τῆς Δ συναφῆς τῆς θερινῆς τῆς ἀπώτερον ἧσσον κέκλιται : ὀρθότερος ἄρα ἐστὶν ὁ ΠΝΞ τοῦ ΡΚΟ . καὶ ἐπεὶ | ||
. Καὶ ἄλλοτε . , ] ἀντὶ τοῦ ποτὲ ἑαυτοῦ ὀρθότερος μᾶλλον , ποτὲ δὲ κεκλιμένος . Ὅτι μέν . |
ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
κατὰ τοῦτον γινομένου τὸν κύκλον πρὸς αἴσθησιν , ὁ δὲ χειμερινὸς διὰ τὸ τὸν ἥλιον κατὰ τοῦτον γινόμενον τὸν κύκλον | ||
, καὶ ὁ ἔσχατος τοῦ Ποταμοῦ ἑσπέριος ἀνατέλλει . Εὐδόξῳ χειμερινὸς ἀήρ . κεʹ . ὡρῶν ιγ ∠ ʹ : |
ΑΒΓΔ , μέγιστος δὲ τῶν ἀεὶ φανερῶν ὁ ΕΖ , θερινὸς δὲ τροπικὸς ὁ ΒΗΑ , καὶ ἔστω τὸ μετὰ | ||
' αὐτῶν ὁ μὲν ἀρκτικὸς καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δὲ ἰσημερινός , ὁ δὲ χειμερινὸς |
πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν | ||
, τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
διεζῶσθαι κύκλοις , ὧν ὀνόματα εἶναι τάδε : ἀρκτικόν , ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , | ||
δὲ τόν τε ἀρκτικὸν καὶ τὸν θερινὸν τροπικὸν καὶ τὸν ἀνταρκτικόν . ἀρκτικὸς δ ' ὁ αὐτὸς καὶ ἀεὶ φανερὸς |
. . . Ἰχθύων κγ # βο λβ δʹ ὁ βόρειος αὐτῶν . . . . . . . . | ||
, ἄξων δὲ τῆς σφαίρας ὁ ΒΓ , πόλος δὲ βόρειος ἔστω τὸ Γ , οἴκησις δὲ πρὸς τῷ Ζ |
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
ἐκείνῃ κινουμένη ἀπ ' ἀνατολῶν ἐπὶ δυσμάς : ὁ δὲ λοξὸς οὗτος κύκλος ἐγκεκλίσθαι πρὸς τὸν μέγιστον τῶν ἐν τῇ | ||
οὗ ἐστιν τὰ Α , Γ σημεῖα : ὁ δὲ λοξὸς τῆς σελήνης ἐφ ' οὗ ἐστιν τὰ Δ , |
ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
ἢ τὸν ἥλιον αὐτὸν οὐχ ὁρᾷς , ὅτι τἀναντία καὶ ἀνατέλλων καὶ δυόμενος ἐργάζεται ; ἐπειδὰν γὰρ ἀνίσχῃ , τὰ | ||
, ἐπὶ δὲ τῶν χειμερινῶν ἐναντίως τοῖς προειρημένοις , ἐὰν ἀνατέλλων ἢ δυόμενος τὰς τροπὰς ποιήσηται . ιγʹ Ἐὰν πρὸ |
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
ʹ γʹ γʹ ἐλς τῆς ἑπομένης τοῦ ῥόμβου πλευρᾶς ὁ νότιος . . . . . . . . Αἰγόκερω | ||
εἰς ω . καὶ παρ ' Ὁμήρῳ : κατὰ δὲ νότιος ῥέεν ἱδρώς . ἀντὶ τοῦ κατὰ νῶτον ἐφέρετο . |
ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος , | ||
δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία |
κύκλῳ . ἀλλὰ καὶ παράλληλος : ὁ ΑΒΓ ἄρα κύκλος ἐφάπτεται καὶ ἑτέρου κύκλου τοῦ ΒΗ ἴσου τε καὶ παραλλήλου | ||
πολλῶν τῶν κατ ' ἀλήθειαν σύν τισι Μούσαις καὶ Χάρισιν ἐφάπτεται ἑκάστοτε . Περὶ δὲ τῆς ἐρωτικῆς καὶ μουσικῆς τί |
τοῖς Διδύμοις λέγει αὐτὸν ἀντικαταδύνειν : τοῦ δὲ Καρκίνου ἀρχομένου ἀνατέλλειν , ὅς ἐστι λοιπὸς τῶν τεσσάρων ζῳδίων , οἷς | ||
κʹ μοίρᾳ τοῦ Τοξότου συναναφέρεται . Τοῦ δὲ Ὑδροχόου ἀρχομένου ἀνατέλλειν φησὶ συνανατεταλκέναι τῷ Αἰγόκερῳ τοῦ Ἵππου τήν τε κεφαλὴν |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
τὸ μὲν ἀπὸ τῆς Συήνης , ἥπερ ἐστὶν ὅριον τοῦ θερινοῦ τροπικοῦ , εἰς Μερόην εἰσὶ πεντακισχίλιοι , τὸ δ | ||
[ τὰς ] ἄρκτους αὐτοῦ κείμενος μικρῷ βορειότερός ἐστι τοῦ θερινοῦ τροπικοῦ : καὶ τῶν ἐν τοῖς μηροῖς καὶ σκέλεσι |
μοῖρα μέρος τὸ δῦνον : οὗτος δ ' ἀνακυκλούμενος ὁ πόλος ἅπας πάλιν προσενυψοῖ τὴν πρώτιστον τὴν τοῦ Κριοῦ μοιρίτζαν | ||
κέντρον ἐστὶ τοῦ ΑΒΓ , τὸ δὲ Ζ ὁ ἕτερος πόλος . Ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
φυσᾶν . Κύκλοι δέ εἰσι τὸν ἀριθμὸν ιαʹ , ἀρκτικὸς ἀνταρκτικὸς τροπικοὶ δύο ἰσημερινὸς ὁρίζων μεσημβρινὸς ζωιδιακὸς γαλαξίας κόλουροι δύο | ||
τέσσαρες δὲ ἐλάττονες , οὐδαμῶς ἀλλήλων ἐφαπτόμενοι , ἀρκτικὸς καὶ ἀνταρκτικὸς καὶ θερινὸς καὶ χειμερινός . καὶ ἄλλα τοιαῦτα ἐν |
. Τέμνει δὲ τοῦτον Ἥλιος ἀφ ' ἑπτακαιδεκάτης Τυβὶ μηνὸς χειμερινοῦ , τοῦ τῶν Καλάνδων λέγω , ἕως Μεχὶρ τῶν | ||
ἐν τῇ ἡμετέρᾳ εὐκράτῳ . Ὁπόταν δ ' ἐφαψάμενος τοῦ χειμερινοῦ πρὸς ἡμᾶς πάλιν ὑποστρέφῃ , ἐπὶ τὰ ὑψηλότερα τοῦ |
τούτου γινομένου : τοῖς δ ' ὑπ ' αὐτῶι τῶι πόλωι ὁ ἰσημερινὸς τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν | ||
δὲ ὁ τῶι ἀρκτικῶι ἴσος ὑπάρχων πρὸς τῶι νοτίωι τεθεμάτισται πόλωι , οἱ δὲ διὰ τῶν πόλων καὶ λοξοὶ παρὰ |
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
ΓΔ , ἐλαχίστη δὲ ἡ ΑΒ , ἀεὶ δὲ ἡ ἔγγιον τῆς ἐλαχίστης ἐλάσσων τῆς ἀπώτερον , δύο δὲ μόνον | ||
ΜΞ μεγίστη , ἡ δὲ ΜΑ ἐλαχίστη , ἡ δὲ ἔγγιον τοῦ κέντρου τῆς ἀπώτερον μείζων : μείζων ἄρα ἐστὶν |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
, λήγων δὲ ἀνεμώδης . τὸ ἔαρ ἔνυδρον καὶ μᾶλλον χειμερινὸν καὶ παχνῶδες . τὸ δὲ θέρος ἔμπνουν , διὰ | ||
