ΜΚΘ : δι ' ἴσου ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ὑπὸ ΧΕΔ , τὸ ἀπὸ ΜΚ πρὸς | ||
τρίγωνον τῷ ΗΜΚ . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΧΕ πρὸς τὸ ἀπὸ ΕΓ , τὸ ἀπὸ ΜΚ πρὸς |
καλείσθω δὲ μέσης ἀποτομὴ δευτέρα . Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ , καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ , ΒΓ | ||
τὸ ἄρα ΔΘ μέσον ἐστίν . καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΖ : ῥητὴ ἄρα ἐστὶ |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
χαυνῶ κοινῶ οἰνῶ , χωρὶς τοῦ ἐλαύνω . Τὰ εἰς ΝΩ ὑπερδισύλλαβα παραληγόμενα τῇ ΕΙ διφθόγγῳ ἢ μακρῷ τῷ Ι | ||
ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ |
μὲν ΒΦ περιφέρεια τῆς ΦΧ , ἡ δὲ ΦΧ τῆς ΧΗ : ἐν πλείονι ἄρα χρόνῳ τὸ Φ τὴν ΦΒ | ||
ΜΚ ἄξων τοῦ ΚΖ ἄξονος , τοσαυταπλασίων ἐστὶ καὶ ὁ ΧΗ κύλινδρος τοῦ ΗΔ κυλίνδρου . καὶ εἰ μὲν ἴσος |
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ | ||
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ |
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
ἴση ἐστὶν ἡ ΣΚ τῇ ΚΒ , κοινὴ δὲ ἡ ΚΨ , καὶ βάσις ἡ ΣΨ βάσει τῇ ΨΒ ἐστιν | ||
ΘΚ , ΚΛ περιφερειῶν μείζων ἐστὶν ἑκατέρας τῶν ΣΚ , ΚΨ , μείζων ἄρα καὶ ἡ ΣΚ τῆς ΚΨ . |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων ἐστὶν ἢ | ||
ἴση ἐστὶν ἡ ΗΠ τῇ ΗΘ , μείζων ἐστὶν ἡ ΡΜ τῆς ΜΚ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΞΜ |
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ | ||
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ |
. Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων | ||
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι | ||
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ , |
. . ΚΑΤΑΦΡΑΖΕΣΘΕ . Βουλεύεσθε , νοεῖτε . Παρολκὴ ἡ ΚΑΤΑ , τουτέστι περιττεύει . . ΤΡΙΒΟΥΣΙ . Κατατρίβουσι , | ||
. Καὶ τῇ ἐκκλησίᾳ δὲ τῇ παροικούσῃ ΑΜΑΣΤΡΙΝ ἉΜΑ ΤΑΙΣ ΚΑΤΑ ΠΟΝΤΟΝ ἐπιστείλας , Βακχυλίδου μὲν καὶ Ἐλπίστου , ὡς |
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
ΠΡΩΤΟΣ Ο ΔΙΑ ΤΟΥ ΑΡΣΕΝΙΚΟΥ Ο ΒΑΠΤΩΝ ΤΟΝ ΧΑΛΚΟΝ , ΩΣ ΕΝ ΤΟΥΤΟΙΣ . Ἀρσένικον ὅ ἐστι θεῖον καὶ ταχέως | ||
χρυσοῦν , χαλκοῦς χαλκοῦν , εὔνους εὔνουν . Τὰ εἰς ΩΣ λήγοντα ἔχοντα οὐδετέρου παρασχηματισμὸν ὁμοτονοῦσιν : ἀξιόχρεως ἀξιόχρεων , |
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ | ||
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ |
μέσου ἡμέρας ὁ τοῦ ἡλίου κύκλος θέσιν ἕξει ὡς τὴν ΦΨ . Γεγράφθω διὰ τοῦ Φ μέγιστος κύκλος ὁ ↑ | ||
περιφέρεια εἰς ἄνισα κατὰ τὸ Φ σημεῖον , καὶ ἡ ΦΨ ἐλάσσων ἐστὶν ἢ ἡμίσεια τοῦ ἐφεστῶτος τμήματος : ἡ |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ | ||
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ |
πρὸς τὴν ΓΔ . διὰ τὰ αὐτὰ δὴ καὶ τὸ ΜΕ πρὸς τὸ ΝΗ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ | ||
τὴν ΖΕ , συνθέντι καὶ ἐναλλάξ ἐστιν , ὡς ἡ ΜΕ πρὸς τὴν ΕΗ , οὕτως ἡ ΘΕ πρὸς τὴν |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
τριγώνῳ ἴσον ἔσται : ἴση ἄρα καὶ ἡ ΣΧ τῇ ΟΦ , ἡ δὲ ΒΦ τῇ ΚΧ . παράλληλος ἄρα | ||
ἀπὸ μὲν τοῦ Ο ἐπὶ τὴν ΓΔ κάθετος ἤχθω ἡ ΟΦ , ἀπὸ δὲ τοῦ Υ ἐπὶ τὴν ΜΞ ἡ |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
ἄρα ἀπὸ τῆς ΜΓ ἔλασσόν ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . τὸ δὲ ἀπὸ τῆς ΜΓ τοῦ ἀπὸ τῆς | ||
τῶν ΓΩ , ΩΜ ἐλάσσονά ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . ἀλλὰ τὸ ἀπὸ τῶν ΓΩ , ΩΜ ἴσον |
ἐν τῷ ὑπὲρ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν ζαʹ : τοῦ ἄρα ἡλίου τὴν ζαʹ περιφέρειαν ἐν τῷ | ||
ἄστρον καὶ δύσεται καὶ ἀνατελεῖ : ὥστε τοῦ ἡλίου τὴν ζαʹ περιφέ - ρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , |
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
καὶ ἡ ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους | ||
ΡΥ , ΥΔ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΡ , καὶ ἔτι αἱ ΕΟ , ΟΣ , ΣΒ |
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ | ||
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση |
Ψ͵Δ . καὶ ἐπεὶ αἱ ΖΤ ΤΥ ΥΗ ΗΦ ΦΘ ΘΧ ΧΨ ΨΚ περιφέρειαι ἴσαι ἀλλήλαις εἰσίν , αἱ ἄρα | ||
πλευρά . ἐπεὶ οὖν , ὡς ἡ ΘΗ πρὸς τὴν ΘΧ , οὕτως τὸ ὑπὸ τῶν ΗΦ , ΦΘ πρὸς |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |
τῆς δευτέρας συζυγοῦς διαμέτρου , ὡς δὲ τὸ ὑπὸ τῶν ΠΣ , ΣΑ , τουτέστι τὸ ὑπὸ τῶν ΓΣ , | ||
δύσις ἡ Ρ , καὶ κείσθω τῇ ΡΝ ἴση ἡ ΠΣ [ καθ ' ὑπόθεσιν , καὶ ἔστω ἐπὶ τοῦ |
γῆς ὑποτείνουσα εὐθεῖα , μείζονα λόγον ἔχει ἢ ὃν τὰ χοε πρὸς α . Ἔστω τὸ αὐτὸ σχῆμα τῷ πρότερον | ||
, γίνονται σκϚ : ταῦτα ἀπὸ τῶν Ϡ , λοιπὸν χοε : ὧν πλευρὰ τετραγωνικὴ κϚ : τοσοῦτον ἡ κάθετος |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς | ||
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ |
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ | ||
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς |
ἡ ἐνεργοῦσα καὶ διαρθρουμένη καὶ οὐχ ἡ περόνη . [ ΠΕΡΙ ΜΗΡΟΥ ] , , . = , , . | ||
ΙϚʹ . Περὶ μανδάτων διδομένων τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας |
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά | ||
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω |
εἰς ΟΣ συνθέτων . Τὸ δὲ δέκατον περιέχει τὰ εἰς ΥΣ ἀρσενικὰ καὶ θηλυκὰ καὶ τὰ ἔχοντα διφθόγγους πρὸ τοῦ | ||
ἐνεργείας τίθενται , προπαροξυνόμενα δὲ ἐπὶ πάθους . Τὰ εἰς ΥΣ πολυσύλλαβα κύρια ἢ προσηγορικὰ , μὴ ἐθνικὰ , βαρύνεται |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ , | ||
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
δὲ προφορικὸν ὁ Ἑρμῆς ἐντίθησιν . . ΕΝ Δ ' ΑΡΑ ΟΙ ΣΤΗΘΕΣΣΙΝ . Ἐν μέσῳ τῶν τεχνῶν , τουτέστι | ||
ἐφέλκουσι τὸ ν , συμφώνου δὲ οὐκέτι . . ΟΥΚ ΑΡΑ ΜΟΥΝΟΝ . Διττή ἐστιν ἡ ἔρις . Ἡ μὲν |
δὲ ΠΖ ἴση ἡ ΚΞ . ἐπεὶ ἴση ἐστὶν ἡ ΠΖ τῇ ΚΞ , ἐν ἴσῳ ἄρα χρόνῳ ὁ ἥλιος | ||
ἡ ΠΗ εὐθεῖα ἴση τῇ ΗΑ . ἐπεὶ οὖν ἡ ΠΖ εὐθεῖα ἴση ἐτέθη τῇ ΖΑ , κοινὴ προσκείσθω ἡ |
ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ | ||
ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ |
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
. ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΑΥΤΗΙ ΚΑΙ Ο [ ΙΑΜΒΟΣ ] δακτυλ | ||
ΑΝ ΚΑΔΜΟΣ ΕΓΕΝΝΑΣΕ ΠΟΤ ΕΝ ΤΑΙΣ ΠΟΛΥΟΛΒιΟΙΣΙΝ 〚 〛 ΘΗΒΑΙΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΚΑΙ Ο ΙΑΜΒΟΣ ΤΗΙ ΑΥΤΗΙ ΤΑΥΤΗΙ ΛΕΞΕΙ |
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ . | ||
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ |
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας | ||
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ |
ἢ Τρίηρον ἄκρον . . . . . μγ ∠ ʹγιβ λα γʹ Κεφαλαὶ ἄκρον . . . . . | ||
. . . . . . ογ γʹ κθ ∠ ʹγιβ Δούμεθα ἢ Δουμαίθα . . . . . οε |
ἡ δὲ ΡΒ ὁμοίως μοιρῶν ζ μ . ἡ δὲ ΡΓ μοιρῶν θ λ . ἡ δὲ ΡΔ ὁμοίως μοιρῶν | ||
, ΘΠ , ἐν ἴσῳ δὲ ἡ μὲν ΑΞ τῇ ΡΓ , ἡ δὲ ΞΟ τῇ ΠΡ , ἡ δὲ |
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν | ||
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
, οὕτως τὸ ἀπὸ τῆς ΝΤ πρὸς τὸ ἀπὸ τῆς ΣΩ . καὶ ὡς ἡ ΟΞ ἄρα πρὸς τὴν ΦΨ | ||
διαμέτρου πρὸς τὸ ἀπὸ τῆς συζυγοῦς διαμέτρου , φέρε τῆς ΣΩ : ὡς ἄρα τὸ ἀπὸ τῆς ΟΞ πρὸς τὸ |
, ὅτι καὶ οὕτως ἰσογώνιόν ἐστι τὸ ΑΒΓΔΕ πεντάγωνον . Ἐπεζεύχθω γὰρ ἡ ΒΔ . καὶ ἐπεὶ δύο αἱ ΒΑ | ||
ὁ αὐτὸς κύκλος περιλαμβάνει τὸ πεντάγωνον καὶ τὸ τρίγωνον . Ἐπεζεύχθω ἡ ΕΓ : κύβου ἄρα τοῦ ὑπὸ τὴν αὐτὴν |
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
ΜΡ μείζων ἐστὶν ἢ διπλῆ , ἡ δὲ ΞΝ τῆς ΝΣ ἐλάσσων ἐστὶν ἢ διπλῆ , ἐλάσσων ἄρα ἐστὶν ἡ | ||
μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ ΘΚ ἄρα τῆς ΝΣ μείζων ἐστὶν ἢ ὁμοία . καὶ εἰσὶ τοῦ αὐτοῦ |
τιμῶσι μὲν καλῶς εἶπεν , οὐ φιλοῦσι δέ . . ΤΗΝ Δ ' ἙΤΕΡΗΝ . Τὴν ἀμείνω λέγει : καὶ | ||
κατάθου λοιπὸν μετὰ τὴν συμφορὰν τὴν πόλιν εἰρωνευόμενος . ΜΕΤΑ ΤΗΝ ἈΝΤΙΛΗΨΙΝ ΘΗΣΕΙΣ ΤΟ ΧΡΩΜΑ Ἀντεγκληματικὸν τυγχάνον διὰ τὴν ἔχθραν |
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
: ὁ δὲ χρόνος , ἐν ᾧ τὸ Ψ τὴν ΨΧ διαπορεύεται , ὁ χρόνος ἐστίν , ἐν ᾧ τὸ | ||
ὁ ἥλιος τὴν ΨΧ περιφέρειαν διαπορεύεται , καὶ ἔστιν τῆς ΨΧ ἡμίσεια ἡ Ψ͵Β , ἐν ἄρα τῷ ἡμίσει τῆς |
ἐκ τῆς ἐπιορκίας τιμωρίαν τοῖς σκολιῶς δικάσασι . . ΑΥΤΙΚΑ ΓΑΡ ΤΡΕΧΕΙ ὉΡΚΟΣ . Κατασκευάζων πῶς ἡ δικαιοσύνη ὑπερφέρει τῆς | ||
ἦτοι βασιλῆες Ἀχαιῶν εἰσὶ καὶ ἄλλοι . . ΗΔΗ ΜΕΝ ΓΑΡ ΚΛΗΡΟΝ ΕΔΑΣΣΑΜΕΘΑ . Ἀντὶ τοῦ πρὸ μακροῦ τὴν περιουσίαν |
δορατοφόρος ἐν ἱππικῇ , ἐκ διαστήματος δέ , ὡς ἡ τοξικὴ καὶ ἀκοντιστική . καὶ τούτων ἑκάστη ἤτοι ταχεῖα ἢ | ||
δὲ τύχῃ , τέλος . οὕτως οὖν καὶ κυβερνητικὴ καὶ τοξικὴ οὐκ ἀπὸ τῶν τελῶν ὁρίζονται . οὐ γὰρ ἀεὶ |
Υ ! [ ! . . . . . . ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ | ||
! [ ] ! Α ! ! [ ] ! ΜΕΝ [ ] [ ! ] ! ! Π [ |
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ | ||
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ |
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
ἔλεγε περιπεσόντες ταῖς ὕβρεσιν , ἃς ἐκάλεσαν ἄτας . . ὙΒΡΙΣ ΓΑΡ ΤΕ ΚΑΚΗ ΔΕΙΛΩι ΒΡΟΤΩι . Ἡ ὕβρις γὰρ | ||
τοῖς πονηροῖς τὴν τοιαύτην ζωήν . . ΟΙΣ Δ ' ὙΒΡΙΣ ΤΕ ΜΕΜΗΛΕ , Οὐκ οἶδα ποίαν ἀβελτηρίαν τῶν ἀνδρῶν |
τῶν δύο διαφορῶν μοιρῶν η μ : καὶ λοιπὴν τὴν ΒΡ διάστασιν ρλϚ νβ , ἐλάσσονα τῶν τῆς μέσης ρμε | ||
ὡς ἡ ΑΔ πρὸς ΑΒ , οὕτως ἡ ΔΠ πρὸς ΒΡ . ἐλάττων δὲ ἡ ΑΔ τῆς ΑΒ : ἐλάττων |
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , | ||
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας , |
αἱ ΗΘ ΛΜ ΔΕ : ἴση ἄρα ἐστὶν καὶ ἡ ΘΜ τῇ ΜΕ . ὧν ἡ ΒΜ τῇ ΜΚ ἐστὶν | ||
ΑΚ , ΚΛ , τῇ δὲ ΕΘ ἴσαι ὁσαιδηποτοῦν αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ |
διπλάσιον ; καὶ δεικτέον οὕτως : ἐπεὶ γὰρ ἐπιζευγνυμένων τῶν ΨΟ , ΨΣ αἱ ὑπὸ ΚΨΒ , ΚΨΣ , ΣΨΟ | ||
τὸ ἀπὸ τῆς ΑΨ . λοιπὸν ἄρα τὸ ἀπὸ τῆς ΨΟ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΨΣ . ἴσον δὲ |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ Ω ἀρξάμενον ἀπὸ τοῦ | ||
τῆς ΓΨ μεῖζόν ἐστιν ἢ διπλάσιον . ἐπεζεύχθωσαν γὰρ αἱ ΟΨ , ΥΨ , ΨΜ . καὶ ἐπεὶ ἴση ἐστὶν |
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς | ||
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ |
, ἀνάσχεσθέ μου μικρὰ περὶ τούτου τανῦν εἰπεῖν . ΚΑΤΑΣΚΕΥΗ ΤΗΣ ΜΥΗΣΕΩΣ . Εἶτα εὐθὺς κατασκεύασον , ὅτι οὔτε ἀμύητος | ||
[ ὃς ] ὁρίζει Ἀσίαν καὶ Εὐρώπην . ΠΑΡΑΠΛΟΥΣ ΑΠΑΣΗΣ ΤΗΣ ΕΥΡΩΠΗΣ . Ἀπὸ Ἡρακλείων στηλῶν τῶν ἐν τῇ Εὐρώπῃ |
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου | ||
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν |
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
δέ . ἄσπετον : πολύ , ἄφθονον . ἀρωγέ : βοηθέ , λυτρωτά . ἀνθοποιόν : ἄνθη ἐκφέρουσαν . ἀμφ | ||
θ πρόμαχε ] βοηθέ . πρόμαχ ' ] ὑπέρμαχε , βοηθέ . Ξ δόμων ] οἴκων . τοῖσι ] τοῖς |
ἡ ΑΒ , καὶ ἐφαπτομένη ἤχθω ἡ ΓΔ , καὶ κατήχθω τεταγμένως ἡ ΓΕ , κέντρον δὲ ἔστω τὸ Ζ | ||
ΖΘΦ τεταγμένην εἶναι : δευτέρα ἄρα διάμετρος ἡ ΖΦ . κατήχθω ἐπ ' αὐτὴν ἀπὸ τῆς τομῆς ἡ ΜΝ παράλληλος |
Κύης περιττοσύλλαβα . γύης δὲ οὐ κύριον . Τὰ εἰς ΗΣ κύρια ἀπὸ ἐντελεστέρου περισπᾶται : Ἑρμῆς Θαλῆς Πυλῆς Ποδῆς | ||
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι αἱ ΑΒ , ΗΣ , Τ , Ξ , ὧν κέντρον τὸ Θ |
χρόνω δύνουσιν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ΜΓ , ΑΗ περιφέρειαι ἐν ἴσῳ χρόνῳ δύνουσιν . καὶ | ||
τοῦ ζῳδιακοῦ κύκλου ] . δεῖ δὲ τὴν ἴσην τῇ ΜΓ ἀνατέλλουσαν μεταξὺ πάλιν εἶναι τῶν αὐτῶν παραλλήλων , διότι |
καὶ εἰς μερίμνας ἐμβάλλεσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙ ΜΕΜΙΞΕΤΑΙ . Τοῦτο δέ φησι , πρὸς τὸ μὴ | ||
ἤτοι ἐν τοῖς κοιλώμασι τῶν στελεχῶν , μελίσσας . . ΤΟΙΣΙ ΦΕΡΕΙ ΜΕΝ . Τούτοις τοῖς κατὰ δίκην ζῶσιν , |
ἔχει ἤπερ ἡ ΧΥ πρὸς ΥΞ . καὶ διελόντι ἡ ΠΤ πρὸς ΤΟ ἐλάσ - σονα λόγον ἔχει ἤπερ ἡ | ||
τὰ ἄρα ἀπὸ τῶν ΠΘ , ΘΤ τριπλάσια τοῦ ἀπὸ ΠΤ . ἡ δὲ ΠΘ ἑκατέρᾳ τῶν ΒΘ , ΘΓ |
ΝΟΝ ΕΙΔΟΣ ΚΑΤΑ ΔΕ ΤΑ ΤΗΣ ΡΥΘΜΟΠΟΙΙΑΣ ΣΧΗΜΑΤΑ ΠΑΡΑΛΛΑΤΤΕΙ ΕΝ ΤΩΙ ΦΙΛΟΝ ΩΡΑΙΣΙΝ ΑΓΑΠΗΜΑ ΘΝΑΤΟΙΣΙΝ ΑΝΑΠΑΥΜΑ ΜΟΧΘΩΝ ΕΣΤΙ ΔΕ ΠΟΥ | ||
ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ [ [ ΩΣΤΕ ] ΤΗΝ ΜΕΝ ΠΡΩΤΗΝ ΞΥΛΛΑΒΗΝ ΕΝ ΤΩΙ [ ] ΜΕΓΙΣΤΩΙ ΧΡΟΝΩΙ ΚΕΙΣΘΑΙ [ ΤΗΝ ΔΕ ΔΕΥΤΕΡΑΝ |
τελευταίους , ὡς ἀλόγῳ γνωμολογεῖν οὐκ ἂν προσῆκον . . ΝΥΝ Δ ' ΑΙΝΟΝ . Μυθικὴν παραίνεσιν . Εἰκάζει δὲ | ||
τοιοῦτο δὲ σύνηθες καὶ παρὰ τῷ πεζῷ λόγῳ . . ΝΥΝ ΔΕ ΕΓΩ ΜΗΤ ' ΑΥΤΟΣ . Τὸ μὲν λεγόμενον |
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ | ||
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ |
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
ΣΑ , τῆς δὲ ΒΗ ἡμίσεια ἡ ΒΤ . αἱ ΣΑ , ΒΤ ἄρα ἴσαι τε καὶ παράλληλοί εἰσι : | ||
αἱ ἄρα ὑπὸ τῶν ΓΣ , ΣΝ , ΝΣ , ΣΑ ταῖς ὑπὸ τῶν ΛΣ , ΣΑ , ΑΣ , |
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ | ||
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
τὰς δ ' ἀπὸ τοῦ μέσου ἀπογείου τοῦ ἐπικύκλου μοίρας σξβ κ , τὰς δ ' ἀπὸ τοῦ βορείου πέρατος | ||
, ἀνωμαλίας δὲ ἀπὸ τοῦ ὁμαλοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας σξβ κ , ἀποχῆς δὲ ἀπὸ τοῦ ἡλίου κατὰ τὰ |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
' ὡς τὸ ὑπὸ ΝΓ , ΖΔ πρὸς τὸ ὑπὸ ΝΔ , ΓΖ , οὕτως ἐδείχθη τὸ ὑπὸ ΓΕ , | ||
ΑΟ , ἴση ἐστὶν ἡ ΝΒ τῇ ΒΟ καὶ ἡ ΝΔ τῇ ΔΑ . ἔστι δὲ καὶ ἡ ΕΚ τῇ |