχὴν γὰρ εἴωθε πολλάκις τὴν μερικὴν καλεῖν : πόνον δὲ αὐτὴν πονεῖν διὰ τὴν μαρμαρυγὴν |
, δεῖξιν σημαινουσῶν , κατὰ πρόταξιν ἀμοιρεῖ , καθ ' ὑπόταξιν δὲ οὐκέτι , ἐγὼ ὃς ἐποίησα : ἀναπολεῖ γὰρ | ||
λοξήν , καὶ παρεμβολὴν καὶ παρένθεσιν , πρόταξίν τε καὶ ὑπόταξιν καὶ ἐπίταξιν , ὧν ἕκαστον ὅ τι σημαίνει , |
δὲ τῶν κύκλων αὐτοῦ ἄνωθεν ἐφ ' ἑκάστου βεβηκέναι Σειρῆνα συμπεριφερομένην , φωνὴν μίαν ἱεῖσαν , ἕνα τόνον : ἐκ | ||
δὲ τῶν κύκλων αὐτοῦ ἄνωθεν ἐφ ' ἑκάστου βεβηκέναι Σειρῆνα συμπεριφερομένην φωνὴν μίαν ἱεῖσαν ἕνα τόνον : ἁπασῶν δ ' |
ταύτην ἀφῄρει διπλασίαν ταύτης , τὴν δ ' αὖ τρίτην ἡμιολίαν μὲν τῆς δευτέρας , τριπλασίαν δὲ τῆς πρώτης , | ||
τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ τῆς ΘΜ ἐπὶ ηʹ , |
γὰρ ἀεὶ καὶ ἑνοειδὲς τὸ ἴσον : δεύτερον δὲ τὸ ἡμιτετράγωνον : μίαν γὰρ ἔχον παραλλαγὴν γραμμῶν καὶ γωνιῶν ἐν | ||
ἤτοι ἥμισυ ἑτερομήκους . εἰ μὲν οὖν ἰσοσκελές ἐστιν ἤτοι ἡμιτετράγωνον , ἐὰν αἱ περὶ τὴν ὀρθὴν γωνίαν ῥηταὶ μήκει |
δολιχόσκιον ἔγχος , καὶ βάλεν Ἀτρεΐδαο κατ ' ἀσπίδα πάντοσε ἴσην , οὐδ ' ἔρρηξεν χαλκός , ἀνεγνάμφθη δέ οἱ | ||
[ . εἶναι τὴν σελήνην ] . , Π . ἴσην τῶι ἡλίωι [ . εἶναι τὴν σελήνην ] : |
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν , | ||
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω | ||
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως |
τὰ μηχανικὰ ταῖς μαθηματικαῖς προσχρησάμενος ἀρχαῖς μεθώδευσε καὶ πρῶτος κίνησιν ὀργανικὴν διαγράμματι γεωμετρικῷ προσήγαγε , διὰ τῆς τομῆς τοῦ ἡμικυλίνδρου | ||
λέγομεν εἶναι μουσικόν , καθ ' ἕτερον δὲ ἡ περὶ ὀργανικὴν ἐμπειρία , ὡς ὅταν τοὺς μὲν αὐλοῖς καὶ ψαλτηρίοις |
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
ἡμεῖς ἐτηροῦμεν , ποτὲ μὲν σύμφωνοι κατελαμβάνοντο τοῖς κατὰ τὴν ἐκκειμένην ὑπόθεσιν ἐπιλογισμοῖς , ποτὲ δὲ διάφωνοι καὶ διάφοροι , | ||
ἐπεῖχεν τοῦ Καρκίνου μοίρας ια γʹ , κατὰ δὲ τὴν ἐκκειμένην τήρησιν δηλονότι μοίρας ζ λγ , ἐπειδὴ πάλιν τοῖς |
τις εὐλογώτερον , εἰ πρὸς ταῖς ἀληθέσιν οὐσίαις καὶ τὴν φαινομένην διακόσμησιν οὐσίαν προσαγορεύεσθαι δίκαιον : μήποτε γὰρ αὐτῇ τὸ | ||
τίνα τὸ πᾶν λαμβάνει τὴν ἀνάλυσιν . τὸ μὲν οὖν φαινομένην εἶναι λέγειν τὴν τῶν ὅλων ἀρχὴν ἀφύσικόν πως ἐστίν |
] μήτε [ σάρκινον ] εἶναι [ κατ ] ' ἀναλογίαν [ ἔχον ] τι [ σῶμ ' ὅπερ ] | ||
. Ἐξ εὐχεροῦς δὲ καὶ διὰ μνήμης ἔχων ποιήσεις τὴν ἀναλογίαν τοῦ ἐπιμερισμοῦ οὕτως . ἐπὶ μὲν Κρόνου τοὺς λ |
' οὐδ ' ὅτε ἄρθρα εἰς σύνταξιν ἀντωνυμίας παραλαμβάνεται , ἔγκλισιν ἀναδέχεται , οὐ καθὸ γένους ἐστὶ παρεμφατικά , ἀλλὰ | ||
τὴν αὐτὴν πανταχῇ , συμμεταβάλλειν δὲ τῇ καθ ' ἑκάστην ἔγκλισιν τῆς σφαίρας ὑπεροχῇ τῶν μεγίστων ἢ ἐλαχίστων ἡμερῶν , |
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν | ||
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ |
μὲν εὐθεῖ τὴν πρόοδον ὑφίσταται , τῷ δὲ περιφερεῖ τὴν ἐπιστροφήν . καὶ μὴν καὶ ὁ τῇ ψυχῇ ταύτας τὰς | ||
αὐτοῦ γεννωμένης : κατὰ γὰρ τὴν οὐσιώδη εἰς ἐκεῖνο οὐσιώδη ἐπιστροφήν , ὡς ἀπ ' ἐκείνου προϊόντα ὁ νοῦς ἑαυτὸν |
ἐλευθεριωτέρων εἰς χρόνον καθ ' ὁμολογίαν μέντοι , οὐ μὴν ῥητήν , οἷον δέκα ἢ εἴκοσι ἤ τινα ἄλλον ἀριθμόν | ||
μεγάλῃ ἀνέστρεψε . ταῦτα προειπόντες ἐν τῷ πλήθει , καὶ ῥητήν τινα ἀποδείξαντες ἡμέραν , ἐν ᾗ τέλος ἔφησαν ἐπιθήσειν |
ἀναλογιῶν συνέστηκεν ἀρχομένων τῆς συστάσεως ἀπὸ ἰσότητος καὶ ἀναλυομένων εἰς ἰσότητα : περὶ ὧν τὰ νῦν λέγειν οὐκ ἀναγκαῖον . | ||
ἐπὶ τῶν λοιπῶν ὁμοίως . εἰς . . . τὴν ἰσότητα στοιχεῖον τοῦ πρός τι ποσοῦ . εἰς γὰρ τὴν |
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
, τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν , | ||
ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ |
ὁ πλοῦς ἐπιλογισάμενοι διὰ τὴν τῶν πνευμάτων ἐπὶ τοσοῦτον χρόνον ἀνωμαλίαν καὶ παραλλαγὴν , οὔθ ' ὅτι πρὸς ἄρκτους ἢ | ||
τούτοις παραπλησίων . Διοκλῆς τὰς πλείστας τῶν νόσων δι ' ἀνωμαλίαν ἔλεγε τίκτεσθαι . Ἐρασίστρατος ἔλεγε πλῆθος καὶ διαφθορὰ τἀνωτάτω |
Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
φέρεται τὰ Ξ , Χ σημεῖα , οἱ ΞΨ , ΩϚ : ὁμοία ἄρα ἐστὶν ἡ ΞΨ περιφέρεια τῇ ΩϚ | ||
ἔχει ἤπερ ἡ ΡΟ πρὸς ΟΝ . καὶ συνθέντι ἡ ΩϚ πρὸς τὴν ϚΑʹ μείζονα λόγον ἔχει ἤπερ ἡ ΡΝ |
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
τετράκις ὀκτάκις ἢ τρὶς πεντάκις δωδεκάκις ἢ κατά τινα ἄλλην ἀνισότητα τοιαύτην . τὰ δὲ τοιαῦτα στερεὰ σχήματα λέγεται σκαληνὰ | ||
, καὶ ταύτην τὴν διὰ τὴν βλάβην ἢ τὴν ἀδικίαν ἀνισότητα [ λέγει ] γινομένην ἐπανορθοῦν πειρᾶται καὶ ἐς τὸ |
δὴ Καῖσαρ ὑπατεύων ἔπραξε καὶ τὴν ἀρχὴν ἀποθέμενος ἐπὶ τὴν ἑτέραν εὐθὺς ἐξῄει : Κικέρωνα δὲ γράφεται Κλώδιος παρανόμων , | ||
, ὑπήκουε δὲ αὐτῷ πάντα τὰ ἔθνη τὰ νεμόμενα τὴν ἑτέραν ἤπειρον μέχρι τῶν ἀοικήτων τῆς γῆς λεγομένων : βασιλείας |
μείζους , αἱ λοιπαὶ αἱ ὑπὸ ΒΖΗ , ΔΗΖ δύο ὀρθῶν ἐλάσσους . ἀλλὰ καὶ δύο ὀρθῶν μείζους αἱ αὐταί | ||
ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ , ἐκβαλλομένας τὰς δύο εὐθείας ἐπ ' |
χωρὶς τοῦ μεγίστου τῶν παραλλήλων τοῦ ΕΖ , τῶν δὲ ἀπολαμβανομένων τμημάτων ἐν ἑνὶ τῶν ἡμισφαιρίων ἡμικυκλίων μὲν ἔσται μείζονα | ||
: ἑνὶ γὰρ στόματι πολλοὶ κλείονται λιμένες ἄκλυστοι , κόλπων ἀπολαμβανομένων ἐντός , ὥστ ' ἐοικέναι κέρασιν ἐλάφου τὸ σχῆμα |
παραφερομένων κατὰ τὴν πρώτην καὶ ἀπ ' ἀνατολῶν ἐπὶ δυσμὰς περιαγωγὴν πρὸς τὴν διῃρημένην τοῦ μεσημβρινοῦ πλευρὰν τῶν ἐπιζητουμένων ἀστέρων | ||
ἀπαλλαγὴν τῶν ἀνθρωπίνων δεσμῶν παρέχειν καὶ λύσιν τῆς γενέσεως καὶ περιαγωγὴν ἐπὶ τὸ ὂν καὶ γνῶσιν τῆς ὄντως ἀληθείας καὶ |
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
, καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
ἐφ ' ἑκάστου τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ τριγώνων πυραμίδες τὴν αὐτὴν κορυφὴν ἔχουσαι τῷ κώνῳ : | ||
ἔστω τὰ ἐπὶ τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ . λοιπὸν ἄρα τὸ πρίσμα , οὗ βάσις μέν |