χιτών . . . . . . . τὸ μέντοι χειμερινὸν ἱμάτιον χείμαστρον ἂν λέγοις , καὶ χλαῖναν δὲ παχεῖαν |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
, τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
τὸ διαμετροῦν , Κρόνου ζυγός , Διὸς καρκίνος , Ἄρεως αἰγόκερως , Ἀφροδίτης ἰχθύες , Ἑρμοῦ παρθένος . καὶ ταπεινώματα | ||
δὲ ἐν λε , τοξότης δὲ ἐν λα μʹ , αἰγόκερως δὲ ἐν κη κʹ , ὑδροχόος δὲ ἐν κε |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
τὴν ἐναντίαν τούτωι πεποίηται περιφοράν , ἣν νῦν περιγράφει ὁ ζωιδιακός . ἔστι δὲ μυθῶδες τοῦτο καὶ ψεῦδος : τί | ||
τὴν ἐναντίαν τούτωι πεποίηται περιφοράν , ἣν νῦν περιγράφει ὁ ζωιδιακός . . , Οἰν . δὲ ὁ Χῖός φησι |
τοῦ τροπικοῦ , ὁ δὲ ἀριστερὸς τρίτῳ μέρει ἑνὸς ζῳδίου νοτιώτερός ἐστι τοῦ τροπικοῦ : ὁ μὲν γὰρ δεξιὸς ὦμος | ||
ἀλεκτρυόνες ὑπεράγαν οὐκ ᾄδουσιν ἐν τοῖς ὑγροῖς χωρίοις καὶ ἔνθα νοτιώτερός ἐστιν ὁ ἀήρ . ψυχροὶ δὲ ἄρα ὄντες τὴν |
τοὺς ἀρκτικωτέρους τόπους καὶ τοῦ θερινοῦ τροπικοῦ κύκλου μείζονες οἱ ἀρκτικοὶ κύκλοι γίνονται : πέρας δέ ἐστί τις χώρα πρὸς | ||
ἡμῖν γινομένου ποτὲ δὲ ὑπὸ γῆς ὄντος , καὶ οἱ ἀρκτικοὶ συμμεταβάλλουσι , ποτὲ δὲ συνεκλείπουσι κατὰ τὰς τοιαύτας παραχωρήσεις |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
ʹ : ὁ καλούμενος Ἀντάρης ἐπιτέλλει . ὡρῶν ιε : Κύων ἑῷος δύνει . ὡρῶν ιε ∠ ʹ : ὁ | ||
ἐπὶ πλέον ἄχρι παρ ' αὐτὸν Κρητῆρα , φθάμενος δὲ Κύων πόδας αἴνυται ἄλλους ἕλκων ἐξόπιθεν πρύμναν πολυτειρέος Ἀργοῦς : |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
μυρίων , ἡ δὲ τούτῳ παράλληλος ἀπὸ Βαβυλῶνος εὐθεῖα μέχρι ἀνατολικοῦ πλευροῦ συνελογίσθη μικρῷ πλειόνων ἢ ἐννακισχιλίων , δῆλον ὅτι | ||
ἕνα ἡλιακὸν εἰκότως , ὅταν μὲν ἐπ ' αὐτοῦ τοῦ ἀνατολικοῦ ὁρίζοντος ᾖ ὁ ἀφετικὸς καὶ προηγούμενος τόπος , τοὺς |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
, Αἰγόκερως , γαίης τε καὶ ὕδατος ἀμφίβιος θήρ , Κριὸς ὅ τ ' οὐρανίου κορυφῆς ὅρος , εἴαρος ἀρχή | ||
ἀνεδήσατο , νικάσαις ἐν ἀγῶνι περικτιόνων ; ἐπέξαθ ' ὁ Κριὸς οὐκ ἀεικέως ἐλθὼν ἐς εὔδενδρον ἀγλαὸν Διὸς τέμενος . |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
διαλείμματι τοῦ τε κατὰ τὸν ἰσημερινὸν καὶ τοῦ κατὰ τὸν θερινὸν τροπικὸν ὅλον διαφαίνεσθαι τὸ ἐγνωσμένον μέρος τῆς γῆς , | ||
τέσσαρα , Ἄρκτοι δύο Κηφεὺς ἀπὸ τῶν στηθῶν Δράκων , θερινὸν τροπικὸν πλεῖον ἔχοντα τὸ ὑπὲρ γῆν , ἧσσον δὲ |
ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ εθʹ ἑσπερίαν δύσιν . Ἡ μὲν γὰρ δηʹ περιφέρεια ὑπὲρ | ||
τοῦ ἡλίου ἔστω δωδεκατημόριον τὸ δηʹ , ἀκολουθοῦν δὲ τὸ εθʹ : λέγω ὅτι ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν |
, ἡμέρα γενήσεται , τοῦ αὐτοῦ κύκλου καὶ ὁρίζοντος καὶ ἀρκτικοῦ γινομένου αὐτοῖς καὶ ἰσημερινοῦ . Τοῖς μὲν γὰρ ἐν | ||
βελτίων δ ' Ἡράκλειτος καὶ ὁμηρικώτερος , ὁμοίως ἀντὶ τοῦ ἀρκτικοῦ τὴν ἄρκτον ὀνομάζων „ ἠοῦς καὶ ἑσπέρης τέρματα ἡ |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
τοῦ ἰσημερινοῦ πρὸς βοῤῥᾶν μοιρῶν λξ : ἀπὸ δὲ τοῦ ἰσημερινοῦ πρὸς νότον μοιρῶν η ∠ ʹ ἢ θ γίνεται | ||
τὸ Πράσον ὑπὸ τὸν παράλληλον τὸν ἀπέχοντα πρὸς μεσημβρίαν τοῦ ἰσημερινοῦ μοίρας ιϚʹ γʹʹ ιβʹʹ , διέστηκε δὲ τοῦ ἰσημερινοῦ |
. ἕνεκεν μὲν τοίνυν τῆς ἑκάστοτε τοῦ ζῳδιακοῦ πρὸς τὸν ὁρίζοντα σχέσεως ἐπελογισάμεθα κατὰ τὸν ἐν τοῖς πρώτοις τῆς συντάξεως | ||
ἐπὶ τὰ αὐτὰ μέρη θέσιν ἔχων ἅμα πρός τε τὸν ὁρίζοντα καὶ τὸν μεσημβρινόν : κἂν μεταξὺ γὰρ ᾖ τῶν |
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς | ||
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ |
Τοσαῦται δὲ περιφέρειαι καὶ γωνίαι συνάγονται καθ ' ἑκάστην ὥραν ἰσημερινὴν ἀπὸ τοῦ μεσημβρινοῦ Ἰχθύων ἀρχῆς . καὶ ἐπεὶ ζ | ||
ἰσημερινὴν δύσιν ἀποκλίνουσιν αἱ σκιαί , δυομένου δέ , πρὸς ἰσημερινὴν ἀνατολήν , ἐν δὲ χειμεριναῖς τροπαῖς ἀνατέλλοντος μέν , |
δὲ καὶ ὅτι ἄμβων λοπάς , καὶ ἡ τῆς λοπάδος ἐνδοτάτω ὀφρύς , καὶ τὰ χείλη , καὶ ὀρῶν λόφοι | ||
λαθὼν τοὺς παρόντας ὄπισθε τῆς θύρας παρεισερρύη καὶ στὰς ἀφανὴς ἐνδοτάτω σχεδὸν οὐδ ' ἀναπνέων ἠτρέμει , συνήθως δὲ τῶν |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
Ἰβηρία τε πᾶσα καὶ Κελτίβηρες , ἐπὶ τὸν ἑσπέριον καὶ βόρειον ὠκεανὸν καὶ τὰς Ἡρακλέους στήλας τελευτῶντες . καὶ τούτων | ||
μὴ ἁλμυρὸν τοῖς γευομένοις . Καὶ ὅλως ἔτος βέλτιον νοτίου βόρειον καὶ ὑγιεινότερον . Καὶ ὅταν ὀχεύωνται πρόβατα ἢ αἶγες |
: „ εἶτα διὰ τοῦ Τοξότου πρὸς τὰ μέσα τοῦ Αἰγόκερω ” συνάπτει . „ ὁ δὲ Ἄρατός φησιν οὕτως | ||
πάθους ἢ πυρετῶν ἐπιφορᾶς . οἷον ἐπεὶ οἱ Δίδυμοι ὑπὸ Αἰγόκερω ἀναιροῦνται καὶ Ὑδροχόος ὑπὸ τῆς Παρθένου , ὅπερ ἐστὶν |
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
νῆσον ἐπακτῆρες : τῇσι δὲ βουκόλιαί τε βοῶν χάλκειά τε δύνειν τεύχεα πυροφόρους τε διατμήξασθαι ἀρούρας ῥηίτερον πάσῃσιν Ἀθηναίης πέλεν | ||
τῷ δύπτειν ἐπὶ κεφαλὴν κατενεχθέντες . δύπτειν δέ ἐστι τὸ δύνειν , δύπται δὲ αἴθυιαι , ὡς παρὰ Καλλιμάχῳ : |
. λέγεται δὲ ἀνταρκτικὸς ἤτοι ἀπὸ τοῦ ἐναντίος κεῖσθαι τῶι ἀρκτικῶι ἢ ὅτι ἴσος ἐστὶ τῶι ἀρκτικῶι , τῆς ἀντί | ||
τούτου καὶ τὸν ἀνταρκτικὸν ὅμοιόν τε καὶ ἴσον ὄντα τῶι ἀρκτικῶι ἐμποητέον . δυνατὸν δέ ἐστι καὶ ἑτέρως περὶ τῶν |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
Κρατήρ , Κόραξ Προκύων Ἀετὸς Δελφὶς Ὠρίων Ὀιστὸς Δελτωτὸν Ἀνδρομέδα Λαγωὸς Κῆτος Κύων , ὥστ ' εἶναι τὰ πάντα ζώιδια | ||
διὰ τὸ φιλοκύνηγον αὐτῷ τῷ Ὠρίωνι παρατεθῆναι : καὶ γὰρ Λαγωὸς ἐχόμενος καὶ ἄλλα θηρία παρ ' αὐτόν συνορᾶται Τοῦτο |
, ἤπερ κόσμου τέ ἐστι περιστροφὴ καὶ τῆς ΛΜ περιφερείας δύσις : ἐν ἄρα κόσμου περιστροφῇ καὶ τῆς ΛΜ περιφερείας | ||
διφυές , κάθυγρον , ἡμιτελές , κυρτοειδές , χωλόν , δύσις κόσμου , μόχθων καὶ πόνων δηλωτικόν , λαοξοϊκόν , |
ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ | ||
ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων |
ὁρίζοντι . Τὸ Θ ἄρα τοῖς πρὸς ἀνατολὰς οἰκοῦσι πρότερον ἀνατέλλει καὶ πρότερον δύνει . Λέγω δή , ὅτι καί | ||
τὸ πρότερον ἀνατέλλον πρότερον δύνει καὶ τὸ πρότερον δῦνον πρότερον ἀνατέλλει . ἔστω ἀνατολικὰ μὲν τὰ Γ μέρη , δυτικὰ |
βορέας ἐκ τοῦ ἀρκτικοῦ κέντρου καταπνέων , ἔχει μεσάζοντας αὐτὸν θρασκίαν καὶ τὸν ἀπαρκτίαν . ὁ δὲ νότος ἀπὸ τῆς | ||
διάμετρον τούτων ἀνισταμένους καὶ πνέοντας , λίβα καὶ ζέφυρον καὶ θρασκίαν , δύο δὲ ἄλλους τὸν μὲν ἀπὸ τοῦ νοτίου |
ΥΚ , ΦΧ . ὥστε ἐν ᾧ τὸ Θ τὴν ΘΝ διέρχεται , ἐν τούτῳ τότε Υ τὴν ΥΞ διαπορεύεται | ||
ΚΖ , ΖΛ , ΛΗ , ΗΜ , ΜΘ , ΘΝ , ΝΕ . δύο οὖν μεγεθῶν ἀνίσων ἐκκειμένων τοῦ |
αἳ πρὸς τοῖς πόλοις εἰσὶ κατεψυγμέναι καὶ διὰ τοῦτ ' ἀοίκητοι , δύο δὲ τὰς μεθορίους τούτων τε καὶ τῆς | ||
ἡ μεταξὺ χειμερινοῦ τροπικοῦ μέχρις ἀνταρκτικοῦ , αἱ δὲ λοιπαὶ ἀοίκητοι δύο μὲν διὰ ψυχρότητα , αἱ ὑπὸ ἀρκτικὸν καὶ |
καὶ τὸν σπόρον καὶ τὰ λοιπά . σκοτεινοῦ δὲ τοῦ ἄστρου ἀνατείλαντος πᾶν τοὐναντίον ἔσται καὶ τὰ γεννήματα ἐν σπάνει | ||
τι τῶν ἀπλανῶν συνανατελλέτω τὸ δʹ : τοῦ ἄρα δʹ ἄστρου ἡ ἀληθινή ἐστιν ἑῴα ἀνατολή : λέγω ὅτι ἡ |
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
. Ὅταν δὲ ὁ Ὄφις δύνῃ , ὃν ἔχει ὁ Ὀφιοῦχος , συγκαταδύνει μὲν αὐτῷ ὁ ζῳδιακὸς ἀπὸ Σκορπίου μοίρας | ||
Ὠρίων . . . . Βορρόθεν δὲ δύνει Ἀρκτοφύλαξ , Ὀφιοῦχος πλὴν τῆς κεφαλῆς καὶ τοῦ Στεφάνου τὸ ἥμισυ . |
καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
Ζυγὸς πρὸς τὸ δίκαιον καὶ ἀγαθὸν νένευκεν , ὁ δὲ Σκορπίος πρὸς τὰ ἐναντία καὶ βλαπτικά . τῆς οὖν Σελήνης | ||
Ἰχθύσιν . Στεῤῥὰ δὲ Ταῦρος σὺν Λέοντι τυγχάνει , Ὁ Σκορπίος , τέταρτος αὖ Ὑδροχόος . Ἀνθρωπόμορφα Δίδυμοι σὺν Παρθένῳ |
ἀρκτικὸς καὶ βόρειος λέγεται , ἤδη δὲ αὐτοῦ τὸ μὲν ἀνατολικώτερον Σκυθικὸς ὠκεανὸς , τὸ δὲ δυτικώτερον Γερμανικός τε καὶ | ||
δυτικώτερον πλεῦρον ὑπαρχέτω : τὸ δὲ ἑῷον , ἤτοι τὸ ἀνατολικώτερον , ὁ Ἰνδικὸς ὠκεανός : τὸ δὲ νότιον ἡ |
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ | ||
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ |
τῶν περιφερειῶν αὐτῶν χωρίον , ὃ δὴ καλοῦσιν ἄρβηλον , ἐγγεγράφθωσαν κύκλοι ἐφαπτόμενοι τῶν τε ἡμικυκλίων καὶ ἀλλήλων ὁσοιδηποτοῦν , | ||
, προγραφέντος τοῦδε : Ἔστω κύκλος ὁ ΑΒΓ , καὶ ἐγγεγράφθωσαν εἰς τὸν ΑΒΓ κύκλον πενταγώνου ἰσοπλεύρου πλευραὶ αἱ ΑΒ |
κύκλον . τὸ γὰρ τεταρτημόριον οἰκούμενον τῆς γαίας πρὸς τῶν βορείων σύγκειται μερῶν , καὶ τοὺς οἰκοῦντας τοῦτον τὸν νοτιώτερον | ||
χώραν κατὰ θίξιν καὶ τὸν Ἀπηλιωτικὸν ὠκεανόν , ἐκ τῶν βορείων αὐτοῦ μερῶν τὴν Σκυθικὴν χώραν : ἐκ δὲ τῶν |
Τοξότης ἢ Ἰχθύες ἢ Δίδυμοι οὐχ εὑρεθήσεται ὁ φυγών . Ταῦρος ἔχων τὴν Σελήνην ἢ τὸν ὡροσκόπον τὸν φυγόντα κομίζει | ||
