| δύσεως Παροπανισάδαις καὶ Ἀραχωσίᾳ καὶ Γεδρωσίᾳ παρὰ τὰς ἐκτεθειμένας αὐτῶν ἀνατολικὰς πλευρὰς , ἀπὸ δὲ ἄρκτων Ἰμάῳ ὄρει παρὰ τοὺς | ||
| , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν , Δράκοντος |
| αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
| ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
| ὑπομένειν τὰς τοῦ Διὸς ἀστραπὰς καὶ τοὺς κεραυνοὺς ὥσπερ τὰς μεσημβρινὰς τοῦ ἡλίου φοράς , ἤτοι τὰ μεγάλα καὶ καυστικὰ | ||
| ἐν τῷ πίνακι τῆς οἰκουμένης καταγραφὴν , εἰ καὶ τὰς μεσημβρινὰς γραμμὰς καταλάβοιμεν τῇ φαντασίᾳ τῶν ἐπὶ τῆς σφαίρας μεσημβρινῶν |
| σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
| περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
| ἀλλ ' Ἀθήναζε παρέχειν ἀνέπαφα ἡμῖν , ἕως ἂν ἡμεῖς ἀπολάβωμεν τὰ χρήματα ὅσα ἐδανείσαμεν . καί μοι ἀναγίγνωσκε τὴν | ||
| δὴ κἂν τὴν ΞΡ ἴσην ἑκατέρᾳ τῶν ΞΟ , ΞΠ ἀπολάβωμεν καὶ ἐπιζεύξωμεν τὴν ΟΡ , δείξομεν , ὅτι καὶ |
| γίνοιτο ἀνάκλασις , πεφυκότων γε τῶν τοιούτων σωμάτων καταδέχεσθαι τὰς ἀκτῖνας , ἀλλὰ μὴ κατὰ μόνην τὴν ἐπιφάνειαν λαμπρύνεσθαι ὑπ | ||
| τύχῃ . ὅπου δ ' ἂν καταλήξῃ , ὄψομαι τὰς ἀκτῖνας τῶν κακοποιῶν , μήπως ἐμποδίσωσιν : ἐὰν γὰρ οὕτως |
| τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις | ||
| διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν |
| τούτοις μὴ σωφρονίζοιντο πλαγιάζοντες καὶ τὰς ἐπ ' ἀλήθειαν ἀγούσας εὐθυτενεῖς ὁδοὺς ἐκτρεπόμενοι , δειλία καὶ φόβος ταῖς ψυχαῖς αὐτῶν | ||
| προφαινομένους ; καὶ τὰς εἰρεσίας μέντοι , κἂν σφόδρα ὦσιν εὐθυτενεῖς , κεκλασμένας ὁρᾶσθαι συμβαίνει καθ ' ὕδατος . τά |
| ἀντιλέγειν φήσαντι ἐν τοῖς νοτίοις μέρεσι τῆς Ἰνδικῆς τάς τε ἄρκτους ἀποκρύπτεσθαι καὶ τὰς σκιὰς ἀντιπίπτειν : μηδέτερον γὰρ τούτων | ||
| ἐπὶ τοῦ τῶν ζῳδίων κύκλου , τὸ δὲ αʹ πρὸς ἄρκτους , τὸ δὲ γʹ πρὸς μεσημβρίαν : λέγω ὅτι |
| ἔτη α , β παρθένους πέμποντας κλήρωι καὶ λαχήσει . πεμπομένας δὲ αὐτὰς προυπαντῶντες οἱ Τρῶες εἰ κατέσχον , ἀνήιρουν | ||
| τὸ πρᾶγμα . Τεχνικῶς δὲ δοκεῖ φωρᾶσαι , ὅτι τὰς πεμπομένας παρὰ τοῦ ἀνθρώπου οὐκ ἀπέλαβεν : ἦν γὰρ αὐτοῖς |
| ἐπὶ τοῦ πενταγώνου ἐὰν διὰ τῶν κατὰ τὸν κύκλον διαιρέσεων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν , περιγραφήσεται περὶ τὸν κύκλον πεντεκαιδεκάγωνον | ||
| εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον ὑπὸ τῶν ἀπὸ |
| τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ | ||
| δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον |
| εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι | ||
| ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς |
| ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν | ||
| ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ |
| : λοιπαὶ γʹ , ὥστε εἶναι τὸν Ἥλιον τῆς τοῦ βορρᾶ ἀναβάσεως ἐπὶ βαθμοῦ τοῦ ἀνέμου γʹ . τοῦτο μὲν | ||
| πολλὴν χίονα , ἤτοι ὅτι τοῦ Καυκάσου καταπνεομένου ἐκ τοῦ βορρᾶ πήγνυται οὗτος ὁ ποταμός . Τὸν Καύκασον περὶ τὴν |
| τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
| Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
| ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
| λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
| τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
| ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
| , ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
| ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν , Δράκοντος κεφαλὴν | ||
| δεξιὰ χεὶρ καὶ τὰ ἐμπρόσθια σκέλη τοῦ ἵππου ὑπὸ τὰς Χηλὰς τέτανται . ὁ γὰρ ἑπόμενος μάλιστα τῶν ἐν τῇ |
| ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
| : οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
| εἰσὶν ταῖς τῆς κνήμης κοιλότησιν . ἔχει δὲ καί τινας ἐξοχὰς ἡ κνήμη , αἵτινες οὐκ ἐῶσιν εὐκόλως γίνεσθαι τὰ | ||
| γεῖσα , ὄντα τῶν τειχῶν : ἄλλως : τὰς ποικίλας ἐξοχὰς τῶν οἰκοδομημάτων : ἄλλως : τὰ ἄκρα τῶν ἐπάλξεων |
| καὶ πλείονας ὥρας μένων συσχηματίζεται αὐτῇ . ἔστι γὰρ κἀκείνη κυκλικὴ καὶ περιφερής : ἀλλὰ τοῦτο οὐκ ἂν πάθοι , | ||
| , τεταγμένη τε καὶ ὁμαλή . τῶν δὲ ἄλλων πλανωμένων κυκλικὴ μέν , οὐ μὴν ἁπλῆ δοκεῖ καὶ μία , |
| , κατὰ ταὐτὸν ἂν παρὰ πᾶσιν αἱ ἀνατολαὶ καὶ αἱ δύσεις ἐγίνοντο , ὥστε καὶ αἱ ἀρχαὶ τῶν ἡμερῶν καὶ | ||
| . Ἑκάστου τῶν ἀπλανῶν ἄστρων αἱ ἑῷαι ἐπιτολαί τε καὶ δύσεις αἱ φαινόμεναι ὕστεραί εἰσιν τῶν ἀληθινῶν , αἱ δὲ |
| τοὺς τειχομαχοῦντας ἐξωθοῦσι τοῦ τόπου : καὶ ἐὰν τὰ ἄκρα ἐπιζευχθῇ τῶν δυοῖν κριῶν ξύλῳ , ὁμοῦ πολλοὺς ἀπώσεται προεστῶ | ||
| σημείου ἐπὶ τὸ ἐν τῷ ἐπιπέδῳ πέρας τῆς εὐθείας εὐθεῖα ἐπιζευχθῇ , ἡ περιεχομένη γωνία ὑπὸ τῆς ἀχθείσης καὶ τῆς |
| Ἐὰν ἄρα τριγώνου ἡ γωνία δίχα τμηθῇ , ἡ δὲ τέμνουσα τὴν γωνίαν εὐθεῖα τέμνῃ καὶ τὴν βάσιν , τὰ | ||
| μηχανήματος . διάμετρος δὲ , ἡ ἐν τῷ κύκλῳ κέντρον τέμνουσα μέσον γραμμή . διαβήτης , σταφύλη : ὅπερ ἐστὶν |
| τὰ ὡριαῖα μεγέθη καὶ τὰ τῶν πόλων ἐξάρματα τὴν τῶν βορειοτάτων ἐπιγραφὴν ἀπὸ τοῦ μείζονος καὶ περιέχοντος κύκλου ποιησάμενοι . | ||
| ἀνατολὰς κειμένη ἀντιπαρήκει ταῖς δύο ἠπείροις : ἀπὸ γὰρ τῶν βορειοτάτων ἐπὶ τὰ νοτιώτατα τῆς ἐγνωσμένης ἐκτείνεται . Τούτων ἐκκειμένων |
| καὶ γλύφουσι κριὸν καὶ Ἀθηνᾶν καρδίαν κρατοῦσαν . οὗτος ἔχει ζώνας ποικίλους πολλάς , τὰς μὲν ἀεριζούσας , τὰς δὲ | ||
| „ . ὁ δὲ Ζηνόδωρος βέλτιον τὰ ζώματα , τὰς ζώνας . ἡμερίς ε . . , : ἡμερίς : |
| τοῖς Διδύμοις λέγει αὐτὸν ἀντικαταδύνειν : τοῦ δὲ Καρκίνου ἀρχομένου ἀνατέλλειν , ὅς ἐστι λοιπὸς τῶν τεσσάρων ζῳδίων , οἷς | ||
| κʹ μοίρᾳ τοῦ Τοξότου συναναφέρεται . Τοῦ δὲ Ὑδροχόου ἀρχομένου ἀνατέλλειν φησὶ συνανατεταλκέναι τῷ Αἰγόκερῳ τοῦ Ἵππου τήν τε κεφαλὴν |
| τῶν εἰς ταῦτα μισθοῦ δοκίμων , μόνας ἐξέδωκε τὰς εὐφόρως γραφείσας διὰ τὸ ἀρκέσαι ταῖς ὀλίγαις μόλις τὴν διόρθωσιν . | ||
| σύμμετροι . Ἀναπόδισαι εἰς τὸ ιαʹ θεώρημα καὶ τὰς ἐκεῖσε γραφείσας εὐθείας καὶ ἀριθμοὺς τῶν εὐθειῶν ἐν τούτῳ τῷ καʹ |
| , μόσχους ὀρούσας ἐς μέσας λέων ὅπως , παίει σιδήρωι λαγόνας ἐς πλευράς θ ' ἱείς , δοκῶν Ἐρινῦς θεὰς | ||
| δαμῆναι . κεῖτο γὰρ εἱαμενῇ δονακώδεος ἐν ποταμοῖο , ψυχόμενος λαγόνας τε καὶ ἄσπετον ἰλύι νηδύν , κάπριος ἀργιόδων , |
| ] τὸ ἡγεμονικὸν ? [ ] ? [ ] ? κηρῶι ? ? εὐπλάστωι ? [ ] πεφυκότι [ , | ||
| τοῦ ὁρίζοντος ἐπιφανείαι , ἀσφαλισάμενοί τε τὴν σφαῖραν , τουτέστι κηρῶι ἤ τινι τοιούτωι , ἀκίνητόν τε αὐτὴν ποιήσαντες γράψωμεν |
| . Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
| ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
| ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο | ||
| τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος |
| , ἕως τοῦ νοτίου πόλου , δύο δὲ ζῶναι ἕτεραι κατεψυγμέναι ὑπὸ τοῖς δυσὶ πόλοις , αἳ καὶ ἀοίκητοι , | ||
| πόλους , πορρώτατα δὲ κείμεναι τῆς τοῦ ἡλίου παρόδου , κατεψυγμέναι λέγονται καὶ ἀοίκητοι διὰ τὸ ψῦχός εἰσιν , ἀφορίζονται |
| κάμνουσαν ὑπτίαν ὑψηλότερα ἔχουσαν τὰ ἰσχία , καὶ κάμψασαν τὰς ἰγνύας μετὰ τοῦ διαστῆναι ἀπ ' ἀλλήλων τὰ σκέλη , | ||
| εἰς θερμὸν χαλάσαι μετὰ τοῦ διασφίγγειν : ἀπὸ δ ' ἰγνύας , ἡ μὲν διάσφιγξις ὑπὲρ τοῦ γόνατος ἐν τῷ |
| δύο εὐθείας μείζους τῶν ἐκτὸς καὶ πάλιν ἄλλας μείζονα γωνίαν περιεχούσας τῆς ὑπὸ τῶν ἐκτὸς περιεχομένης . τούτου γὰρ δειχθέντος | ||
| ' ἡμᾶς θάλαττα τοιαύτη τις . Ὑπογραπτέον δὲ καὶ τὰς περιεχούσας αὐτὴν γᾶς , ἀρχὴν λαβοῦσιν ἀπὸ τῶν αὐτῶν μερῶν |
| ἤτοι κατὰ μὲν τὴν ἑτέραν τῶν συνόδων μηδὲν ἡ σελήνη παραλλάσσῃ ἢ κατ ' ἀμφοτέρας ἐπὶ τὰ αὐτὰ παραλλάσσῃ , | ||
| μὲν ἀπ ' ἄρκτων ᾖ ἡ σελήνη τοῦ ἡλίου καὶ παραλλάσσῃ τὸ πλεῖστον πρὸς μεσημβρίαν , ἡ μὲν ΔΓ ἔσται |
| ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
| θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
| τῶν φασμάτων τῶν τοῦ [ ] ἡλίου ἀοριστείας ἀνατολῶν καὶ δύσεων [ , ] εἰκότως [ διανοίᾳ ] [ οὐ | ||
| φθινασμάτων : τῶν λήξεων , τῶν δυσμῶν : ἢ τῶν δύσεων ἢ τῶν ἐκλείψεων : ὅτε γὰρ δύει ὁ ἥλιος |
| ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
| μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
| τῆς Δ συναφῆς τῆς θερινῆς τῆς ἀπώτερον ἧσσον κέκλιται : ὀρθότερος ἄρα ἐστὶν ὁ ΠΝΞ τοῦ ΡΚΟ . καὶ ἐπεὶ | ||
| . Καὶ ἄλλοτε . , ] ἀντὶ τοῦ ποτὲ ἑαυτοῦ ὀρθότερος μᾶλλον , ποτὲ δὲ κεκλιμένος . Ὅτι μέν . |
| - δὲ κύκλος ὁ ΕΖΜ , καὶ ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν πορευόμενος ἔν τινι ἡμέρᾳ ἀνατολὴν πεποιήσθω κατὰ τὸ | ||
| τοῦ μεσημβρινοῦ ὑπὸ γῆν . ιαʹ Ὅταν ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν ἐπὶ θερινὰς τροπὰς πορεύηται , ἐν τῷ μεταξὺ |
| σώματα ἀποτελεῖται . καθάπερ οὖν τὰ ξηρὰ ξύλα πρὸς τὰς καμπάς ἐστιν οὐκ ἐπιτήδεια , τὰ δ ' ὑγρὰ καὶ | ||
| τινα τρέπεται καὶ συμπεριάγεται συμμεταφερόμενα ταῖς κλίσεσι πρὸς τὰς ἐκείνου καμπάς , τὰ δὲ καὶ σχίζεται πρὸς τὴν σελήνην καὶ |
| . Ἐκ τοῦ σχήματος ἔλαβε τὴν ἀρχὴν , εἰπὼν ὑπὸ γλωχῖνα : ἐπὶ γὰρ τῶν ἐχόντων γωνίας ἡ λέξις , | ||
| . ληθαῖον : τὸ λήθην τῶν κακῶν ἐμποιοῦν . ποτὶ γλωχῖνα : πρὸς τὴν γωνίαν τοῦ θρόνου . λέχριος : |
| γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
| ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
| τῆς Ἀρμενίας ἡ Μηδία : ὑπὸ δὲ ταύτην ὡς πρὸς ἀνατολὰς τοῦ Τίγριδος ἡ Ἀσσυρία , εἰς ἣν ἡ Κτησιφῶν | ||
| τὰ δὲ μέσα Γαδανώπυδρες : ἡ δὲ πρὸς ἄρκτους καὶ ἀνατολὰς πλευρὰ καλεῖται Μοδομαστική . Ἡ Εὐδαίμων Ἀραβία περιορίζεται ἀπὸ |
| παραλλάξεις τῆς σελήνης δύναιντο ποιεῖν διάφορον , περὶ δὲ τὰς διχοτόμους ἀμφοτέρας ἐλάχιστον μὲν ἢ οὐδὲν διαμαρτάνεται τῆς σελήνης κατὰ | ||
| τῶν συνοδικῶν ἢ πανσεληνιακῶν , ἀλλὰ καὶ τῶν κατὰ τὰς διχοτόμους , καταρχομένης ὡς ἐπίπαν τῆς κατὰ τὴν ἐπισημασίαν ἐναλλοιώσεως |
| αὐτοὺς τοῖς πολεμίοις , ἐπιφανῆναι πόρρωθεν τὰς ἀγέλας τῶν ἵππων ἐπελαύνοντας . οἱ μὲν ἐπεφάνησαν , οἱ δὲ Τριβαλλοὶ πολὺ | ||
| , ὡς ὁμοῦ μὲν ἐξακοντίζειν δυνατός τι γίγνηται ἐς τοὺς ἐπελαύνοντας , ὁμοῦ δὲ σκέπειν τὴν δεξιὰν πλευρὰν τῇ προβολῇ |
| , ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
| δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| . 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
| τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
| αἰσθήσει τὸ μὴ λαμβάνειν εἰς ἄπειρον ἐπίτασιν τὰς τῶν κινήσεων ταχυτῆτας , ἀλλ ' ἵστασθαί που συναγομένους τοὺς χρόνους , | ||
| [ τρόπους ] . οὓς θεωροῦμεν ? [ ] τὰς ταχυτῆτας [ ὑπαρχούσας ] σώμασι [ ] [ πᾶσιν ] |
| ἐπαναφερομένων τῇ ὡροσκοπούσῃ , καὶ ταύταις ταῖς λ μοίραις δεξιὰς ἑξαγώνους μὲν τὰς τοῦ ιαʹ τόπου ὃν καὶ ἀγαθὸν δαίμονά | ||
| μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις δεξιὰς ἑξαγώνους τὰς τοῦ ἀγαθοῦ δαίμονος καὶ τετραγώνους τοῦ ὑπὲρ γῆν |
| ἀριθμοῦ δεῖ ἥμισυ ἔχοντος , ἵν ' ὁ ἡμιόλιος αὐτοῦ τεινόμενος τρίτον ἀναγκαίως ἔχων ὑπεπίτριτον λόγον πρὸς ἄλλον τινὰ ὅρον | ||
| δ ' ὑπὸ τῶ κινήματος ἀγκύλον εἶχον . τὼ χέρε τεινόμενος , περικλώμενος , εὗρον ἀγῶνα πῶς ἀνέλω μέγαν ἰχθὺν |
| ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
| ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
| τοῖς ὑπὸ τοῦ Ἱππάρχου λεγομένοις . κατὰ ταύτας οὖν τὰς πηλικότητας σκεψώμεθα πρότερον , πόσον ἐστὶν τὸ πλεῖστον διάφορον τῆς | ||
| , τὰ δὲ δεύτερα τὰς τῶν παρακειμένων ταῖς περιφερείαις εὐθειῶν πηλικότητας ὡς τῆς διαμέτρου τῶν ρκ τμημάτων ὑποκειμένης , τὰ |
| ἰδίωμα , φωνάς τινας πλάττει διὰ τῆς νυκτὸς αὐτοῦ στρεβλουμένου προσπιπτούσας τοῖς σύνεγγυς κατοικοῦσιν , ὧν τοὺς μὲν ἐκπληττομένους τὴν | ||
| περὶ χυμῶν , ἔτι δὲ ἁφὰς περὶ τῶν κατὰ τὰς προσπιπτούσας τῶν ἐν τοῖς σώμασι δυνάμεων ἰδιότητας , καὶ μὲν |
| Τῶν αὐτῶν ὑποκειμένων ἐὰν ἡ τῇ ὀρθίᾳ παράλληλος τέμνῃ τὰς ἀσυμπτώτους , τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας | ||
| καὶ δέον ἔστω διὰ τοῦ Δ τὰς ΓΑΒ γράψαι εἰς ἀσυμπτώτους ὑπερβολήν . ἐπεζεύχθω ἡ ΑΔ καὶ ἐκβεβλήσθω ἐπὶ τὸ |
| ἐπί γε τῶν ἀνακλάσεων ἴσας συνίστασθαι γωνίας ὑπὸ τῶν ἡλιακῶν ἀκτίνων ταῖς τῆς ἡμετέρας ὄψεως , ἥτις ἀποδέδεικται πρὸς ἴσας | ||
| . καθόλου δὲ περὶ ὁράσεως οὕτω διωριστέον , ὡς οὐκ ἀκτίνων ἐκπεμπομένων κωνικῶς ἢ σωματικῶς ἢ ἀσωμάτως , ὥς τινες |
| τὴν γαστέρα τοῦ πληρώματος , ἐπὶ τὴν ἀριστερὰν πλευράν , λαπαρᾶς δὲ γενομένης μεταβάλλειν καὶ ἐπὶ τὴν δεξιάν : κατακεκλίσθαι | ||
| τὴν γαστέρα τοῦ πληρώματος , ἐπὶ τὴν ἀριστερὰν πλευράν , λαπαρᾶς δὲ γενομένης μεταβάλλειν καὶ ἐπὶ τὴν δεξιάν : κατακεκλίσθαι |
| ] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
| θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
| ποίησιν γινομένην , ἀλλὰ καὶ τῶν ἔξω ταύτης κατὰ τρεῖς διεστώσας τῶν ὄντων οὐσίας ἀνακρῖναι , οὗτος πρῶτος γενόμενος συγγραφεὺς | ||
| πλατέα , μὴ ἄσαρκα ἀπὸ τῶν ὤμων , τὰς ὠμοπλάτας διεστώσας μικρόν , σκέλη τὰ πρόσθια μικρά , ὀρθά , |
| καὶ κείσθω τῇ μὲν ὑπὸ ΓΕΑ γωνίᾳ ἴση ἡ ὑπὸ ΘΝΚ , καὶ ἤχθω τῇ ΘΝ παράλληλος ἡ ΚΞ , | ||
| , τροπικοὶ δὲ οἱ περὶ διαμέτρους τὰς ΘΚ ΛΜ οἱ ΘΝΚ ΛΞΜ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω |
| πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
| ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
| γῆς εἰτ ' ἐπιπολῆς , ἢ πλείους τῶν ἑξακισχιλίων σταδίων διανύειν , ἄνυδρον καὶ ξηρὰν οὕτω , καὶ ταῦτα ὀρῶν | ||
| ἄλλου ἄλλο γιγνώσκουσα : διὸ καὶ διάνοια καλεῖται παρὰ τὸ διανύειν καὶ διεξιέναι . αὕτη ἐστὶν ἡ δύναμις ἡ συλλογιζομένη |
| βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
| Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
| τοὺς δὲ λεπτοὺς οἴνους ὑπὸ στέγην θετέον , τὰς δὲ θυρίδας ὑψηλοτέρας δεῖ ποιεῖν , πρὸς ἄρκτον καὶ ἀνατολὴν τετραμμένας | ||
| . ” ῥυτῆρες οἱ τῶν ἡνίων ἱμάντες . ῥῶγας τὰς θυρίδας : “ ἀνὰ ῥῶγας μεγάροιο . ” ῥῶπας εἶδος |
| ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
| ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
| πλεκτικῶν . ” Ἥ τε γὰρ τοῦ κενοῦ φύσις ἡ διορίζουσα ἑκάστην αὐτὴν τοῦτο παρασκευάζει , τὴν ὑπέρεισιν οὐχ οἵα | ||
| ἀλλὰ σφυγματώδης ὀδύνη τοῦ τε πλήθους καὶ τοῦ πνεύματος αὐτὴν διορίζουσα . εἰ δὲ ποιότης εἴη μόνη , οὔτε βάρος |
| ' ἄν : εἴσθεσις διπλῆς καθόλου ἀμοιβαίας περιόδους ἔχουσα καὶ μονοστρόφους ἑπτά . οἱ δὲ στίχοι εἰσὶν ἰαμβικοὶ τρίμετροι ἀκατάληκτοι | ||
| ἀκατάληκτοι στίχοι ιζʹ . στίχοι ιζʹ . + εἴσθεσις διπλῆς μονοστρόφους ἔχουσα τὰς περιόδους : οὐ γὰρ ἔχει ἀντιστροφάς . |
| εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
| μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
| ὑπὸ γῆν κέντρῳ πρὸς μεσημβρίαν . δηλοῦσι δὲ καὶ τὰ κέντρα τὴν ἔξοδον δι ' ἧς ἀναχωρήσουσι πύλης οἱ φεύγοντες | ||
| δὲ Ὑδροχόος παραποταμίους καὶ ἑλώδεις . Τινὲς δὲ καὶ τὰ κέντρα ἐμέρισαν οὕτως : τὸ μὲν δῦνον τῷ φεύγοντι , |
| , ἢν δοκῇ , σαπέρδην τινὰ ἢ μαινίδας ἢ κρομμύων κεφαλίδας ὀλίγας πριάμενος εὐφραίνεις σεαυτὸν ᾄδων τὰ πολλὰ καὶ τῇ | ||
| θεωρίαν ἀποτελοῦν τοῖς θεωροῦσι . Τοὺς δὲ πόδας ἐποίησαν τὰς κεφαλίδας ἔχοντας κρινωτάς , ἀνάκλασιν κρίνων ὑπὸ τὴν τράπεζαν λαμβανόντων |
| μὲν αἱ βάσεις εἰσίν , ἔργῳ δὲ ἀκοαί τε καὶ ὄψεις , ἃς ἔχων μέν τις ὁλοκλήρους ἐγήγερται καὶ ἀνωρθίασται | ||
| βουλώμεθα ἀκριβῶς νοῆσαι , εἰς ἐρημίαν ἀποδιδράσκομεν , καταμύομεν τὰς ὄψεις , τὰ ὦτα ἐπιφράττομεν , ἀποταττόμεθα ταῖς αἰσθήσεσιν . |
| γένοιτο τῆς ἰδιότητος πρὸς ἑτέραν μεμιγμένης καὶ συμπλεκομένης οὐχὶ συμφώνους ἁφάς ; εἶτα ἐπάγει . τὸ ταῦτα διορᾶν ἐστιν ἐμψύχου | ||
| ἔτι τῆς ἰδιότητος πρὸς ἑτέραν μεμιγμένης καὶ συμπλεκομένης οὐχὶ συμφώνους ἁφάς ; τὸ ταῦτα διορᾶν ἐστιν ἐμψύχου τέχνης , οὐ |
| τὴν ἄρα θηʹ καὶ δῦνον καὶ ἀνατέλλον ὁρᾶται . Τοῖς ἀπολαμβανομένοις ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς δύσεις πρὸς μεσημβρίαν , | ||
| ηʹ ἄρα τοῦ κʹ ἐλάσσονα χρόνον κρύψιν ἄγει . Τοῖς ἀπολαμβανομένοις ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
| τοῖς ἀδύτοις ὑπάρχοντες ἄλλοι τὴν διάνοιάν εἰσι βέβηλοι , τῷ τροπὰς πρὸς τὸ χεῖρον καὶ τύπους αὐτὴν λαμβάνειν φαύλους : | ||
| ΕΖ δύνει ἤπερ ἡ ΗΘ . εʹ Ἡ μετὰ θερινὰς τροπὰς ἡμέρα καὶ νὺξ τὸ συναμφότερον τῆς μετὰ τροπὰς χειμερινὰς |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
| τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
| καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
| ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
| ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
| φάλαγξ φοβουμένη τοὺς ἱππεῖς ἀπεχώρησεν ἐκ τοῦ πεδίου πρὸς τὰς ὑπερκειμένας δυσχωρίας καὶ τῇ τῶν τόπων ὀχυρότητι τὴν ἀσφάλειαν περιεποιήσατο | ||
| . νεάτας δὲ ἄκριας εἴρηκεν τῶν Αἰθιόπων τὰς ἐσχατιὰς ὡς ὑπερκειμένας τῆς οἰκουμένης . οὐκ ὀρθῶς δὲ εἴρηκεν ὑπὲρ ἄκριας |
| ὅσα περὶ γῆν πάθη γίνεται , ἃς καλοῦμεν κακῶν ἀνθρωπίνων ἐμβολάς , ἐνταῦθα ἡγητέον ἀναίτιον καὶ τὴν τέχνην : εἶναι | ||
| τοὺς Πέρσας ἐν ἐμβολαῖς πανωλέθροις νῦν ὥσπερ ἑρμηνεύων τὰς πανωλέθρους ἐμβολάς φησιν ὡς οὐκ ἄλλοθεν πόθεν ἐγεγόνεισαν ἀλλ ' ἢ |
| ἡ ΛΚ τῇ ΚΕ , καί ἐστιν ὀρθὴ ἡ ὑπὸ ΛΚΕ γωνία , τὸ ἄρα ἀπὸ τῆς ΕΛ διπλάσιόν ἐστι | ||
| τὸ μὲν ΘΚΕ ὅμοιόν ἐστι τῷ ΜΔΕ , τὸ δὲ ΛΚΕ τῷ ΞΔΕ : ἰσογώνιον ἄρα ἕκαστον ἑκάστῳ . ἔστιν |
| ἐλάττων ὀρθῆς τυγχάνῃ ἡ διδομένη γωνία , ἐντὸς τοῦ τριγώνου πεσοῦνται αἱ ΔΖ , ΕΖ , ὅταν δὲ ὀρθή , | ||
| τοῦ Ν ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΝΡ , ΝΣ πεσοῦνται : ὀφθήσεται ἄρα τὸ ΡΦΣ . μεῖζον δὲ τὸ |
| ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
| . ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
| εὐχερεστέρους ἀνέπεισε τερατεύεσθαι : καὶ γὰρ τὸ Χαλδαίων ὄνομα μεταληφθὲν ὁμαλότητι παρω - νυμεῖ , τὸ δὲ νέον ἀγαθὸν κληρονομῆσαι | ||
| γὰρ τοῦ ποσοῦ , ὡς ἂν τῇ τοσῇδε τῶν πληττομένων ὁμαλότητι καὶ στερεότητι ἀθροῦν τὸν ἀέρα ἀφάλλεσθαι καὶ σείεσθαι , |
| τῆς Θηβαΐδος ῥᾳδίως προσηγάγετο , τῆς δὲ καλουμένης Πανῶν πόλεως βεβηκυίας ἐπί τινος ἀρχαίου χώματος καὶ δοκούσης ὀχυρᾶς εἶναι ἐκ | ||
| ἐπὶ τῆς μείζονος περιφερείας βεβηκυῖα τῆς ἐπ ' ἐλάσσονος περιφερείας βεβηκυίας τὸν τοῦ μείζονος λόγον ἕξει , καὶ ἐὰν ἡ |
| μηνῶν καὶ ἡμερῶν καὶ ὡρῶν συνημμένων αὐτοῖς τῶν περιεχόντων τὰς διαστάσεις τῶν περὶ αὐτὸν τὸν ζῳδιακὸν ἀπλανῶν τῶν μέχρι δεκαμοίρου | ||
| ἐπεὶ διαστατὸν ἂν ὑπῆρχε , τοῦ σώματος τὰς τρεῖς ἔχοντος διαστάσεις . καὶ μὴν οὐδὲ ἀσώματον . εἰ γὰρ ἀσώματόν |
| μέσῳ αὐτῆς κειμένας . ἐκράτυνε ] ἦρχεν , ἐδέσποζεν . μεσάκτους ] † τὰς ἐν τῷ μέσῳ τοῦ πελάγους οὔσας | ||
| καὶ ἀγχιγείτων ταύτης τυγχάνουσα . . . καὶ τὰς ἀγχιάλους μεσάκτους : ἤτοι παραθαλασσίους τὰς ἄγχι καὶ πλησίον τῆς θαλάσσης |
| καθάπερ τὰς λύπας οὐκ ἔφευγεν , ἀλλ ' ἄγοντα εἰς μέσας , ἠνάγκαζε καὶ ἔπειθεν τιμαῖς ὥστε κρατεῖν αὐτῶν ; | ||
| ἐπιστένων καὶ κατακλαίων δαίμονα . λέγεται δέ ποτε καὶ περὶ μέσας νύκτας ὥσπερ οἱ | κορυβαντιῶντες ἔνθους γενόμενος , ἐκ |
| καὶ τῶν παραπλησίως λαμβανομένων , κατὰ τὰς αὐτὰς τοῦ ἐπικύκλου θέσεις γινομένων παραλλάξεων δεῖ πάντως συγχρήσασθαι ταῖς κατὰ τοὺς Ξ | ||
| ἐπ ' αὐτοῖς : παρὰ Μωυσεῖ δὲ αἱ τῶν ὀνομάτων θέσεις ἐνάργειαι πραγμάτων εἰσὶν ἐμφαντικώταται , ὡς αὐτὸ τὸ πρᾶγμα |
| , ὡς ἡ γυνὴ δεικνῦσα τἀνδρὶ τοὔγκυκλον ἰδεῖν ὑπ ' αὐγὰς οἷον , ἐγκεκαλυμμένον τὸν μοιχὸν ἐξέπεμψεν , οὐκ εἴρηκέ | ||
| ὅθεν πρὸς ἀντιδιαστολὴν τούτου πάλιν φησίν : αὐτὰρ ἔπειτα πρὸς αὐγὰς ἠελίοιο . Φαιστόν ] Ἐν μέσῳ ἠπείρου κεῖται ἡ |
| λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
| μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
| ὅλας [ τὰς ] ἀγέλας [ τῶν ] ποιμνίων δειλῶς φερομένας πρὸς τοὺς λύκους οὗτοι ἔσωσαν . . . . | ||
| ἀπορριπτουμένας σκιὰς καὶ τὰς ἀπὸ τῶν θυρίδων τε καὶ ὀπῶν φερομένας αὐγὰς κομίζει . ἕκαστον δὲ τούτων οὐκ ἂν ἐγίγνετο |
| ἀρχάς . . ΟΝΟΤΑΖΩΝ . Μεμφόμενος , ἐφυβρίζων . . ΠΑΡ ΔΙΙ ΠΑΤΡΙ ΚΑΘΕΖΟΜΕΝΗ . Ἢ τῇ Εἱμαρμένῃ , ὡς | ||
| ΕΙΣ ΙΑΜΒΟΝ ΟΙΟΝ ΕΝΘΑ ΔΗ ΠΟΙΚΙΛΩΝ ΑΝΘΕΩΝ ΑΜΒΡΟΤΟΙ ΛΙΜΑΚΕΣ ΒΑΘΥΣΚΙΟΝ ΠΑΡ ΑΛΣΟΣ ΑΒΡΟΠΑΡΘΕΝΟΥΣ ΕΥΙΩΤΑΣ ΧΟΡΟΥΣ ΑΓΚΑΛΑΙΣ ΔΕΧΟΝΤΑΙ ΕΝ ΤΟΥΤΩΙ ΓΑΡ |
| τὸν τῆς ὠμοπλάτης τόπον . συμφώνως δὲ πᾶσιν ἤρεσεν ἡμῖν λοξὰς ποιεῖσθαι τὰς ἀρχὰς ὡς πρὸς τὰ ἀντικείμενα μέρη πρὸς | ||
| ἐπιδέσμῳ ἔχει ὁ ἐπίδεσμος οὗτος καὶ κατὰ τοῦ ἕλκους ἀγομένας λοξὰς καταβολάς . τούτῳ δ ' ἐχρήσαντο ἅμα βουληθέντες σκεπάσαι |
| Κ , ἴση ἐστὶν ἡ Ο γωνία τῇ Π . ἀνακλᾶται ἄρα ἡ αὐτὴ ὄψις ἡ ΒΞΜ ἐπὶ τὸ Ρ | ||
| τὴν μασχάλην διαφορὰ διὰ τῆς σπάθης καταρτίζεται τρόπῳ τοιούτῳ : ἀνακλᾶται ἡ σπάθη , ὥστε αὐτῆς τὸ ἀμβοειδὲς πέρας ὑπερᾶραι |
| ἀπὸ Μαίου ιγʹ ἕως κγʹ τοῦ Ἰουνίου , ἡ δὲ ἑσπερία ἀνατολὴ ἀπὸ Ὀκτωβρίου μέχρι Δεκεμβρίου ιθʹ . τοῦ Οὐρανοῦ | ||
| ∠ ʹ : γέγονεν ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑσπερία μοιρῶν κϚ ∠ ʹ . ὡσαύτως δὲ καὶ τῷ |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| τούτου γινομένου : τοῖς δ ' ὑπ ' αὐτῶι τῶι πόλωι ὁ ἰσημερινὸς τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν | ||
| δὲ ὁ τῶι ἀρκτικῶι ἴσος ὑπάρχων πρὸς τῶι νοτίωι τεθεμάτισται πόλωι , οἱ δὲ διὰ τῶν πόλων καὶ λοξοὶ παρὰ |