δὲ ἡ ΜΑ τῆς ΛΑ : μείζων ἄρα καὶ ἡ ΠΜ τῆς ΒΛ . ὁμοίως καὶ ἡ ΜΘ τῆς ΛΓ | ||
τῶν λόγων τῆς τε ΖΑ πρὸς ΘΒ , καὶ τῆς ΠΜ πρὸς ΜΣ , τουτέστιν ξ πρὸς ε ιε κατ |
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
αἵ γε ἀπὸ τοῦ Ρ ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΡΖ , ΡΣ πεσοῦνται . ὥστε ὁρᾶται ὑπὸ μὲν τῆς | ||
ΡΖ , ΖΚ , ΡΣ , ΣΚ . οὐκοῦν αἱ ΡΖ , ΡΣ καθ ' ἓν ἐφάπτονται τῆς σφαίρας . |
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ | ||
ἡ μὲν ΛΤΜ τῆς ΜΤ , ἡ δὲ ΠΛ τῆς ΥΤ , ὅλη ἄρα ἡ ΠΜ ὅλης τῆς ΜΥ ἐστὶν |
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων | ||
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας καὶ ὕλης ὁμοῦ | ||
μίμησιν ἐκείνων ταύτης τυγχάνουσιν τῆς εὐδαιμονίας . . ὩΣ ΤΕ ΘΕΟΙ Δ ' ΕΖΩΟΝ . Ἤγουν ἀκοπίαστον καὶ ἄμοχθον καὶ |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς | ||
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
δεδειγμένα ἄρα ἐν τῷ μγʹ θεωρήματι ἴσον ἐστὶ τὸ μὲν ΘΝΖ τρίγωνον τῷ ΛΒΖΞ τετραπλεύρῳ , τὸ δὲ ΗΘΚ τρίγωνον | ||
πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ |
καὶ διὰ μὲν τοῦ Ξ τῇ ΖΑ παράλληλος ἤχθω ἡ ΞΘ , διὰ δὲ τοῦ Θ τῇ ΑΓ ἡ ΘΛΚ | ||
ἀπὸ ΑΕ λόγος σύγκειται ἔκ τε τοῦ τῆς ΝΞ πρὸς ΞΘ καὶ τοῦ τῆς ΠΞ πρὸς ΞΚ . σύγκειται δὲ |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
κατὰ τὰ Ε , Γ σημεῖα , καί ἐστιν ἡ ΕΗΓ γραμμὴ ἐπὶ τῆς τοῦ κυλίνδρου ἐπιφανείας , ἡ ΕΘΓ | ||
, ΖΔ γραμμάς . λέγω , ὅτι καὶ ἑκατέρα τῶν ΕΗΓ , ΔΖ γραμμῶν εὐθεῖά ἐστιν . εἰ γὰρ δυνατόν |
μιγάδος . οἱ πολῖται Ἰτάνιοι . ἔστι καὶ ἄκρα . Ἰτέα , δῆμος τῆς Ἀκαμαντίδος φυλῆς . ὁ δημότης Ἰτεαῖος | ||
φύλλα ροα Ἵππουριϲ ροβ Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη |
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ ΣΝΡ ἴσον ἐστὶ τῷ ὑπὸ ΞΝΖ . τὸ δὲ ἀπὸ | ||
ὡς ἄρα τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως ἡ ΘΖ πρὸς ΖΛ , τουτέστιν ἡ |
τῷ τῆς ΖΠ πρὸς τὴν ΠΡ , ὁ δὲ τῆς ΖΠ πρὸς τὴν ΠΡ λόγος σύγκειται ἔκ τε τοῦ τῆς | ||
ὁ ἥλιος ἑκάστην αὐτῶν δίεισιν . ἐν ᾧ δὲ τὴν ΖΠ , κόσμου περιστροφή ἐστιν καὶ τῆς ΖΠ δύσις . |
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
ῥίζα διαφορεῖ καὶ ἀποκρούεται . Ἡμιονῖτις στύφει μετὰ πικρότητος . Ἠριγέρων ψύχει , διαφορεῖ . Ἰσόπυρον ἢ φασήλιον ῥύπτει , | ||
ἔχειν τι . Ἡμιονῖτις στύψεως ἅμα σὺν πικρότητι μετέχει . Ἠριγέρων δύναμιν ψυκτικήν τε ἅμα καὶ μετρίως διαφορητικὴν ἔχει . |
καὶ ἐπίβαλλε τὰ τηκτὰ καὶ χρῶ πρὸς πάσας φλεγμονὰς τὰς σκληρυνομένας . Ποιεῖ πρὸς φλεγμονάς , παρατρίμματα , ἐξανθήματα , | ||
τὰς τῶν μαστῶν φλεγμονὰς , Φιλουμένου ληʹ . Πρὸς τὰς σκληρυνομένας φλεγμονὰς μαστῶν , Φιλουμένου λθʹ . Περὶ ἀποστήματος ἐν |
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ | ||
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ , | ||
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ |
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ | ||
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ |
ἀπὸ ΗΓ ἐστιν ἴσον , καί ἐστιν ὡς τὸ ὑπὸ ΗΘΖ πρὸς τὸ ἀπὸ ΘΕ , ἡ ὀρθία πρὸς τὴν | ||
καί ἐστιν ὁ τοῦ ΕΘΠ πόλος μεταξὺ τῶν ΒΓ , ΗΘΖ , μείζων ἐστὶν ἡ ΠΥ περιφέρεια τῆς ΥΝΞ περιφερείας |
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον |
τῶν ΓΘ , ΘΔ . ἔτι κείσθω τῇ ὑπὸ τῶν ΕΗΘ ἴση ἡ ὑπὸ τῶν ΚΜΞ , καὶ κείσθω τῇ | ||
ὅτι μεταξὺ πίπτει τῶν ΘΕΗ ΚΕΛ , τουτέστιν τοῦ μὲν ΕΗΘ μεῖζον ἔσται τοῦ δὲ ΚΕΛ ἔλασσον . Ἐπεὶ γὰρ |
μὲν ΒΦ περιφέρεια τῆς ΦΧ , ἡ δὲ ΦΧ τῆς ΧΗ : ἐν πλείονι ἄρα χρόνῳ τὸ Φ τὴν ΦΒ | ||
ΜΚ ἄξων τοῦ ΚΖ ἄξονος , τοσαυταπλασίων ἐστὶ καὶ ὁ ΧΗ κύλινδρος τοῦ ΗΔ κυλίνδρου . καὶ εἰ μὲν ἴσος |
δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ ΒΔΖ ὀρθογωνίου τὸ ἀπὸ τῆς ΒΖ τετράγωνον ἴσον ἐστὶν τῷ | ||
τῷ ἀπὸ ΒΝ τετραγώνῳ . ἐπεὶ δὲ ἐν τριγώνῳ τῷ ΒΔΖ κάθετος ἦκται ἡ ΔΝΞ , καὶ κεκλασμέναι πρὸς αὐτῇ |
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
. Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν | ||
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
διῃρημέναι , λέγω δὲ τὴν ἐμέο καὶ ἡμέων καὶ τὰς συζύγους : οὐ γὰρ φύσει βαρυτονοῦνται , ἀπὸ δὲ περισπωμένων | ||
ὅλος εἶναι πόλεμον . ἐπώρορεν : διήγειρεν . εὐνητῆρας : συζύγους . Γαμήλιος ἐνυώ : ἡ περὶ τοῦ γάμου μάχη |
Ταξίανα λεγομένη . Ἀπὸ δὲ τοῦ κόλπου ἐπὶ τὰς τοῦ Εὐλαίου ποταμοῦ ἐκβολὰς στάδιοι χϘʹ . Κατὰ τοῦτον τὸν ποταμὸν | ||
. . . . . . . . πγ λα Εὐλαίου ποταμοῦ ἐκβολαί . . . . . . . |
τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ ἐπεὶ | ||
ἐστὶν ἡ ΠΩ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ΥΩ πενταγώνου ἐστίν , ἐπειδήπερ , ἐὰν ἐπιζεύξωμεν τὰς ΦΚ |
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ | ||
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ |
ἄρα ἀπὸ τῆς ΜΓ ἔλασσόν ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . τὸ δὲ ἀπὸ τῆς ΜΓ τοῦ ἀπὸ τῆς | ||
τῶν ΓΩ , ΩΜ ἐλάσσονά ἐστι τοῦ δὶς ἀπὸ τῶν ΜΩ . ἀλλὰ τὸ ἀπὸ τῶν ΓΩ , ΩΜ ἴσον |
ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
, τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
. διὰ τὰ αὐτὰ ἔσται , ὡς μὲν τὸ ἀπὸ ΜΥ πρὸς τὸ ἀπὸ ΥΙ , τὸ ὑπὸ ΞΡΓ πρὸς | ||
δὲ ΛΤ τὰ ἴσα ἔγγιστα ὡσαύτως κη , τῆς δὲ ΜΥ ἑξηκοστὰ μ . ὧν τὰ μὲν τῆς αʹ καὶ |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , | ||
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας , |
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου | ||
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν |
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β | ||
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
ΚΘ περιφερειῶν τοιούτων ἐστὶν Ϙ , οἵων ὁ περὶ τὸ ΒΘΚ ὀρθογώνιον κύκλος τξ . καὶ τῶν ὑπ ' αὐτὰς | ||
τῷ ἀπὸ τῆς ΑΜ . διὰ γὰρ τὴν ὁμοιότητα τῶν ΒΘΚ ΖΛΓ τριγώνων ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΘ , |
: καὶ ἔστω τὰ ὑπὲρ γῆν τμήματα τὰ ΑΗΒ , ΕΗΖ : κατὰ διάμετρον ἄρα ἐστὶ τὸ μὲν Α σημεῖον | ||
τὰ ΕΑΔ μέρη , καὶ διὰ τοῦτο ὁμοία ἐστὶν ἡ ΕΗΖ περιφέρεια τῇ ΔΚ περιφερείᾳ : πάλιν ἐπεὶ ἀσύμπτωτόν ἐστι |
δείξομεν οὕτως : ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΒΝ τῆς ΝΖ , τὸ ἄρα ὑπὸ τῶν ΖΒΝ μεῖζόν ἐστι τοῦ | ||
ΤΛ πρὸς τὴν ΛΒ , οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ . τῶν ΛΤΒ , ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν |
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι | ||
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ , |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ | ||
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν |
ΣΑ , τῆς δὲ ΒΗ ἡμίσεια ἡ ΒΤ . αἱ ΣΑ , ΒΤ ἄρα ἴσαι τε καὶ παράλληλοί εἰσι : | ||
αἱ ἄρα ὑπὸ τῶν ΓΣ , ΣΝ , ΝΣ , ΣΑ ταῖς ὑπὸ τῶν ΛΣ , ΣΑ , ΑΣ , |
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ | ||
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς | ||
ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει |
τινοϲ τῶν προειρημένων . Ἄλλο : γῆϲ ἀϲτέροϲ ἀγηράτου λίθου λημνίαϲ ϲφραγίδοϲ ἴϲα : δίδου κοχλιάριον μετὰ κυάθων β ἀρνογλώϲϲου | ||
# γ ῥόδων ξηρῶν # δ μύρτων # ϲ κρόκου λημνίαϲ ϲφραγῖδοϲ μάκεροϲ φλοιοῦ ἀνὰ # α ϲ ἀναλάμβανε χυλῷ |
τέσσαρα . γίνονται οὖν τῶν δύο τετραγώνων αἱ μονάδες . ρδ ἡ δὲ ΑΓ ιϚ : τετράκις γὰρ δ ιϚ | ||
δ ' ἐπὶ τῆς ΕΘ τῶν λοιπῶν εἰς τὸ ἡμικύκλιον ρδ ιζ . καὶ τῶν ὑπ ' αὐτὰς ἄρα εὐθειῶν |
Κιμώλου , ἀφ ' οὗ ἡ νῆσος . ὁ πολίτης Σιδήτης . τὴν δευτέραν συλλαβὴν ἔχει διὰ τοῦ η διὰ | ||
τὸ δὲ Βαργυλιήτης καὶ Μασσαλιήτης τέτραπται . τὸ δὲ κωμήτης Σιδήτης λιμνήτης τρισύλλαβα . ἀπὸ τοῦ Αἰγινήτης Αἰγινητικός τὸ κτητικὸν |
στάδια ρπʹ , μίλια κδʹ . Ἀπὸ δὲ Στεφάνης εἰς Ποταμοὺς χωρίον στάδια ρνʹ , μίλια κʹ . Ἀπὸ δὲ | ||
πεντακόσια , διακόσια δὲ χἁβδομήκοντ ' ἐστὶ τό πλάτος . Ποταμοὺς ἔχει δὲ τὸν μὲν λεγόμενον Ἰσμηνὸν Ἀσωπόν τε , |
καὶ ἔστω ὀρθὴ ἡ ὑπὸ ΒΔΜ , τῶν ΗΓ ΜΔ ἐκβληθεισῶν καὶ συμπιπτουσῶν κατὰ τὸ Ν . ἐπεὶ οὖν τὸ | ||
συμπτώσεως , τὸ δὲ ΔΕ ἐκτὸς τῆς συμπτώσεως . οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις |
Καλαυρία περὶ τὸν Ἰόνιον κόλπον καὶ τὸν Ἀδρίαν . ? Σκυλλήτιον πόλις Σικελίας , ὡς Εὔδοξος ἕκτῃ . . καὶ | ||
ἐξέπεσον καὶ τὴν ἐκεῖ Καυλωνίαν ἔκτισαν . μετὰ δὲ ταύτην Σκυλλήτιον ἄποικος Ἀθηναίων τῶν μετὰ Μενεσθέως , Κροτωνιατῶν δ ' |
ἢ Τρίηρον ἄκρον . . . . . μγ ∠ ʹγιβ λα γʹ Κεφαλαὶ ἄκρον . . . . . | ||
. . . . . . ογ γʹ κθ ∠ ʹγιβ Δούμεθα ἢ Δουμαίθα . . . . . οε |
δὶς ὑπὸ ΘΕΗ ἐστὶν ἴσον . ἀλλὰ τῷ δὶς ὑπὸ ΘΕΗ ἴσον ἐστὶν τὸ ὑπὸ ΑΒ ΔΖ : καὶ τὸ | ||
ἴση ἐστὶ τῇ πρὸς τῷ Ε τῇ περιεχομένῃ ὑπὸ τῶν ΘΕΗ . ἔτι κείσθω τῇ ὑπὸ τῶν ΑΖ , ΖΕ |
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ | ||
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ |
ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί | ||
τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος |
οὖν τὰ ἐκτός ; ὗλαι τῇ προαιρέσει , περὶ ἃς ἀναστρεφομένη τεύξεται τοῦ ἰδίου ἀγαθοῦ ἢ κακοῦ . πῶς τοῦ | ||
μέσῃ τῇ πολιτείᾳ διὰ τῶν πολιτικῶν ἔργων τε καὶ λόγων ἀναστρεφομένη ἀρετὴ γυμνάζει τε τὴν ψυχὴν πρὸς τὸ ἐρρωμενέστερον καὶ |
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ | ||
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ |
γραμμὴ ἦκται ἡ ΕΘ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ τῶν ΕΘΗ , θέσει ἄρα ἐστὶν ἡ ΘΕΚ : θέσει δὲ | ||
ΑΚΔ ἐστιν ἴση , ἡ δὲ ὑπὸ ΕΖΗ τῇ ὑπὸ ΕΘΗ ἴση , ἔστι δὲ καὶ ὀρθὴ ἡ ὑπὸ ΑΔΚ |
πόλις τῆς Λιγυστικῆς . Ἑκαταῖος Εὐρώπηι . . . . Αἰθάλη : νῆσος Τυρσηνῶν . Ἑκαταῖος Εὐρώπηι . ἔοικε δὲ | ||
τοῦ Αἰθάλεια Αἰθαλείτης , ὡς Ζελείτης , ἐκ δὲ τοῦ Αἰθάλη Αἰθαλίτης , ὡς Σινωπίτης Ἰοππίτης . δύναται τὸ Αἰθαλίτης |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
. . . . . . ξζ ιβʹ λβ ∠ ʹιβʹ Τιβεριὰς [ λίμνη ] . . . . . | ||
. . . . . . . . ξη ∠ ʹιβʹ λε ∠ ʹιβʹ . Ὀρόντου ποταμοῦ ἐκβολαί . . |
πολυώνυμος , ὡς πολυίστωρ „ γῆ Ὀλυμπία Ὠκεανία Ἐσχατιά Κορυφή Ἑσπερία Ὀρτυγία Ἀμμωνίς Αἰθιοπία Κυρήνη Ὀφιοῦσσα Λιβύη Κηφηνία Ἀερία ” | ||
Ἑρχιᾶσιν . Ἕσδητες , ἔθνος Ἰβηρικόν , Ἑκαταῖος Εὐρώπῃ . Ἑσπερία , ἡ δύσις καὶ τὸ δυτικὸν μέρος . τὸ |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ | ||
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ |
: ῥίζα σπιθαμιαία , βακτηρίας ἔχουσα πάχος , στρυφνή . Μήκων ῥοιάς : ὠνόμασται δὲ διὰ τὸ ταχέως τὸ ἄνθος | ||
πρὸς τὸ μὴ ἅψασθαι ὑπὸ τῶν ἱματίων τὸν ὀπόν . Μήκων κερατῖτις , ἣν ἔνιοι παράλιον καλοῦσιν , οἱ δ |
παντελῶς τοῖς ἐκ νόμων δικαίοις ἐκκόπτεται τιμωρήμασιν . . ΤΟΙΣΙ ΦΕΡΕΙ . Τοῖς θεοφιλέσιν : οὗτοι δέ εἰσιν οἱ κατὰ | ||
ἐν τοῖς κοιλώμασι τῶν στελεχῶν , μελίσσας . . ΤΟΙΣΙ ΦΕΡΕΙ ΜΕΝ . Τούτοις τοῖς κατὰ δίκην ζῶσιν , ἤγουν |
ἀπὸ ΓΗ . καὶ ὡς ἄρα ἐπὶ μὲν τῆς ἐλλείψεως συνθέντι , ἐπὶ δὲ τῶν ἀντικειμένων ἀνάπαλιν καὶ ἀναστρέψαντι τὸ | ||
ἄρα καὶ ὁ τῆς ΘΚ πρὸς τὴν ΚΑ δοθείς . συνθέντι ἄρα λόγος ἐστὶ τῆς ΘΑ πρὸς ΑΚ δοθείς . |
, Ζ μέρη , ὁμοία ἐστὶν ἡ ΠΩ περιφέρεια τῇ ΦΖ περιφερείᾳ . ἀλλὰ ἡ ΠΩ τῇ ΨΣ ἐστιν ὁμοία | ||
αἱ ΕΚ , ΜΛ , ἐκβληθεισῶν δὲ τῶν ΥΖ , ΦΖ ἐπὶ τὰ Ψ , Χ , κείσθω ἑκατέρα τῶν |
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
ἐπεὶ καὶ ἡ ΑΝ τῆς ΝΔ , ὡς ἄρα ἡ ΓΞ πρὸς ΞΑ , ἡ ΖΒ πρὸς ΒΔ καὶ ἡ | ||
ΓΝ λόγος ἐστὶ δοθείς . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΓΞ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , ἔστιν |
. ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΑΥΤΗΙ ΚΑΙ Ο [ ΙΑΜΒΟΣ ] δακτυλ | ||
ΑΝ ΚΑΔΜΟΣ ΕΓΕΝΝΑΣΕ ΠΟΤ ΕΝ ΤΑΙΣ ΠΟΛΥΟΛΒιΟΙΣΙΝ 〚 〛 ΘΗΒΑΙΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΚΑΙ Ο ΙΑΜΒΟΣ ΤΗΙ ΑΥΤΗΙ ΤΑΥΤΗΙ ΛΕΞΕΙ |
ὄρους : πίναξ ηʹ . Σκυθία ἡ ἐκτὸς Ἰμάου ὄρους Σηρική : πίναξ θʹ . Ἀρεία Παροπανισάδαι Δραγγιανή Ἀραχωσία Γεδρωσία | ||
ταῦτα : Λιβύη , Κυρήνη , Βακτριανή , Κασπία , Σηρική , Θηβαΐς , Σακίς , Τρωγλοδυτική . κυριεύει δὲ |
, ἀνὰ γοστ . ῥόδων ξηρῶν , στύρακος , ἀνὰ λια . ῥόδων χλωρῶν λιβ . οἴνου παλαιοῦ εὐώδους καὶ | ||
καδμίας πεπλυμένης δραχ . ε . οἴνου καὶ μυρσίνης ἐλαίου λια . κατὰ βραχὺ ἐπιβάλλων καὶ λειῶν φιλοπόνως : καὶ |
. . . . . . ξη γʹ μγ γʹ Κερασοῦς . . . . . . . . . | ||
αὐτοῦ λαμβάνειν φασὶν μεγίστην , μὴ διδόντας τὴν τροφήν . Κερασοῦς Σινωπέων ἄποικος καθ ' ἣν ἔρημος κειμένη παρήκει νῆσος |
ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ | ||
Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ |
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ | ||
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ |
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ | ||
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ , |