τὸ τρίγωνον τοῦ εἰκοσαέδρου , καὶ ἀπὸ τοῦ κέντρου τυχοῦσα διηγμένη ἡ ΝΞ ἄκρον καὶ μέσον λόγον τετμήσθω τῷ Ο
, ὅπερ ἐστὶν ἀδύνατον : ἔσται γὰρ ἐν κύκλῳ εὐθεῖα διηγμένη μείζων τις τῆς διαμέτρου . Εἰ δὲ διὰ τοῦ
6562074 ἠβουλου
γὰρ δήπου τὸν ἐντυχόντα , ἀλλ ' αὐτὸν ἐκεῖνον ὃν ἠβούλου . ἦ γάρ ; Ναί . Οὐκοῦν καὶ εἰ
; Ἄτοπον . Ἄγε , σὺ δ ' ἂν νοσῶν ἠβούλου φιλοστόργους οὕτως ἔχειν τοὺς προσήκοντας τούς τ ' ἄλλους
6523725 ΑΚΜΓ
τῶν ΑΒΓΔ , ΒΚΔ ἡ ΒΞΔ ὀρθή ἐστι πρὸς τὸν ΑΚΜΓ κύκλον : ὥστε καὶ πρὸς πάσας τὰς ἁπτομένας αὐτῆς
τὴν ΑΓ , διὰ τὸ ὀρθὰ εἶναι πρὸς ἄλληλα τὰ ΑΚΜΓ , ΑΒΓΔ ἐπίπεδα , ἡ δὲ ἀπὸ τοῦ Ν
6400809 ΣΑ
ΣΑ , τῆς δὲ ΒΗ ἡμίσεια ἡ ΒΤ . αἱ ΣΑ , ΒΤ ἄρα ἴσαι τε καὶ παράλληλοί εἰσι :
αἱ ἄρα ὑπὸ τῶν ΓΣ , ΣΝ , ΝΣ , ΣΑ ταῖς ὑπὸ τῶν ΛΣ , ΣΑ , ΑΣ ,
6358648 ΛΤ
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ
6324243 ΧΕ
ΜΚΘ : δι ' ἴσου ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ὑπὸ ΧΕΔ , τὸ ἀπὸ ΜΚ πρὸς
τρίγωνον τῷ ΗΜΚ . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ἀπὸ ΕΓ , τὸ ἀπὸ ΜΚ πρὸς
6263497 ΡΥ
, καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ
ἡ μὲν ΖΡ τῇ ΡΣ , ἡ δὲ ΡΝ τῇ ΡΥ , δύο αἱ ΖΡΝ δυσὶ ταῖς ΣΡΥ ἴσαι εἰσίν
6260276 ΡΞ
αἱ ΡΛ , ΡΜ , ΡΝ . καὶ ἐπεὶ ἡ ΡΞ ὀρθή ἐστι πρὸς τὸ τοῦ ΛΜΝ κύκλου ἐπίπεδον ,
τις εὐθεῖα ἡ ΑΡ , ἡ ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ
6239630 ΝΣ
ΜΡ μείζων ἐστὶν ἢ διπλῆ , ἡ δὲ ΞΝ τῆς ΝΣ ἐλάσσων ἐστὶν ἢ διπλῆ , ἐλάσσων ἄρα ἐστὶν ἡ
μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ ΘΚ ἄρα τῆς ΝΣ μείζων ἐστὶν ἢ ὁμοία . καὶ εἰσὶ τοῦ αὐτοῦ
6237613 ΣΛ
ΞΝ τῆς ΜΟ ἐλάσσων ἐστὶν ἢ β : καὶ ἡ ΣΛ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ β : ὥστε
ΞΟ τῇ ΘΣ ἐστὶν ὁμοία , ἡ δὲ ΟΠ τῇ ΣΛ ἐστὶν ὁμοία , καὶ ἡ ΘΣ ἄρα τῇ ΣΛ
6170985 ΧΞ
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς
6162606 ΑΣ
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν .
6153521 ΝΡ
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα
6098639 ΟΞ
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ
6083906 ΣΞ
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς
6079277 ΥΞ
ἡ ΘΑ δύνει , ἐν ᾧ ἄρα τότε Υ τὴν ΥΞ περιφέρειαν διαπορεύεται καὶ τὸ Φ τὴν ΒΦ , ἡ
ΡΟ πρὸς ΟΤ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΣΥ πρὸς ΥΞ . καὶ τῶν ἡγουμένων τὰ διπλάσια : ἡ ἄρα
6063217 ἀπεπλος
χιτωνίσκῳ ἀνήλατο νεοτόκος οὖσα . καὶ γὰρ αὐτὴ ἡ Ἀλκμήνη ἄπεπλος αὐτοποδὶ ἐκπηδήσασα ἀπὸ τῆς κοίτης ἐπὶ βοήθειαν ἠπείγετο πρὸς
εἰς σά . ἢ εἰς σέ , τὸν πολυπενθῆ : ἄπεπλος φαρέων : ἀντὶ τοῦ ἀμέτοχος : ἄπεπλος διαλεύκων φαρέων
6052596 ΜΥ
. διὰ τὰ αὐτὰ ἔσται , ὡς μὲν τὸ ἀπὸ ΜΥ πρὸς τὸ ἀπὸ ΥΙ , τὸ ὑπὸ ΞΡΓ πρὸς
δὲ ΛΤ τὰ ἴσα ἔγγιστα ὡσαύτως κη , τῆς δὲ ΜΥ ἑξηκοστὰ μ . ὧν τὰ μὲν τῆς αʹ καὶ
6051580 ΑΡ
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ
6050939 συζυγης
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης
6015472 ὑπνοποιος
ὑστέρας , Φιλουμένου πʹ . Πεσσὸς ἀνώδυνος παʹ . Πεσσὸς ὑπνοποιὸς ἀνώδυνος , σκληρίας πάσης μαλακτικὸς πβʹ . Πεσσὸς ὑπνοποιὸς
Πεσσὸς ὑπνοποιὸς ἀνώδυνος , σκληρίας πάσης μαλακτικὸς πβʹ . Πεσσὸς ὑπνοποιὸς πρὸς φλεγμονὰς πγʹ . Πεσσὸς πρὸς φλεγμονὰς καὶ παρεγκλίσεις
6008400 κοπτουσα
πόλεμός ἐστι καὶ ἐρῳδιῷ : κατάγνυσι γὰρ αὐτῶν τὰ ᾠὰ κόπτουσα τὴν δρῦν διὰ τοὺς κνῖπας . καὶ εἰσὶν οἱ
τίσιν , Ἕλλησιν ἢ βαρβάροις ἢ πάλιν λῃσταῖς . ” κόπτουσα δὲ τῇ χειρὶ τὸ στῆθος εἶδεν ἐν τῷ δακτυλίῳ
6005749 ΘΦ
ΣΠ τῇ ΥΘ ἐστιν ἴση , ἡ δὲ ΠΞ τῇ ΘΦ : καὶ ἡ ΥΘ ἄρα τῆς ΘΦ ἐστι μείζων
ἐποίησεν ἐν τῷ αὐτῷ λόγῳ καὶ τὴν ΤΘ πρὸς τὴν ΘΦ . πᾶσα δὲ ἀνάγκη μήτ ' ἐκεῖνον εὑρίσκειν τὸ
6003644 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
5987589 ΘΧ
Ψ͵Δ . καὶ ἐπεὶ αἱ ΖΤ ΤΥ ΥΗ ΗΦ ΦΘ ΘΧ ΧΨ ΨΚ περιφέρειαι ἴσαι ἀλλήλαις εἰσίν , αἱ ἄρα
πλευρά . ἐπεὶ οὖν , ὡς ἡ ΘΗ πρὸς τὴν ΘΧ , οὕτως τὸ ὑπὸ τῶν ΗΦ , ΦΘ πρὸς
5986600 ΒΛ
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα
5984303 ΤΦ
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν
5980230 ΣΟ
ἡ ΧΦ τῇ ΣΟ , μείζων ἄρα ἡ ΚΒ τῆς ΣΟ . ἴση δὲ ἡ ΚΒ ἑκατέρᾳ τῶν ΚΣ ,
ἐστι διάμετρος ἡ ΞΗ τῇ ΒΤ , καὶ ὅτι ἡ ΣΟ παράλληλος οὖσα τῇ ΒΤ κατῆκται τεταγμένως ἐπὶ τὴν ΘΗΟ
5979035 Ϡοθ
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως
5960317 ΥΡ
μείζων ἄρα ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ
μείζων ἄρα ἡ ΨΥ , τουτέστιν ἡ ΤΥ , τῆς ΥΡ . Ἔστω τῆς ΤΡ ἡμίσεια ἡ Τ ↑ .
5949754 ΖΓ
ΖΒ , τὸ δὲ ὑπὸ ΕΖΓ μετὰ τοῦ ὑπὸ ΑΕ ΖΓ ὅλον ἐστὶν τὸ ὑπὸ ΑΖΓ . εἴχομεν δὲ καὶ
ΖΓ πρὸς τὸ ἀπὸ τῆς ΓΑ ἐστι τὸ ἀπὸ τῆς ΖΓ διαμέτρου τῆς τομῆς πρὸς τὸ ἀπὸ τῆς συζυγοῦς ἑαυτῇ
5940251 Τοιαυτη
μὴ διαλύεσθαι καὶ γενέσθαι καὶ τοῦ θανάτου κρείττους γίνεσθαι . Τοιαύτη προῆλθεν ἡ ἀνθρώπου ψυχή , οὐσία λογική , ἀεικίνητος
τῆς Λιβύης τὸν πλατὺν αὐτῆς κόλπον ἀμφέλκεται ἢ περισύρεται . Τοιαύτη μὲν τῆς Λιβύης ἡ μορφὴ καὶ τὸ σχῆμά ἐστιν
5935427 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
5934126 ΕΠΕΙ
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων ,
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν
5932131 ΠΜ
δὲ ἡ ΜΑ τῆς ΛΑ : μείζων ἄρα καὶ ἡ ΠΜ τῆς ΒΛ . ὁμοίως καὶ ἡ ΜΘ τῆς ΛΓ
τῶν λόγων τῆς τε ΖΑ πρὸς ΘΒ , καὶ τῆς ΠΜ πρὸς ΜΣ , τουτέστιν ξ πρὸς ε ιε κατ
5931128 ἐπιζευγνυουσαν
τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης
διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα
5930484 ΕΣΤΙ
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ
5927625 ΦΘ
ΥΑΦ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΧΗ συναμφοτέρου τῆς ΦΘ ΥΚ μείζων ἐστίν . ἴση δὲ ἡ ΦΘ τῇ
να . πάλιν δ ' , ἐπεὶ καὶ ἡ μὲν ΦΘ τῇ ΦΧ ἴση ἐστίν , ἡ δὲ ΝΧ τῆς
5922565 ὀρθιαν
λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ ,
πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν
5922275 ΖΡ
καὶ ἡ ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους
ΡΥ , ΥΔ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΡ , καὶ ἔτι αἱ ΕΟ , ΟΣ , ΣΒ
5918645 ʹγιβ
ἢ Τρίηρον ἄκρον . . . . . μγ ∠ ʹγιβ λα γʹ Κεφαλαὶ ἄκρον . . . . .
. . . . . . ογ γʹ κθ ∠ ʹγιβ Δούμεθα ἢ Δουμαίθα . . . . . οε
5914807 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
5901124 λαβους
ἑτέρους δεῖ , τοὺς δὲ διώκειν . Σὺν ἐλαίῳ ὠτογλυφίδα λαβοῦς ' ἀνασκάλλεται . Τὸ γὰρ ἕψημά σου γευόμενος ἔλαθον
. . . . . . . . ἅμα δὲ λαβοῦς ' ἠφάνικε πηλίκον τινὰ οἴεσθε μέγεθος ἀρεσιαν ; μέγαν
5900259 ΦΥ
δὲ ἡ ΣΡ τῆς ΟΡ : διπλῆ ἄρα καὶ ἡ ΦΥ τῆς ΟΡ . ἴση δὲ ὑπόκειται ἡ ΟΡ τῇ
δύο τῶν διπλασίων τοῦ ἑνός . ἔστι δὲ καὶ ἡ ΦΥ . , ] παραλληλόγραμμον γάρ ἐστι τὸ ΡΣΦΥ χωρίον
5897187 ΖΠ
τῷ τῆς ΖΠ πρὸς τὴν ΠΡ , ὁ δὲ τῆς ΖΠ πρὸς τὴν ΠΡ λόγος σύγκειται ἔκ τε τοῦ τῆς
ὁ ἥλιος ἑκάστην αὐτῶν δίεισιν . ἐν ᾧ δὲ τὴν ΖΠ , κόσμου περιστροφή ἐστιν καὶ τῆς ΖΠ δύσις .
5882416 ΡΘ
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ
5881178 ΤΞ
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον
5879108 βοσκου
, ἐν ὄρεσιν ἐρχομένη ἀεί . ἐρασθεῖσα δὲ ὑπό τινος βοσκοῦ καὶ φθαρεῖσα τὴν παρθενίαν ἐμυσάχθη ὑπὸ τῆς θεοῦ .
βόες οἱ λιπαροί . ἢ μεγάλοι , ἀπὸ Λαρινοῦ τινος βοσκοῦ εὐμεγέθους . νέμονται δὲ τὴν ἤπειρον , οὖσαι τῶν
5875648 ἐδεξιουτο
πιστὴ ψυχή , οἴχῃ δὴ ἀπολιπὼν ἡμᾶς ; καὶ ἅμα ἐδεξιοῦτο αὐτὸν καὶ ἡ χεὶρ τοῦ νεκροῦ ἐπηκολούθησεν : ἀπεκέκοπτο
ἐν κόσμῳ τῷ πρέποντι ἑκάστῳ προσέφερον . ὁ δὲ αὐτοὺς ἐδεξιοῦτο μέν , οὐχ ὑπανέστη δὲ προσιοῦσιν οὐδ ' ἐπιμένουσιν
5873055 Ὠγυγιας
ἐπίκλησίν ἐστιν Ὑψίστου . τὰς δὲ ἐπὶ ταύταις πύλας ὀνομάζουσιν Ὠγυγίας , τελευταῖαι δέ εἰσιν Ὁμολωίδες : ἐφαίνετο δὲ εἶναί
καὶ ἐπὶ τῶν παλαιῶν σῳζόμενον . προτιμᾷ μὲν Ὀδυσσεὺς αὐτῆς Ὠγυγίας καὶ Καλυψοῦς τὴν μικρὰν Ἰθάκην [ καὶ νῆσον ]
5859542 ΡΟ
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω
5858652 χερνιψ
, Θάρυψ Θάρυβος , Σκίραψ Σκίραφος , κατῆλιψ κατήλιφος , χέρνιψ χέρνιβος : τὸ νίφα λευκήν . . . Τέλος
. “ εἴη δ ' ἂν ἀπ ' ὀρθῆς τῆς χέρνιψ γενικὴ πληθυντικὴ χερνίβων : τῆς γὰρ χέρνιβος μέμνηνται καὶ
5852808 ΣΒ
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ
5847064 ΧΗ
μὲν ΒΦ περιφέρεια τῆς ΦΧ , ἡ δὲ ΦΧ τῆς ΧΗ : ἐν πλείονι ἄρα χρόνῳ τὸ Φ τὴν ΦΒ
ΜΚ ἄξων τοῦ ΚΖ ἄξονος , τοσαυταπλασίων ἐστὶ καὶ ὁ ΧΗ κύλινδρος τοῦ ΗΔ κυλίνδρου . καὶ εἰ μὲν ἴσος
5842217 ἑστηκυια
Σικελία , νῆσος ὑπὲρ τὴν Ἰταλίαν ἐκτέταται ἐπὶ τρισὶ πλευραῖς ἑστηκυῖα . Ἄκρα δὲ αὐτῆς ἥ τε Πάχυνος καὶ ἡ
ἐστιν ἡ ὥσπερ τυφλὴ καὶ μαινομένη τις εἶναι δοκοῦσα καὶ ἑστηκυῖα ἐπὶ λίθου τινὸς στρογγύλου ; Καλεῖται μέν , ἔφη
5832739 ΚΣ
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ
5822812 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
5819747 ἐπιζευγνυουσῃ
ΒΔ διὰ τὸ ἴσην εἶναι ἑκατέραν τῶν ΒΕ ΕΑ τῇ ἐπιζευγνυούσῃ τὰ Δ Ε . ἔστιν δὲ καὶ ἡ πρὸς
αἱ ἐπὶ τὰς τομὰς ἀγόμεναι παράλληλοι ἔσονται τῇ τὰς ἁφὰς ἐπιζευγνυούσῃ . ἔστω γὰρ ἢ ὑπερβολὴ ἢ ἀντικείμεναι ἡ ΑΒ
5814378 ΜΩ
ἄρα ἀπὸ τῆς ΜΓ ἔλασσόν ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . τὸ δὲ ἀπὸ τῆς ΜΓ τοῦ ἀπὸ τῆς
τῶν ΓΩ , ΩΜ ἐλάσσονά ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . ἀλλὰ τὸ ἀπὸ τῶν ΓΩ , ΩΜ ἴσον
5810243 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
5805702 Κεμμενων
παρωκεανιτικὰ τὰ δὲ εἰς τὴν μεσόγαιαν καὶ τὰ ἄκρα τῶν Κεμμένων ὀρῶν μέχρι Τεκτοσάγων ἀνέχοντα . ἐπειδὴ δὲ μικρὰ μερὶς
πλησιάζουσιν , ἐφάπτονται δὲ μικρὰ καὶ τοῦ προσαρκτίου πλευροῦ τῶν Κεμμένων , πολύχρυσόν τε νέμονται γῆν . ἐοίκασι δὲ καὶ
5803184 ΚΑΤΑ
. . ΚΑΤΑΦΡΑΖΕΣΘΕ . Βουλεύεσθε , νοεῖτε . Παρολκὴ ἡ ΚΑΤΑ , τουτέστι περιττεύει . . ΤΡΙΒΟΥΣΙ . Κατατρίβουσι ,
. Καὶ τῇ ἐκκλησίᾳ δὲ τῇ παροικούσῃ ΑΜΑΣΤΡΙΝ ἉΜΑ ΤΑΙΣ ΚΑΤΑ ΠΟΝΤΟΝ ἐπιστείλας , Βακχυλίδου μὲν καὶ Ἐλπίστου , ὡς
5802161 ΓΟ
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ
5798867 ΟΨ
ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ Ω ἀρξάμενον ἀπὸ τοῦ
τῆς ΓΨ μεῖζόν ἐστιν ἢ διπλάσιον . ἐπεζεύχθωσαν γὰρ αἱ ΟΨ , ΥΨ , ΨΜ . καὶ ἐπεὶ ἴση ἐστὶν
5797774 γεωργουμενην
: παρὰ τὸ ἀροῦν , ἢ παρὰ τὸ ἀραιοῦσθαι τὴν γεωργουμένην γῆν , . , , . . α .
πλησιάζειν αὐτῇ καὶ διὰ τὸ ὀλίγην παντάπασιν ἔχειν χώραν τὴν γεωργουμένην . εἰκὸς οὖν ἦν τοὺς Ἀθηναίους ἐπεξιόντας αὐτοῖς κωλύειν
5796897 ΥΗ
τοῦ δὲ Φ τῆς φαινομένης αὐτῶν ἐποχῆς . ἡ δὲ ΥΗ ἔσται # δ τῆς ἡλίου κινήσεως ἀπὸ τοῦ Υ
ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ ΥΗ # δ : ἐν ᾧ γὰρ ἡ σελήνη τὴν
5794265 ΚΘ
ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ
ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς
5789291 ἀμετακινητος
κεφαλῆς . ἀερθείς : ἐπαρθεὶς , ὑψωθείς . Ἀστεμφής : ἀμετακίνητος , ἀμετάστροφος . μεγάρων : ὑψηλῶν οἰκημάτων , οἰκημάτων
φύσις γὰρ τῶν ἀγαθῶν καὶ ἐναρέτων ἀνθρώπων ἑδραία ἐστὶν καὶ ἀμετακίνητος , ὥσπερ καὶ ἡ ἁπλῆ φύσις . ἀκίνητον γὰρ
5787749 ΡΤ
διῆκταί τις ἡ ΗΤ , ἡ ΟΡ ἄρα πρὸς τὴν ΡΤ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΡΤΗ γωνία πρὸς
ἡ ΡΤ : ἴση ἄρα ἐστὶ καὶ ἡ ΜΣ τῇ ΡΤ . ἔστι δὲ καὶ ὅλη ἡ ΜΣΞΥ ὅλῃ τῇ
5785253 ΘΛ
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν
5784694 ΘΟ
ἡ ΚΛ τῆς ὅλης περιφερείας , τὸ αὐτὸ καὶ ἡ ΘΟ τῆς ΘΟΛ . καὶ ἔστιν ἴση ἡ ΘΟΛ τῇ
ΜΒ τῇ ΒΝ καὶ ἡ ΚΟ τῇ ΟΛ καὶ ἡ ΘΟ τῇ ΟΞ καὶ ἡ ΚΘ τῇ ΞΛ . ἐπεὶ
5783411 ΣΡ
ΤΡΧ , τουτέστιν τῷ τοῦ ἀπὸ ΕΣ πρὸς τὸ ἀπὸ ΣΡ . ἔχει δὲ σύγκρισιν . ἐπεὶ οὖν τὸ ἀπὸ
τὸ ΝΘ : καὶ ὡς ἄρα τὸ ΜΖ πρὸς τὸ ΣΡ , οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ . τὸ
5774515 ἀναστα
φωνῇ μεγάλῃ λέγουσα : Ἀδὰμ Ἀδάμ , ποῦ εἶ ; ἀνάστα ἐλθὲ πρός με , καὶ δείξω σοι μέγα μυστήριον
ἐκοιμᾶτο . ἐπιστᾶσα δὲ αὐτῷ ἡ Τύχη ἐβόα : ” ἀνάστα καὶ ἄπελθε ἐντεῦθεν , μήπως κάτωθεν τοῦ φρέατος πεσὼν
5764955 ΠΟΛΥ
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ?
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν
5753824 συζυγους
διῃρημέναι , λέγω δὲ τὴν ἐμέο καὶ ἡμέων καὶ τὰς συζύγους : οὐ γὰρ φύσει βαρυτονοῦνται , ἀπὸ δὲ περισπωμένων
ὅλος εἶναι πόλεμον . ἐπώρορεν : διήγειρεν . εὐνητῆρας : συζύγους . Γαμήλιος ἐνυώ : ἡ περὶ τοῦ γάμου μάχη
5748410 ΑΤ
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ
5745736 πθ
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον
5744305 ΑΠΟ
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ
5743801 ΛΘ
ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον . ἐν πλείονι δὲ χρόνῳ ἡ ΛΘ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΘΝ : ἐδείχθη
ἐστίν , ὡς δὲ ἡ ΛΝ πρὸς ΝΞ , ἡ ΛΘ πρὸς ΘΜ : ἴση ἄρα ἡ ὑπὸ ΛΖΘ γωνία
5736739 ΠΑΡ
ἀρχάς . . ΟΝΟΤΑΖΩΝ . Μεμφόμενος , ἐφυβρίζων . . ΠΑΡ ΔΙΙ ΠΑΤΡΙ ΚΑΘΕΖΟΜΕΝΗ . Ἢ τῇ Εἱμαρμένῃ , ὡς
ΕΙΣ ΙΑΜΒΟΝ ΟΙΟΝ ΕΝΘΑ ΔΗ ΠΟΙΚΙΛΩΝ ΑΝΘΕΩΝ ΑΜΒΡΟΤΟΙ ΛΙΜΑΚΕΣ ΒΑΘΥΣΚΙΟΝ ΠΑΡ ΑΛΣΟΣ ΑΒΡΟΠΑΡΘΕΝΟΥΣ ΕΥΙΩΤΑΣ ΧΟΡΟΥΣ ΑΓΚΑΛΑΙΣ ΔΕΧΟΝΤΑΙ ΕΝ ΤΟΥΤΩΙ ΓΑΡ
5735617 ΜΞ
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ ,
5730056 ΔΑΓ
καὶ τῷ ὑπὸ ΒΔ ΑΓ , κοινὸν ἀφῃρήσθω τὸ ὑπὸ ΔΑΓ : λοιπὸν ἄρα τὸ ὑπὸ ΑΓ ΔΒ ἴσον ἐστὶν
. ἔσται δὴ πάλιν κατὰ τὰ αὐτὰ ἡ ὑπὸ τῶν ΔΑΓ γωνία ὀρθῆς μεʹ μέρος , ἡ δὲ ὑπὸ τῶν
5727985 ἐκκειμενη
ἢ διπλασίαν ἢ ἡμίσειαν λάβωμεν , οἷον εἴ ἐστιν ἡ ἐκκειμένη ῥητὴ ἑξάπους , καὶ ληψόμεθα τὴν δωδεκάποδα , σύμμετρος
δὲ τῷ κόλπῳ τῆς παραλίας τὸ μὲν Ταίναρον ἀκτή ἐστιν ἐκκειμένη τὸ ἱερὸν ἔχουσα τοῦ Ποσειδῶνος ἐν ἄλσει ἱδρυμένον :
5723149 Κοραν
' ] Ἀπεφθέγξατο , εἶπεν . Ἀθανάτου ] Θείου . Κόραν ] Ἤγουν νέαν γῆν καὶ νῆσον . Ῥίζαν ]
τελέως μ ' ὑπῆλθεν ἡ κατάρατος μαστροπός , ἐπομνύουσα τὰν Κόραν , τὰν Ἄρτεμιν , τὰν Φερρέφατταν , ὡς δάμαλις
5722167 περονῃ
Περὶ ἀστραγάλου . ἀστράγαλος δὲ οὐ κατάγνυται διὰ τὸ περιέχεσθαι περόνῃ καὶ κυβοειδεῖ , διὰ δὲ τὴν αὐτὴν αἰτίαν οὔτε
αἱ δύο μία . Ὁμοίως καὶ ἡ τρίτη περονᾶται μιᾷ περόνῃ καὶ ὑπὸ τοῦ διαξύλου ἐπαίρεται καὶ ὀρθοῦται καὶ τὴν
5721574 Ἀμπελος
νεʹ δʹʹ λεʹ ιβʹʹ Ἐρυθραῖον ἄκρον νεʹ γʹʹ λεʹ ιβʹʹ Ἄμπελος ἄκρα νεʹ ∠ ʹʹ λεʹ Ϛʹʹ Ἰτανὸς πόλις νεʹ
οἱ ἀσπάραγοι ἑφθοὶ ἐσθίονται , οὔρησιν καὶ κοιλίαν κινοῦντες . Ἄμπελος μέλαινα , ἣν ἰδίως βρυωνίαν καλοῦσί τινες , οἱ
5719226 ΡΚ
, τὴν δὲ ΡΛ μοιρῶν νζ λ , τὴν δὲ ΡΚ μοιρῶν νε μ , τὴν δὲ ΡΘ , μοιρῶν
τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ , ΝΣ , ΣΚ . οὐκοῦν αἱ ἀπὸ τοῦ
5718530 ΕΞ
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη .
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ
5714809 καταχθεντας
εἰς ἣν ἂν ἔλθωσι πρώτην , ἐν ταύτῃ κατοικήσειν . καταχθέντας δὲ τῆς Ἰταλίας περὶ τὰ καλούμενα Πωμεντῖνα πεδία τό
παρεκλέγων , θαλάττης ἀγριώτερος , χειμῶνος βιαιότερος , καταδύων τοὺς καταχθέντας , ἀπάνθρωπος , ἐπαχθής , ἄπληστος , ἄμετρος ,
5714162 Παλμυρα
καὶ τὸ ἐθνικὸν Μωαβίτης , τὸ θηλυκὸν Μωαβῖτις . : Πάλμυρα , φρούριον Συρίας , οὗ μέμνηται Οὐράνιος ἐν Ἀραβικῶν
Ἀντιοχίδος φυλῆς οὕτω λεγόμενος Παλλήνη . ὁ δημότης Παλληνεύς . Πάλμυρα , φρούριον Συρίας , οὗ μέμνηται Οὐράνιος ἐν Ἀραβικῶν
5711381 Μαυριτανιας
γʹ . Ὁ πρῶτος πίναξ τῆς Λιβύης περιέχει τὰς δύο Μαυριτανίας , τήν τε Τιγγιτανὴν καὶ τὴν Καισαρηνσίαν . Ὁ
δὲ καὶ Λίγγιος καὶ Λίγγιος κόλπος . Λίγξ , ποταμὸς Μαυριτανίας καὶ πόλις . τινὲς δὲ Λίξον γράφουσι καὶ Λίξους
5711120 ΥΤ
ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ
ἡ μὲν ΛΤΜ τῆς ΜΤ , ἡ δὲ ΠΛ τῆς ΥΤ , ὅλη ἄρα ἡ ΠΜ ὅλης τῆς ΜΥ ἐστὶν
5709224 ΩΑʹ
ΩΑʹ τοῦ ἀπὸ τῆς ΑʹΧ . καί ἐστι τῆς μὲν ΩΑʹ διπλῆ ἡ ΩΨ , τῆς δὲ ΑʹΧ διπλῆ ἡ
λόγον ἔχει ἤπερ ἡ ΡΟ πρὸς ΟΝ , καὶ ἡ ΩΑʹ πρὸς ΑʹϚ μείζονα λόγον ἔχει ἤπερ ἡ ΡΟ πρὸς
5709190 ΕΠΙ
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι
5709024 ἀπαγης
κληματίδα , καθά φησι Χρύσιππος ἐν πρώτῳ Παροιμιῶνπαχύκνημός τε καὶ ἀπαγὴς καὶ ἀσθενής : διὸ καί φησι Περσαῖος ἐν ὑπομνήμασι
τέχνης ἀρχὴ καὶ ἐπιστήμης γίνεται . ἡ μὲν γὰρ ἐμπειρία ἀπαγὴς ἔτι : ἡ δὲ καθόλου πρότασις πεπηγυῖά τε καὶ
5708629 ΨΟ
διπλάσιον ; καὶ δεικτέον οὕτως : ἐπεὶ γὰρ ἐπιζευγνυμένων τῶν ΨΟ , ΨΣ αἱ ὑπὸ ΚΨΒ , ΚΨΣ , ΣΨΟ
τὸ ἀπὸ τῆς ΑΨ . λοιπὸν ἄρα τὸ ἀπὸ τῆς ΨΟ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΨΣ . ἴσον δὲ
5706154 συμπτωσεως
τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , ἡ μεταξὺ τῆς συμπτώσεως καὶ τῆς τὰς ἁφὰς ἐπιζευγνυούσης δίχα τμηθήσεται ὑπὸ τῆς
ἐπ ' εὐθείας τῆς παρὰ τὴν πλαγίαν ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῶν τομῶν τετράγωνα λόγον ἔχουσιν ,
5704892 ΡΧ
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ
5704334 Πελαγονιας
Ῥιανὸς δὲ Ἀγύλλιον εἶπε χαλκόν . . Ἄζωρος : πόλις Πελαγονίας τῆς λεγομένης Τριπολίτιδος , ὡς Στράβων , ὑπό τινος
οἱ δ ' ἀρχηγέτας ἀποφαίνουσι , καὶ τὴν Παιονίαν μέχρι Πελαγονίας καὶ Πιερίας ἐκτετάσθαι φασί : καλεῖσθαι δὲ πρότερον Ὀρεστίαν
5703488 ΤΜ
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς
5702587 διατιθεισα
τὰ πολιτικὰ πρεπόντως τε γιγνομένη καὶ κατ ' ἀξίαν ἕκαστα διατιθεῖσα : διήκοι δὲ οὐδὲν ἧττον καὶ ἄχρι τῆς τῶν
διαιρεθέντες , καθὼς ἂν ἦγεν ἡ συμφορά , τοῦ φόβου διατιθεῖσα τὰ σχήματα . ἔδοξεν οὖν τῷ τε πατρὶ καὶ

Back