ὅροι δὲ τῆς Ἰνδῶν γῆς πρὸς μὲν βορέου ἀνέμου ὁ Ταῦρος τὸ ὄρος . καλέεται δὲ οὐ Ταῦρος ἔτι ἐν |
ὄνομα ἔσχεν Ἰμβρασίας : κριὸς δὲ τῆς γῆς , ἧς ἀστήρ ἐστιν ἡ προσηγορία , ταύτης γέγονεν εὑρετής , Χήσιον | ||
ἀλήθειαν ἐπὶ τοῦ ὁρίζοντος γενόμενος ἀνατέλλοντος τοῦ ἡλίου συνανατέλλῃ τις ἀστήρ : αὕτη δὲ ἡ ἐπιτολὴ ἀθεώρητος γίνεται διὰ τὰς |
. περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ . | ||
, ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι |
. Σκορπίου κε Ϛʹ νο λδ Ϛʹ δʹ με ὁ βορειότερος αὐτῶν . . . . . . . . | ||
καὶ τοῦ ἐλαχίστου ἀποστήματος ε μοίραις ἑκάτερος αὐτῶν τὸ πλεῖστον βορειότερος καὶ νοτιώτερος γίνεται τῶν ἐναντίων κατὰ τὸν ἐπίκυκλον παρόδων |
ἐπί γε τῶν ἀνακλάσεων ἴσας συνίστασθαι γωνίας ὑπὸ τῶν ἡλιακῶν ἀκτίνων ταῖς τῆς ἡμετέρας ὄψεως , ἥτις ἀποδέδεικται πρὸς ἴσας | ||
. καθόλου δὲ περὶ ὁράσεως οὕτω διωριστέον , ὡς οὐκ ἀκτίνων ἐκπεμπομένων κωνικῶς ἢ σωματικῶς ἢ ἀσωμάτως , ὥς τινες |
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
σὺν τῆι αʹ μοίραι [ τοῦ Κριοῦ ] . Διδύμων ἀνατελλόντων ἀνατέλλει ποταμὸς Ἠριδανὸς Κῆτος Ὠρίων , δύνει δὲ Ὀφιοῦχος | ||
οὐκ ἀεὶ μενόντων , διά τινος δὲ ὡρισμένου χρόνου περιοδικῶς ἀνατελλόντων . ἄλλοι δὲ ἀνάκλασιν τῆς ἡμετέρας ὄψεως πρὸς τὸν |
ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . | ||
ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ | ||
: ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
[ δὲ ] οἵ φασι περὶ τὰς ἐσχάτας μοίρας τοῦ καρκίνου εἶναι τότε τὸν ἥλιον . οὐ γὰρ ἂν μόνως | ||
μεταβάλλειν [ ] γὰρ οὗτος αὑτόν , καὶ σκορπίον ἐκ καρκίνου γίγνεσθαι , ἁλιέων παῖδες ἡμᾶς διδάσκουσι ταῦτα . Ἐπειδὰν |
ἐλπίδος πεποίηται . ὁ δὲ ἐν τοῖς δημιουργικοῖς μέτροις ἕκαστα ἀφορίζων καὶ γινώσκων τὰ ὄντα , ᾗ γέγονε , καὶ | ||
μεσημβρινὸν ἐπιπέδου νοείσθω ὁ μέγιστος κύκλος ὁ τὸ φαινόμενον ἡμισφαίριον ἀφορίζων ὁ ΑΒΓΔ , καὶ τοῦ μὲν διχοτομοῦντος τὸ ἡμισφαίριον |
εἰ μὴ τὴν ἀλεξίκακον τῷ κρυμῷ θάλψιν ἐκ ῥιζῶν τοῖς πέρασιν ἐσπᾶτο καὶ ἠρύετο ; πόθεν δὲ καὶ τὰ φυλλορροοῦντα | ||
ἐπιζευχθείσης ὁμοίως τῆς ὑπὸ δύο πλευρὰς ὑποτεινούσης εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς |