ΥΑΦ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΧΗ συναμφοτέρου τῆς ΦΘ ΥΚ μείζων ἐστίν . ἴση δὲ ἡ ΦΘ τῇ
να . πάλιν δ ' , ἐπεὶ καὶ ἡ μὲν ΦΘ τῇ ΦΧ ἴση ἐστίν , ἡ δὲ ΝΧ τῆς
8850239 ΔΦ
ΦΘ ὁμοίως ε ιϚ . καὶ ἐπεὶ τὸ ἀπὸ τῆς ΔΦ λειφθὲν ὑπὸ τοῦ ἀπὸ τῆς ΔΑ ποιεῖ τὸ ἀπὸ
τοῦ κέντρου τοῦ ἐκκέντρου ξ , τοιούτων καὶ ἡ μὲν ΔΦ ἔσται δ ια ∠ ʹ , ἡ δὲ ΦΘ
8339000 ΘΦ
ΣΠ τῇ ΥΘ ἐστιν ἴση , ἡ δὲ ΠΞ τῇ ΘΦ : καὶ ἡ ΥΘ ἄρα τῆς ΘΦ ἐστι μείζων
ἐποίησεν ἐν τῷ αὐτῷ λόγῳ καὶ τὴν ΤΘ πρὸς τὴν ΘΦ . πᾶσα δὲ ἀνάγκη μήτ ' ἐκεῖνον εὑρίσκειν τὸ
7908401 ΘΧ
Ψ͵Δ . καὶ ἐπεὶ αἱ ΖΤ ΤΥ ΥΗ ΗΦ ΦΘ ΘΧ ΧΨ ΨΚ περιφέρειαι ἴσαι ἀλλήλαις εἰσίν , αἱ ἄρα
πλευρά . ἐπεὶ οὖν , ὡς ἡ ΘΗ πρὸς τὴν ΘΧ , οὕτως τὸ ὑπὸ τῶν ΗΦ , ΦΘ πρὸς
7836336 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ
7812702 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
7799601 ΝΧ
Ν σημείων - ἐπὶ τὴν ΑΘ ἐκβληθεῖσαν αἱ ΔΦ καὶ ΝΧ . ἐπεὶ τοίνυν ἡ ΞΕ περιφέρεια μοιρῶν ἐστιν λϚ
ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ ΝΧ διπλῆ οὖσα τῆς ΔΦ συνάγεται θ ιη . διὰ
7757206 ΨΣ
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ
7690968 ΑΣ
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν .
7673210 ΑΚ
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ .
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί
7672097 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
7666828 ΑΛΒ
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα
7645222 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
7644338 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
7594734 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
7592488 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
7586920 ΕΜ
ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ
ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ
7583974 ΦΧ
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ
7564959 ΟΛ
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ
7551921 ΒΛ
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα
7532601 ΕΠ
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ
7521891 ΗΝ
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ .
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ :
7520688 ΗΖ
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ
7513289 ΟΤ
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ
7509820 Ϙγ
. . . . . . . . . . Ϙγ γοʹ λζ δʹ Τιβρακάνα . . . . .
πη θ πθ οβ Ϙ ιγ Ϙα πα Ϙβ ιβ Ϙγ νζ Ϙδ κθ Ϙε κε ϘϚ πθ Ϙζ οζ
7507129 ΜΗ
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ
7503865 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
7495893 ΑΤ
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ
7492513 ΗΛ
πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ ,
τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο
7486942 ΟΚ
ΔΟ τοῦ ὑπὸ τῶν ΘΟΚ , ἀνάλογον ἡ Λ πρὸς ΟΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΟ πρὸς ΟΔ .
περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ μὲν ΟΚ τοῦ μεσημβρινοῦ διάστασις , τουτέστιν ἡ ἀπὸ τοῦ διὰ
7480467 ΥΗ
τοῦ δὲ Φ τῆς φαινομένης αὐτῶν ἐποχῆς . ἡ δὲ ΥΗ ἔσται # δ τῆς ἡλίου κινήσεως ἀπὸ τοῦ Υ
ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ ΥΗ # δ : ἐν ᾧ γὰρ ἡ σελήνη τὴν
7480260 ΘΕ
ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς
ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει
7477682 πθ
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον
7474256 ΔΛ
ΑΓ , ΓΒ μέσα ἐστίν . μέσον ἄρα ἐστὶ τὸ ΔΛ . καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται : ῥητὴ
ἡ μὲν ΑΚ τῇ ΛΒ , ἡ δὲ ΓΚ τῇ ΔΛ , δύο δὴ αἱ ΑΚ , ΚΓ δύο ταῖς
7472785 ΜΛΝ
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί
7457140 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
7453556 ΕΛ
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς
7437108 ΣΡ
ΤΡΧ , τουτέστιν τῷ τοῦ ἀπὸ ΕΣ πρὸς τὸ ἀπὸ ΣΡ . ἔχει δὲ σύγκρισιν . ἐπεὶ οὖν τὸ ἀπὸ
τὸ ΝΘ : καὶ ὡς ἄρα τὸ ΜΖ πρὸς τὸ ΣΡ , οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ . τὸ
7437090 ΨΚ
λοιπὸν ἄρα τὸ ἀπὸ τῆς ΒΨ λοιπῷ τῷ ἀπὸ τῆς ΨΚ ἴσον ἐστίν : ἴση ἄρα ἡ ΒΨ τῇ ΨΚ
ἄρα τὸ ἀπὸ τῆς ΚΒ τῶν ἀπὸ τῶν ΒΨ , ΨΚ . ἴση δὲ ἡ ΒΨ τῇ ΨΚ : ὥστε
7431018 ΣΒ
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ
7425379 ΒΖΔ
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς
7422498 ΔΗ
ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ
παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ
7407831 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
7395091 ΓΜ
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ
7391727 ΕΞ
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη .
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ
7388186 ΜΞ
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ ,
7380054 ΡΛ
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ ,
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ
7379416 ΟΞ
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ
7376835 ΖΟ
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ
7363059 ΗΑ
καὶ ὡς ἡ ΔΑ πρὸς τὴν ΑΒ , οὕτως ἡ ΗΑ πρὸς τὴν ΑΕ : καὶ ὡς ἄρα ἡ ΗΑ
δειχθέντα ἡ ΖΗ πρὸς ΖΒ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΗΑ πρὸς ΑΒ . ἐπεὶ οὖν ἡ ΖΒ ἴση οὖσα
7353288 ροδ
ὧν ὑπεροχὴ # # κα . καὶ πάλιν ταῖς μὲν ροδ καὶ ρπϚ , # νθ μα : ταῖς δὲ
ἐχίδνηϲ ροα Ἐχῖνοϲ θαλάττιοϲ ροβ Ἐχῖνοϲ χερϲαῖοϲ ρογ Ἱππόκαμποι θαλάττιοι ροδ Περὶ κανθαρίδων ροε Καρκῖνοι ποτάμιοι ροϚ Περὶ καράβου ροζ
7349458 ΛΔ
δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ
ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν
7346322 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
7345600 ΚΜ
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς
7329687 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
7328774 ΡΜ
μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων ἐστὶν ἢ
ἴση ἐστὶν ἡ ΗΠ τῇ ΗΘ , μείζων ἐστὶν ἡ ΡΜ τῆς ΜΚ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΞΜ
7327572 ΟΥΚ
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις .
7326290 ρδ
τέσσαρα . γίνονται οὖν τῶν δύο τετραγώνων αἱ μονάδες . ρδ ἡ δὲ ΑΓ ιϚ : τετράκις γὰρ δ ιϚ
δ ' ἐπὶ τῆς ΕΘ τῶν λοιπῶν εἰς τὸ ἡμικύκλιον ρδ ιζ . καὶ τῶν ὑπ ' αὐτὰς ἄρα εὐθειῶν
7325649 ٢٨
μέσον τὸ ΓΕ . Ἡ πλευρὰ τοῦ . . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ
٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ ٢٨ ١٩ τὸ ΗΚ ١٦ ἡ δυναμένη αὐτό ٤ ΚΘ
7318776 ΩΣ
ΠΡΩΤΟΣ Ο ΔΙΑ ΤΟΥ ΑΡΣΕΝΙΚΟΥ Ο ΒΑΠΤΩΝ ΤΟΝ ΧΑΛΚΟΝ , ΩΣ ΕΝ ΤΟΥΤΟΙΣ . Ἀρσένικον ὅ ἐστι θεῖον καὶ ταχέως
χρυσοῦν , χαλκοῦς χαλκοῦν , εὔνους εὔνουν . Τὰ εἰς ΩΣ λήγοντα ἔχοντα οὐδετέρου παρασχηματισμὸν ὁμοτονοῦσιν : ἀξιόχρεως ἀξιόχρεων ,
7315392 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
7308085 ρνε
τοῦτο δὲ καὶ ἡ μὲν ἐπὶ τῆς ΒΜ περιφέρεια τοιούτων ρνε θ , οἵων ὁ περὶ τὸ ΒΓΜ ὀρθογώνιον κύκλος
σδ να διὰ τὸ τὴν ὑπὸ ΔΓΖ τῶν αὐτῶν δεδεῖχθαι ρνε θ : καὶ ὅλη ἄρα ἡ ὑπὸ ΑΒΖ γωνία
7306622 ΑΛ
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ
7302914 ογ
. . . . σ [ λ [ οσ [ ογ ? [ ξ ? [ προ ? [ κορ
. . . . . . . . . . ογ Ϛʹ κγ δʹ : Βιαβάνα . . . .
