| πλεκτικῶν . ” Ἥ τε γὰρ τοῦ κενοῦ φύσις ἡ διορίζουσα ἑκάστην αὐτὴν τοῦτο παρασκευάζει , τὴν ὑπέρεισιν οὐχ οἵα | ||
| ἀλλὰ σφυγματώδης ὀδύνη τοῦ τε πλήθους καὶ τοῦ πνεύματος αὐτὴν διορίζουσα . εἰ δὲ ποιότης εἴη μόνη , οὔτε βάρος |
| κενοῦ φύσις ἡ διορίζουσα ἑκάστην αὐτὴν τοῦτο παρασκευάζει , τὴν ὑπέρεισιν οὐχ οἵα τε οὖσα ποιεῖσθαι : ἥ τε στερεότης | ||
| σῶμα ἔχων οὔτε πρὸς τὸν ἀποβιβασμὸν καὶ τὴν τῶν ναυτῶν ὑπέρεισιν καὶ χειραγωγίαν ἠναντιώθη τότε οὔτε ἀπαλλαγέντων ἀπέσχετο ἐπὶ πολὺ |
| ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
| . στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
| καὶ πλείονας ὥρας μένων συσχηματίζεται αὐτῇ . ἔστι γὰρ κἀκείνη κυκλικὴ καὶ περιφερής : ἀλλὰ τοῦτο οὐκ ἂν πάθοι , | ||
| , τεταγμένη τε καὶ ὁμαλή . τῶν δὲ ἄλλων πλανωμένων κυκλικὴ μέν , οὐ μὴν ἁπλῆ δοκεῖ καὶ μία , |
| Ἐὰν ἄρα τριγώνου ἡ γωνία δίχα τμηθῇ , ἡ δὲ τέμνουσα τὴν γωνίαν εὐθεῖα τέμνῃ καὶ τὴν βάσιν , τὰ | ||
| μηχανήματος . διάμετρος δὲ , ἡ ἐν τῷ κύκλῳ κέντρον τέμνουσα μέσον γραμμή . διαβήτης , σταφύλη : ὅπερ ἐστὶν |
| ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
| ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
| ἀριστερῶν . ἔστι δ ' ἡ ἔκφυσις αὐτῶν ἰσχνὴ καὶ πλατεῖα , κατὰ γραμμὴν ἐγκαρσίαν ἐπ ' ὦτα φερομένη : | ||
| σεμνότητος καὶ ἔννοιαι . Λέξις δὲ σεμνὴ πᾶσα μὲν ἡ πλατεῖα καὶ διογκοῦσα κατὰ τὴν προφορὰν τὸ στόμα , ὥστε |
| δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν , | ||
| ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ |
| , ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
| δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
| Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
| ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν : | ||
| τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα |
| φασί τινα σπήλαιον ἔχουσαν ἐν ᾧ εἰώθει διατρίβειν ἐκ θαλάσσης ἀνιοῦσα ἡ Θέτις . Σηπιὰς δὲ τόπος περὶ τὸ σπήλαιον | ||
| , οὐδ ' Ἡρακλῆς ἐποίησεν , ἀλλ ' ἡ Ἄλκηστις ἀνιοῦσα μῦθός ἐστινὅση δὲ ἀνθρώπῳ δύναμις , εἰς παραμυθίαν οὐδὲν |
| διηκούσας κορυφὰς ] τοῦ Καυκάσου ὑπερβάλλουσαν ] ὑπερβᾶσαν , διελθοῦσαν μεσημβρινὴν ] † ἤγουν πρὸς νότιον ὁδεύειν : οὕτω γὰρ | ||
| : τὴν δ ' ἐκ Βαβυλῶνος εἰς τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν κάθετον μικρῷ πλειόνων ἢ χιλίων , ὅσων ἦν |
| . Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
| τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
| . Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
| ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
| . . . . , . ἄντυξ : ἡ ἀνωτάτη ἄντυξ . ἀμφότερα δὲ ἀπὸ τοῦ τεύχω τεύξω τεύξ καὶ | ||
| μεσομφάλιον καὶ ἐπομφάλιον καὶ ὄχανον καὶ ἴτυς καὶ κύκλος καὶ ἄντυξ . ἀσπὶς οἰσυΐνη , ἀσπὶς ἀπὸ ξύλου , ἀσπὶς |
| ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν | ||
| ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν |
| τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
| εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
| τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
| κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
| σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
| μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
| ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς | ||
| τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη |
| ἀνθρώπων οἱ μὲν δίκαιοί εἰσιν οἱ δὲ ἄδικοι οἱ δὲ μέσην ἔχουσιν ἕξιν , φανερὸν ὅτι πάσας συμβήσεται τὰς προκειμένας | ||
| πόδα , καὶ τὴν χεῖρα τὴν ὑπὲρ αὐτὸν ὑπτίαν ἀντειλημμένην μέσην τοῦ προβολίου προτεινόμενος , τῇ δεξιᾷ ἀντεστραμμένῃ τοῦ δόρατος |
| γραμμῶν διεξῆλθεν καὶ ἡ γραμμὴ πρὸς τὴν γραμμήν . [ Ἄξων σφαίρας ἐστὶν ἡ διάμετρος τῆς σφαίρας περὶ ἣν μένουσαν | ||
| ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , τὸ περιληφθὲν σχῆμα . Ἄξων δὲ τοῦ κυλίνδρου ἐστὶν ἡ μένουσα εὐθεῖα , περὶ |
| φύσιν ἔστη , ἐς πόλον ἔνθα καὶ ἔνθα πεπαρμένος : ἰθυτενὴς δὲ γαῖαν ἐπισφίγγων περονήσατο , καὶ πέλεν Ἄτλας τλητὸν | ||
| : τῷ τοι καὶ ἀνεπίστροφος ὁ αὐχὴν καὶ ὁ δρόμος ἰθυτενὴς τῷ θηρίῳ . τοῦτο δὲ διὰ πόθον ξενικῶν ἐρώτων |
| πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
| ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
| ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
| καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
| ἀδιάφορος οὖσα ὥσπερ καὶ ἡ κάθετος . διττὴ δὲ ἡ κάθετός ἐστιν , ἡ μὲν ἐπίπεδος , ἡ δὲ στερεά | ||
| ὅλως τὸ τῆς ὀρθῆς εἶδος . σύμβολον γὰρ καὶ ἡ κάθετός ἐστιν ἀρρεψίας καὶ ἀχράντου καθαρότητος καὶ μέτρου θείου καὶ |
| λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
| τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
| τι μέρος , ὀξυτέρα δὲ πρὸς ἑκατέραν ὁδὸν ἡλίου , δυτικήν τε καὶ τὴν ἀντικειμένην ἑῴαν . Ἢ συνάπτεται τῷ | ||
| κατά τι μέρος , ὀξυτέρα δὲ πρὸς ἑκατέραν ὁδόν , δυτικήν τε καὶ ἀνατολικήν . . οἱ δὲ γράφουσιν εὐρυτέρη |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι . | ||
| ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ |
| τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
| διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
| τῷ ὑποκειμένῳ τὰ διαφόρως κρίνοντα : μία γὰρ δύναμις ἡ ὀπτική . καὶ ἐπὶ τῶν διαφόρων δὲ τὸ κοινὸν οὕτως | ||
| τε ὁρατὰ εἶναί τινα μὴ αἰσθητά , περὶ ἃ ἡ ὀπτική , ἢ ἀκουστὰ μὴ αἰσθητά , περὶ ἃ ἡ |
| ὑγράσματα περὶ τὰ ἄρθρα ἔχουσιν ἄνευ φλεγμονῆς : αὐτὴ γὰρ συνδεῖ . Οἱ δὲ καὶ βουσὶν ἐμβάλλοντες καὶ ἀποπερονῶντες ἐξαμαρτάνουσι | ||
| ἐπιδράττεται γοῦν ἕκαστος τῶν οἰκείων καὶ ἐπιδραξάμενος τὰ μέρη πάντα συνδεῖ : ὁ μὲν εὐφυὴς εὐθιξίας , ἐπιμονῆς , μνήμης |
| τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
| παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
| λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ , | ||
| πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν |
| ἴση ἡ ΓΗ . ἐπεὶ δέ ἐστιν ὡς ἡ ΑΕ διάστασις , τουτέστιν ἡ ΓΗ , πρὸς τὴν ΓΖ , | ||
| εἰπεῖν , τὴν πρώτην καὶ πρώτων διάκρισιν : ὅθεν ἐπειδὴ διάστασις αὐτῷ γέγονεν ἀπό τε τῶν πρὸ αὐτοῦ καὶ ἀφ |
| χρὴ καὶ τὸν τῆς φύσεως λόγον καὶ τὸν τοῦ ἀνθρώπου βεβηκέναι πάντῃ καὶ κατὰ μηδ ' ὁτιοῦν κραδαίνεσθαι . παρὸ | ||
| , τὰς δὲ συνθέσεις αὐτοφυῶς συγκεῖσθαι , καὶ τὰς ἀναπαύσεις βεβηκέναι ἐπί τινων ὀνοματικῶν ἢ ἄλλως μακροτέρων ἢ τοῖς χρόνοις |
| βραχυτέρη ἐοῦσα , καὶ καμπυλωτέρη , καὶ ἰθυτέρη , καὶ κυκλοτερής : καὶ πολλαὶ ἄλλαι ἰδέαι τοῦ τοιουτέου τρόπου , | ||
| ἀσπίδος περιφέρειαν . ἅλωα : ἀπὸ τοῦ ἅλωνος , ἐπεὶ κυκλοτερής ἐστιν , ὥσπερ καὶ οἱ περὶ τὸν ἥλιον καὶ |
| κειμένη τῷ Μαιάνδρῳ κατὰ τὸ πρὸς τῇ Φρυγίᾳ μέρος , ἐπέζευκται δὲ γέφυρα : χώραν δ ' ἔχει πολλὴν ἐφ | ||
| σημεῖον , ἀπὸ δὲ τοῦ Α ἐπὶ τὸ κέντρον αὐτοῦ ἐπέζευκται ἡ ΑΒ , ἡ ΑΒ ἄρα κάθετός ἐστιν ἐπὶ |
| κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
| ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |
| καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας , τοῦ δὲ ἑτέρου ἡ μείζων πλευρὰ | ||
| οὐκοῦν τὸ Β μείζονας ἔχει τὰς ἀπὸ τοῦ ὄμματος ἀκτῖνας ἠγμένας ἤπερ τὸ Κ . μεῖζον ἄρα διάστημα διελεύσεται καὶ |
| κύλινδρος ἐπιπέδῳ συμπίπτοντι τῷ τῆς βάσεως ἐπιπέδῳ κατ ' εὐθεῖαν ὀρθὴν πρὸς ΓΑ ἐκβληθεῖσαν , καὶ ἔστω ἡ γενομένη τομὴ | ||
| γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν : λέγω , ὅτι |
| ΕΑΗ . ὡς δὲ τὸ ὑπὸ ΖΑΗ πρὸς τὸ ὑπὸ ΕΑΗ , οὕτως ἡ ΖΑ πρὸς ΑΕ : καὶ ὡς | ||
| , ἡ ἀνέκλειπτος περιφέρεια ἥ τε ἀπ ' ἄρκτων ἡ ΕΑΗ καὶ ἀπὸ μεσημβρίας ἡ ΖΓΘ , ἑκατέρα μοιρῶν ἐστιν |
| τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
| δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
| ; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
| νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
| κατὰ τοῦ κλιμακίου προπεριειλημένου , ὡς ὑπεδείχθη , στηριχθῇ ἡ μασχάλη , καὶ τότε τῷ βραχίονι τὸν καρχήσιον βρόχον ἢ | ||
| σχάλη , καὶ κατ ' ἀναδιπλασιασμὸν τῆς μα συλλαβῆς , μασχάλη . Μασῶμαι . παρὰ τὸ σῶ , ὃ δηλοῖ |
| τὸ τρίγωνον τοῦ εἰκοσαέδρου , καὶ ἀπὸ τοῦ κέντρου τυχοῦσα διηγμένη ἡ ΝΞ ἄκρον καὶ μέσον λόγον τετμήσθω τῷ Ο | ||
| , ὅπερ ἐστὶν ἀδύνατον : ἔσται γὰρ ἐν κύκλῳ εὐθεῖα διηγμένη μείζων τις τῆς διαμέτρου . Εἰ δὲ διὰ τοῦ |
| ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
| σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
| τὸ εἶναι , οὗ καὶ νοουμένη ἀχώριστος , ὡς δὲ κοιλότης κεχωρισμένη καὶ οὐδὲν δεῖ τῷ νῷ προσεπινοεῖν τὸ ὑποκείμενον | ||
| . καὶ ἡ γαστὴρ αὐτή . καὶ ἡ τῶν ἑλκῶν κοιλότης . κράδης : οἱ μὲν τὰ τῆς συκῆς φύλλα |
| . ἰσχυρὸν δὲ καὶ ὁ φοῖνιξ : ἀνάπαλιν γὰρ ἡ κάμψις ἢ τοῖς ἄλλοις γίνεται : τὰ μὲν γὰρ εἰς | ||
| ἀγελαίους τὸν τρόπον τοῦτον εἰπεῖν : ἡ ἔκτασις καὶ ἡ κάμψις παρὰ φύσιν εἰσίν . πρόδηλον , ὅτι τὸ ἐγγώνιον |
| ἐπιπέδων . Ἀναξιμένης τραπεζοειδῆ . Λεύκιππος τυμπανοειδῆ τῷ πλάτει , κοίλην δὲ τῷ μεγέθει . Οἱ ἀπὸ Θαλοῦς μέσην τὴν | ||
| Ἰουδαίας ὑπὸ τοῦ πατρὸς τοῦ βασιλέωςἐκεῖνος γὰρ ἐπελθὼν τὰ κατὰ κοίλην Συρίαν καὶ Φοινίκην ἅπαντα , συγ - χρώμενος εὐημερίᾳ |
| τοῦ ἐπικύκλου : τότε γὰρ τὸ πλεῖστον γίνεται διάφορον τῆς ὁμαλῆς κινήσεως παρὰ τὴν ἀνώ - μαλον . ἐπεὶ γὰρ | ||
| μὲν τοῦ ζῳδιακοῦ κέντρον τὸ Γ , τὸ δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ ἐκβληθείσης τῆς |
| δύσεως Παροπανισάδαις καὶ Ἀραχωσίᾳ καὶ Γεδρωσίᾳ παρὰ τὰς ἐκτεθειμένας αὐτῶν ἀνατολικὰς πλευρὰς , ἀπὸ δὲ ἄρκτων Ἰμάῳ ὄρει παρὰ τοὺς | ||
| , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν , Δράκοντος |
| γάρ ἐστιν ἡ ἀτρύπητος σανίς : ἐὰν δὲ τρυπηθῇ , ἁψὶς γίνεται . λέγει οὖν , εἰ μὴ ὁ δακτύλιος | ||
| ποιήσωμεν , ἀλλ ' ἑκάστην τῶν περιφερειῶν ἐξ ὧν ἡ ἁψὶς συμπέπηγε . διὸ καὶ ἐπήγαγε πολλ ' ἐπικαμπύλα κᾶλα |
| ὀρθογωνίου καὶ ἀμβλυγωνίου εἶναι , ἣν δὲ ὀρθογωνίου εἶναι δυναμένην ὀξυγωνίου τε καὶ ἀμβλυγωνίου , ἣν δὲ ἀμβλυγωνίου δυναμένην εἶναι | ||
| ἐπιπέδῳ τμηθῇ μὴ παρὰ τὴν βάσιν , ἡ τομὴ γίγνεται ὀξυγωνίου κώνου τομή , ἥτις ἐστὶν ὁμοία θυρεῷ . δῆλον |
| πολλάκις δυόμενος ἢ ἀνατέλλων φαντασίαν ἡμῖν ἀποπέμπει ὡς ψαύων τῆς κορυφῆς , τοσαύτας μυριάδας ἀφεστὼς ἀπὸ παντὸς μέρους τῆς γῆς | ||
| βάσεις ἴσας ἔχῃ , ἔχῃ δὲ καὶ τὰς ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἠγμένας εὐθείας ἴσας , |
| τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
| ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
| καὶ [ ἔνθα φυτοσπόρα ] ? δῶρα θεαίνης . [ τέμνε ] δὲ πυροφόρον [ πέδον ] ἕρκεσι , μίμνε | ||
| βούλει , δέδιθι , σωφρονέστερον γὰρ αὐτῷ χρήσῃ . μὴ τέμνε τῶν ἀσταχύων τοὺς ὑψηλούς τε καὶ ὑπεραίροντας , ἄδικος |
| ἐὰν ἀφέλῃς πάντα τὰ συμβεβηκότα αὐτοῖς καὶ εὕρῃς οὐδὲν ἧττον μένουσαν τὴν ἀντιστροφήν , ἐπίστασο ὅτι καθ ' αὑτὸ γέγονεν | ||
| ταῖς αὐτοῦ πλάναις . Πανταχοῦ δ ' αὐτός ἐστι : μένουσαν οὖν ἔχει τὴν πλάνην . Ἡ δὲ πλάνη αὐτῷ |
| διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
| ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ δύο : ὅπερ ἐστὶν ἀδύνατον | ||
| ὡς ἀληθῶς τὰ πράγματα , ποτὲ δὲ ἀμφότερα , καὶ τέμνει καὶ δοκεῖ τέμνειν . κείσεται δὲ αὐτοῦ καὶ παραδείγματα |
| τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
| Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
| ἡ δ ' ἀπορρέουσα τῆς πίττης ψυχρὰ γίνεται κατὰ τὴν ἁφήν . καίεται δὲ μάλιστα δύο ἡμέρας καὶ νύκτας : | ||
| , μύρον ὁκοῖον ἂν ἔῃ προϲηνέϲ , ἠδὲ ἄδηκτον τὴν ἁφήν , νάρδον ἢ βάκχαρι τὸ Αἰγύπτιον ἢ τὸ διὰ |
| λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
| μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
| παράθεσις ἀπότασις : τὸ δ ' οὗ ἕνεκεν , ὀρθότης εὐθύτης : καὶ ἐπὶ τῶν ἄλλων ὁμοίως . Τὰ μὲν | ||
| τὸ δὲ ἐναντίον τούτου θηλυδρίαν καὶ ἀμαθέστερον σημαίνει ἄνδρα . εὐθύτης ῥινὸς γλώττης ἀκρασίαν τινὰ λέγει . ῥὶς ἡ μείζων |
| δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
| τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
| , ἐξ ὧν εὐφροσύνη περιγίνεται ψυχῇ τελεία φῶς τὸ ἀληθείας ἀπαστράπτουσα . τοὺς μὲν οὖν ἀμπελῶνας εὐφροσύνης , τοὺς δ | ||
| φωτίζει τε ὁμοῦ καὶ γλυκαίνει , φέγγος μὲν τὸ ἀληθείας ἀπαστράπτουσα , πειθοῖ δέ , ἀρετῇ γλυκείᾳ , τοὺς διψῶντας |
| τὰ δ : τὰ γὰρ δ ἐστὶ τὸ ὕψος τοῦ περιλαμβάνοντος κυλίνδρου τὴν σφαῖραν , δύο ὄντων διαμέτρων τῆς σφαίρας | ||
| ὥστε ἡ ΑΛ ἐκ τοῦ κέντρου ἐστὶν τοῦ κύκλου τοῦ περιλαμβάνοντος τὸ τρίγωνον τοῦ εἰκοσαέδρου , ἡ δὲ ΚΛ ἡ |
| περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
| λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
| δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ | ||
| τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
| καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
| δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
| τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
| ἧς ἰσχὺν τῶν ὅπλων ἕξομεν καὶ τὴν πρὸς αὐτοὺς τέχνην ὀξυτέραν μελετήσομεν προμαθόντες αὐτῶν τὰς ἐννοίας τῶν στρατηγημάτων . Δηιόκης | ||
| γὰρ ἐν τοῖς χιτῶσιν ἢ τοῖς πέριξ ἀγγείοις συστῇ , ὀξυτέραν τὴν ὀδύνην ἐργάζεται . εἰ μὲν οὖν μεγάλη σύμπασα |
| διαφόρως μὲν κατὰ Γεμῖνον καὶ ἄλλους τινὰς τῶν καὶ τὰς μικτὰς λαμβανόντων γραμμὰς εἰς τὴν διαίρεσιν . ὁ δὲ γεωμέτρης | ||
| περιφεροῦς , μικτῆς δὲ οὐδαμοῦ μέμνηται : καίτοι γωνίας οἶδεν μικτὰς τὴν τῶν ἡμικυκλίων , τὴν κερατοειδῆ , καὶ σχήματα |
| ἐσθίειν . Ἐὰν δὲ δύσπνοιαν ἔχῃ , τὰ ὦτα σιδήρῳ τμητέον , καὶ μετακτέον αὐτὰ εἰς ἄλλους τόπους . Ἐὰν | ||
| εἰ μὲν οὖν αἵματος πλῆθος εἴη τὸ διατεῖνον , φλέβα τμητέον αὐτίκα μεγάλην τὴν ἐγγὺς τοῦ πάσχοντος μέρους : κακοχυμίας |
| . ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
| τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
| τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
| ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
| σύγγραμμα κατέλιπεν οὐδέν : ἡ γὰρ εἰς αὐτὸν ἀναφερομένη ναυτικὴ ἀστρολογία Φώκου λέγεται εἶναι τοῦ Σαμίου . Καλλίμαχος δ ' | ||
| πολλῶν ἀστέρων συνιστάμενον σχῆμα , ἀστὴρ δὲ ὁ μονομερής . ἀστρολογία ἀστρονομίας διαφέρει . ἀστρονομία μέν ἐστιν ἡ κατάληψις τῶν |
| ὀργάνῳ : ἀπὸ γὰρ τῆς μεσότητος τὸ ξύλον ἐκ τῶν διαπηγμάτων ἀντιθέτοις ἕλιξι τέτμηται , ὥστε κατὰ ποιὰν τοῦ κοχλίου | ||
| μεσότητος ἐπὶ τὰ διαπήγματα ὁρμᾶν τὰς χελώνας ἢ ἀπὸ τῶν διαπηγμάτων εἰς τὸν μέσον τόπον συντρέχειν . ἔστι δὲ καὶ |
| παρὰ δὲ τὸ αὐτὸ χαίρω χάρτης , χωρητικὸς ὢν τῶν ἐγγραφομένων . Φιλόξενος ἐν τῷ Περὶ μονοσυλλάβων ῥημάτων . . | ||
| ἑξαγώνου καὶ τὴν τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων . Ἔστω κύκλος ὁ ΑΒΓΔΕ , καὶ εἰς τὸν |
| τῶν αὐλῶν ἀναλογούσης πάχει καὶ μήκει καὶ ἀνέσει χορδῆς , στενότητος δὲ καὶ βραχύτητος λεπτότητί τε καὶ ἐπιτάσει καὶ βραχύτητι | ||
| ἐπεὶ οὖν ἀπὸ τοῦ ποσὸν ἔχοντος πλάτος κατ ' ἐπίτασιν στενότητος νοῆσαί τι θέλομεν , τὸ μὲν πάντῃ πάντως ἀπλατὲς |
| ἄτομοι γραμμαὶ οὐκ εἰσίν , εἴπερ πλευρὰν τὴν ἐκκειμένην δυνατὸν διχοτομεῖν . Καὶ τὸ ἑνδέκατον πρόβλημά ἐστιν : ποιεῖ γὰρ | ||
| βραδύτερον . ἔστι δὲ καὶ οὗτος ὁ αὐτὸς λόγος τῶι διχοτομεῖν , διαφέρει δ ' ἐν τῶι διαιρεῖν μὴ δίχα |
| αὐτὸς ἐπάγει , τὸ σκότος . οὐ γὰρ κατ ' ἐπέρεισιν αὐτοῦ αἰσθανόμεθα ἀλλὰ κατὰ στέρησιν καὶ τὸ μὴ ὁρᾶν | ||
| καὶ αἰσθήσει μὲν οὐδαμῶς , ἐπειδὴ αἱ μὲν αἰσθήσεις κατὰ ἐπέρεισιν καὶ νύξιν ἀντιλαμβάνεσθαι δοκοῦσι τῶν αἰσθητῶν , οἷον ἡ |
| καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
| οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
| , οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
| . ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
| ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
| , ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
| λιμήν . κλῃστοῦ : ἤγουν περιειργμένου . διαλειπούσας : ἤγουν διισταμένας . τῇ δ ' ὑστεραίᾳ : ἤγουν τῇ μετὰ | ||
| ταύτας μὲν συναγομένας καὶ ὀξείας γινομένας , τὰς δὲ λοιπὰς διισταμένας καὶ ἀμβλείας ἀναφαινομένας . καὶ ἔοικεν καὶ τὸ ὄνομα |
| ἐν δευτέρῳ τῶν Φυσικῶν καὶ Ἀπολλόδωρος . γίνεσθαι μέντοι τὸ κωνοειδὲς τοῦ ἀέρος πρὸς τῇ ὄψει , τὴν δὲ βάσιν | ||
| τοῦ ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ ' |
| καὶ κʹ μοίρᾳ τοῦ Σκορπίου συνανατέλλει , ὁ δὲ ἔσχατος ἀναφερόμενος καὶ νοτιώτερος ὢν τῶν ἐν τῇ κεφαλῇ συνανατέλλει [ | ||
| ὁ μὲν γὰρ αἶνός ἐστιν λόγος κατ ' ἀναπόλησιν μυθικὴν ἀναφερόμενος ἀπὸ ἀλόγων ζῴων ἢ φυτῶν πρὸς ἀνθρώπων παραίνεσιν καί |
| . Ἔστι δὲ καὶ ἀμφίβιον γῆν τε πεζεῦον καὶ θάλασσαν τέμνον καὶ πλοῦν τὸν αὐτόστολον ναυτιλλόμενον : δεῆσαν γὰρ τὸ | ||
| : πάλιν γὰρ χρόνου ἐστὶ τοῦ γενικωτάτου ἐμπεριεκτικόν , οὐ τέμνον τὸ ἐπιμεριζόμενον τοῦ χρόνου , διῆκον μέντοι δι ' |
| τὸν τρόπον ἐκτάξας τὸ στρατόπεδον κατέβαινεν ἐπὶ τοὺς πολεμίους , λοξὴν ποιήσας τὴν τάξιν : τὸ μὲν γὰρ δεξιὸν κέρας | ||
| , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος καὶ νώτου , λοξὴν δὲ κατὰ στέρνου καὶ κλειδός : εἶθ ' ὑπαγωγῇ |
| φωνηέντων αὐτὴν τιθέασιν ὡς τὰς ἄλλας , πρὸ δὲ τούτων τάσσουσιν . οἶμαι δὲ καὶ διὰ τοῦ η στοιχείου τυπώσασθαι | ||
| ' ἔστρωται λέχος καὶ μέμφεται τοῖς ὑποκριταῖς ὡς ἀκαίρως αὐτὸν τάσσουσιν : πρόξενοι γὰρ καλοῦνται οἱ ὑποδεχόμενοί τινα : κακῶς |
| ὡρίσθη κατὰ τὴν ὑπόστασιν : συνῆπτε δὲ αὐτὸν καὶ ἡ ζωτική , ἀλλὰ κατὰ τὴν δευτέραν διάκρισιν , καθ ' | ||
| ἡ τῶν ῥάβδων φύσις καὶ ὅλως οἷον ἀρχή τις αὕτη ζωτική . διὸ καὶ ἐξαιρουμένου καὶ πονήσαντος θνήσκει : ἐπεὶ |
| τὰ ἐμπρόσθια γόνατα : μετὰ δὲ τὸν ἀφανῆ πόλον τὴν καμπήν τε τοῦ Ποταμοῦ καὶ τοῦ Κήτους τὴν κεφαλὴν καὶ | ||
| : καὶ περᾷ τὸν μηρὸν παρὰ τὴν πρὸς τὸ γόνυ καμπήν : ἑτέρην δὲ παρὰ τὸν βουβῶνα καθῆκε πυκινόῤῥιζον καὶ |
| ἀναγκαίας οὔσης τῆς ἀποκρίσεως οὔτε κατ ' ἀμφότερα ἁλωσίμου , σχίζει τὴν ὑπόθεσιν καὶ δίδωσι τὰ δεύτερα τῷ Καλλικλεῖ ἀμέλει | ||
| σχιστῆς ὁδοῦ ἐν Φωκίδι . οὕτως δὲ καλεῖται , ἐπειδὴ σχίζει τὴν ἐπὶ Βοιωτίαν καὶ Θήβας καὶ Ἀττικὴν καὶ Κόρινθον |
| ὁμώνυμος τῇ χερσαίᾳ ὑαίνῃ ἐστί . ταύτης οὖν τὴν δεξιὰν πτέρυγα εἰ ὑποθείης ἀνθρώπῳ καθεύδοντι , εὖ μάλα ἐκταράξεις αὐτόν | ||
| . καὶ δὴ συλλαβὼν τὰ ὄρνεα θατέρου μὲν τὴν δεξιὰν πτέρυγα , τοῦ γυπὸς δὲ τὴν ἑτέραν ἀπέτεμον εὖ μάλα |
| τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
| ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
| . μάλιστα δὲ ἔχουσιν αἱ σύνοδοι τῆς γῆς ἀνομοίας τὰς συμφύσεις . δεῖ δὲ καὶ τὰς πέτρας εἶναι ὑπομελανιζούσας , | ||
| τὸ σχῆμα τὸ δέον καὶ θέσιν καὶ κοιλότητάς τινας καὶ συμφύσεις καὶ τὰ ἄλλα τὰ τοιαῦτα κτήσηται , διαπλάττεσθαι χρὴ |