7298162 ΡΟ
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω
7297449 ΣΝΡ
ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ ΣΝΡ ἴσον ἐστὶ τῷ ὑπὸ ΞΝΖ . τὸ δὲ ἀπὸ
ὡς ἄρα τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως ἡ ΘΖ πρὸς ΖΛ , τουτέστιν ἡ
7290571 ΝΗ
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα
7282147 ΕΗ
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε
7278780 ΤΗΝ
τιμῶσι μὲν καλῶς εἶπεν , οὐ φιλοῦσι δέ . . ΤΗΝ Δ ' ἙΤΕΡΗΝ . Τὴν ἀμείνω λέγει : καὶ
κατάθου λοιπὸν μετὰ τὴν συμφορὰν τὴν πόλιν εἰρωνευόμενος . ΜΕΤΑ ΤΗΝ ἈΝΤΙΛΗΨΙΝ ΘΗΣΕΙΣ ΤΟ ΧΡΩΜΑ Ἀντεγκληματικὸν τυγχάνον διὰ τὴν ἔχθραν
7276109 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
7270589 ΘΒΚ
ἐφαπτομένη παράλληλός ἐστι τῇ ΑΓ . ἔστω οὖν ἐφαπτομένη ἡ ΘΒΚ : συμπεσεῖται δὴ ταῖς ΕΔ , ΔΖ . ἐπεὶ
καθέτου διάμετρος ἡ ΔΓΒΕ , διήχθωσαν δὲ αἱ ΖΒΗ , ΘΒΚ ἴσας περιφερείας ἀπολαμβάνουσαι πρὸς τῇ ΕΔ τὰς ΚΔ ,
7266866 ΡΘ
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ
7258025 ΒΘ
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ
7256097 ΚΧ
τῷ ἀπὸ ΓΧ : ἐὰν γὰρ ἀπὸ τοῦ Ε τῇ ΚΧ παράλληλον ἄγωμεν , τὸ ὑπὸ τῆς ΤΧ καὶ τῆς
καὶ ἡ ΣΧ τῇ ΟΦ , ἡ δὲ ΒΦ τῇ ΚΧ . παράλληλος ἄρα . , ] ἐὰν γὰρ δύο
7252142 ΥΑ
ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ , ἡ ΘΤ πρὸς ΤΟ καὶ ἡ ΘΒ πρὸς
τῆς ΚΓ : ἡ δὲ ΦΧ πρὸς ἐλάσσονα ὁμοίως τῆς ΥΑ : ἡ δὲ ΟΡ πρὸς μείζονα τῆς ΑΠ .
7251356 ΡΓ
ἡ δὲ ΡΒ ὁμοίως μοιρῶν ζ μ . ἡ δὲ ΡΓ μοιρῶν θ λ . ἡ δὲ ΡΔ ὁμοίως μοιρῶν
, ΘΠ , ἐν ἴσῳ δὲ ἡ μὲν ΑΞ τῇ ΡΓ , ἡ δὲ ΞΟ τῇ ΠΡ , ἡ δὲ
7244325 ροε
κζ λβ : ἡ δὲ τῆς ΖΗ περιφερείας διπλῆ μοιρῶν ροε , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριθ
σ ἤτοι ιδ η λα ἡ Γ ἡ πλευρὰ τοῦ ροε ἤτοι ιγ ιγ μγ , καθὼς κεῖται ἐν τῷ
7242229 ΗΕ
ἀπὸ ΖΔ , οὕτως τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ ΒΖΑ πρὸς
: λοιπὸν ἄρα τὸ ἀπὸ ΘΖ ἔλασσόν ἐστιν τοῦ ἀπὸ ΗΕ : ἐλάσσων ἄρα ἐστὶν ἡ ΘΖ τῆς ΗΕ .
7241617 ΗΜ
παρὰ τὴν ΗΘ εὐθεῖαν τῷ ΔΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΗΜ ἐν τῇ ὑπὸ ΗΘΜ γωνίᾳ , ἥ ἐστιν ἴση
συγκείμενον ἔχει λόγον ἐκ τοῦ ὃν ἔχει ἡ ΘΗ πρὸς ΗΜ καὶ ἐκ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς ΗΛ
7239365 ΖΒΗ
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ
7238182 ΜΛ
. καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ
ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι
7234146 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
7230385 ΕΘ
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν
7219896 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
7218021 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
7214081 ΧΕ
ΜΚΘ : δι ' ἴσου ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ὑπὸ ΧΕΔ , τὸ ἀπὸ ΜΚ πρὸς
τρίγωνον τῷ ΗΜΚ . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ἀπὸ ΕΓ , τὸ ἀπὸ ΜΚ πρὸς
7207225 πζ
. . . . . . . . . . πζ Ϛʹ λζ Ϛʹ : Ἐκβάτανα . . . .
. . . . . . . . . . πζ ∠ ʹ λ Ϛʹ Ῥογομάνιος ποταμοῦ ἐκβολαί πη ∠
7202940 ΚΑΤΑ
. . ΚΑΤΑΦΡΑΖΕΣΘΕ . Βουλεύεσθε , νοεῖτε . Παρολκὴ ἡ ΚΑΤΑ , τουτέστι περιττεύει . . ΤΡΙΒΟΥΣΙ . Κατατρίβουσι ,
. Καὶ τῇ ἐκκλησίᾳ δὲ τῇ παροικούσῃ ΑΜΑΣΤΡΙΝ ἉΜΑ ΤΑΙΣ ΚΑΤΑ ΠΟΝΤΟΝ ἐπιστείλας , Βακχυλίδου μὲν καὶ Ἐλπίστου , ὡς
7200133 ΝΤ
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ ,
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας ,
7195570 ΜΠ
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ ,
7192271 ΛΤ
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ
7191890 ροα
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν
7191713 πϚ
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΖΘ γίνεται πϚ η # , ἡ δὲ ΓΘ ὁμοίως ρϚ λθ
. . . . . . . . . . πϚ μζ Τέλαιβα πόλις . . . . . .
7190055 Ϙζ
τῶν ἀπ ' αὐτῶν ⃞ων , ΔΥ Δ α Μο Ϙζ ἴσ . ⃞ῳ : τῷ ἀπὸ πλ . ΔΥ
Ϙ β ι λδ α γ ιη νγ β λ Ϙζ ο ιβ μα ο δ Ἡλίου κ νθ γ
7188151 ΒΦ
] ἐστὶν ἡ μὲν ΟΦ τῇ ΣΧ , ἡ δὲ ΒΦ τῇ ΚΧ . ἔστι δὲ καὶ ὅλη ἡ ΒΑ
ΗΑ ἴση . Ἔστω ἡ ΒΔ ιβ , ἡ δὲ ΒΦ δ , ἡ δὲ ΦΔ η . ἡ οὖν
7182322 ΓΖΔ
ΒΕ , ΓΖ : ὅμοια ἄρα ἐστὶ τὰ ΕΒΔ , ΓΖΔ ὀρθογώνια διὰ τὸ παραλλήλους εἶναι τὰς ΒΕ , ΖΓ
καὶ θερινὸς μὲν τροπικὸς ὁ ΒΕΑ , χειμερινὸς δὲ ὁ ΓΖΔ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς
7179894 ΛΘ
ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον . ἐν πλείονι δὲ χρόνῳ ἡ ΛΘ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΘΝ : ἐδείχθη
ἐστίν , ὡς δὲ ἡ ΛΝ πρὸς ΝΞ , ἡ ΛΘ πρὸς ΘΜ : ἴση ἄρα ἡ ὑπὸ ΛΖΘ γωνία
7174909 Ϙβ
ἀνασκευάσαι τὰ εἰρημένα . τὰ πάντα δὲ ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ αὐτοῦ δράματα ξζ καὶ γ πρὸς
τρίτος ἐγένετο . τὰ πάντα δ ' ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ οη : τούτων νοθεύεται τρία ,
7174329 συζυγης
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης
7170944 ριη
τῶν αὑτοῦ μηνῶν ιθ ἑαυτῷ ἐπιμερίζει ἡμέρας πγ , Σελήνῃ ριη , Κρόνῳ ρλ , Διὶ νβ , Ἄρει ξδ
. . . . . . . . . . ριη ∠ ʹ λη ∠ ʹδ Βαρζαῦρα . . .
7170488 Πλακῳ
ἡ Θήβη ἔρημος , ἥν φησιν ὁ ποιητής ” ὑπὸ Πλάκῳ ὑληέσσῃ . „ οὔτε δὲ Πλάκος ἢ Πλὰξ ἐκεῖ
θυγάτηρ μεγαλήτορος Ἠετίωνος „ , Ἠετίων , ὃς ἔναιεν ὑπὸ Πλάκῳ ὑληέσσῃ , Θήβῃ ” ὑποπλακίῃ , Κιλίκεσς ' ἄνδρεσσιν

Back