| καὶ κείσθω τῇ μὲν ὑπὸ ΓΕΑ γωνίᾳ ἴση ἡ ὑπὸ ΘΝΚ , καὶ ἤχθω τῇ ΘΝ παράλληλος ἡ ΚΞ , | ||
| , τροπικοὶ δὲ οἱ περὶ διαμέτρους τὰς ΘΚ ΛΜ οἱ ΘΝΚ ΛΞΜ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω |
| καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
| , καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
| ] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
| θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| ΗΘΚ τεσσάρων ὀρθῶν ἐλάσσονες ὑπόκεινται : πολλῷ ἄρα αἱ ὑπὸ ΛΞΜ , ΜΞΝ , ΝΞΛ τεσσάρων ὀρθῶν ἐλάσσονές εἰσιν . | ||
| οἱ περὶ δια - μέτρους τὰς ΚΘ ΛΜ οἱ ΘΝΚ ΛΞΜ , ἰσημερινοῦ δὲ διάμετρος ἔστω ἡ ΑΗ : ὁ |
| ὀστοῦν ἐπὶ τῷ πέρατι τῆς γένυος , ἐν ᾧ τῶν τομέων ὀδόντων αἱ ῥίζαι τε καὶ φατνία περιέχονται . φαίνεται | ||
| καὶ τῶν ἐμβαδῶν αὐτῶν πρὸς τὰ τῶν ὑπὸ τὰς περιφερείας τομέων , καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως ἐμβαδὸν ἕξομεν |
| εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι | ||
| ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς |
| , καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
| διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
| κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
| γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
| ' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
| αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
| δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
| τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
| Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
| ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
| σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
| περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
| δὲ τὸ Β , ὄψεις δὲ αἱ ΒΑ , ΒΓ ἀνακλώμεναι ἐπὶ τὰ Ε , Δ , ὁρώμενον δὲ ἔστω | ||
| δὲ τὸ Β , ὄψεις δὲ αἱ ΒΓ , ΒΔ ἀνακλώμεναι ἐπὶ τὰ Ε , Κ . οὐκοῦν φαίνεται ἐκβληθεισῶν |
| ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
| δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
| τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
| Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
| , ἐπειδήπερ οἱ διὰ τῶν πόλων τοῦ ἑτέρου τῶν εἰρημένων γραφόμενοι μέγιστοι κύκλοι ἀνίσους ἀπολαμβάνουσιν ἐφ ' ἑκατέρου περιφερείας , | ||
| τῇ ΘΚ , καὶ οἱ διὰ τῶν Κ καὶ Η γραφόμενοι παράλληλοι ἴσον ἀπέχουσιν ἐφ ' ἑκάτερα τοῦ ἰσημερινοῦ , |
| περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
| ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
| ΑΕ καὶ ΑΘ καὶ ΓΕ καὶ ΓΘ καὶ ἔτι ἡ ΑΚΓ κάθετος . ἐπεὶ οὖν , οἵων ἐστὶν ἡ ΕΘ | ||
| Γ Κ σημεῖα : ἴση ἄρα ἐστὶν καὶ ἡ ὑπὸ ΑΚΓ , τουτέστιν ἡ ὑπὸ ΔΕΘ , τῇ ὑπὸ ΑΒΓ |
| ΖΓ . καὶ ἐπεὶ μέγιστός ἐστιν ἑκάτερος τῶν ΖΓΗ , ΖΓΘ , δίχα ἄρα τέμνουσιν ἀλλήλους : ἑκάτερον ἄρα τῶν | ||
| σφαίρας , ἐπεὶ καὶ τῶν μεγίστων κύκλων τῶν ΖΓΗ , ΖΓΘ . ἀλλὰ καὶ ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΒΓ |
| ἐπὶ τοῦ πενταγώνου ἐὰν διὰ τῶν κατὰ τὸν κύκλον διαιρέσεων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν , περιγραφήσεται περὶ τὸν κύκλον πεντεκαιδεκάγωνον | ||
| εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον ὑπὸ τῶν ἀπὸ |
| τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
| ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
| , καὶ διήχθωσαν αἱ εὐθεῖαι τέμνουσαι τὰς τομάς , καὶ διῃρήσθωσαν , ὡς εἴρηται . λέγω , ὅτι ἡ διὰ | ||
| τρεῖς ἄρα αἱ ΖΗ ΗΘ ΘΚ σύμμετροι ἀλλήλαις εἰσίν . διῃρήσθωσαν οὖν εἰς τὰ μέτρα τοῖς Τ Υ Φ Χ |
| γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
| καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
| τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ | ||
| δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ ' | ||
| κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις . |
| Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
| τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ | ||
| τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς |
| δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
| διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
| λόγον ἔχει ἤπερ ἡ βάσις πρὸς τὴν βάσιν ἀντιπεπονθότως . καταγεγράφθωσαν οἱ κῶνοι , καὶ ἔστω , ὡς ὁ ΑΗΓΔ | ||
| σε τούτων διαλανθάνῃ καὶ ἵνα σαφέστερον ἡμῖν ὁ λόγος γένηται καταγεγράφθωσαν πρῶτον πάντα τὰ δεκαεπτὰ σύμφωνα : Β . Γ |
| ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
| καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
| ΛΜ , ΝΞ διαμέτρους αἱ ΔΟ , ΕΠ τεταγμένως καὶ προσεκβεβλήσθωσαν ἐπὶ θάτερον μέρος τῆς ἐπιφανείας κατὰ τὸ Ρ καὶ | ||
| περιγεγράφθω περὶ τὸ ΑΕΔ τρίγωνον κύκλος ὁ ΑΕΔ . καὶ προσεκβεβλήσθωσαν ταῖς ΕΒ , ΕΓ εὐθείαις εὐθεῖαι αἱ ΒΖ , |
| καὶ μαλάγματα καὶ ϲιναπιϲμοὶ καὶ κατάχριϲιϲ θαψίαϲ , ἰδίωϲ δὲ ἐπίδεϲιϲ ἡ εἰϲ τὰ ἀντικείμενα παράγουϲα καὶ ἀφαίρεϲιϲ ἐκ τῶν | ||
| Θεοδοτίῳ . παραλαμβανέϲθω δὲ ἐπ ' αὐτῶν καὶ ἡ προϲήκουϲα ἐπίδεϲιϲ . καταπλαττέϲθω δὲ τὰ φλεγμαίνοντα τῷ διὰ κωδιῶν καταπλάϲματι |
| παύονται , ἢ πρόσθεν : οἵ τε κακοηθέστατοι καὶ ἐπὶ σημείων δεινοτάτων γιγνόμενοι τεταρταῖοι κτείνουσιν , ἢ πρόσθεν . Ἡ | ||
| ἐστὶν ἡμῖν , ὅτι οὐ παράδοξον εἰ τὰ τοιαῦτα τῶν σημείων πλειόνων ἐστὶ δηλωτικά : θεμένων γὰρ νόμους , ὥς |
| πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
| Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
| τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ | ||
| , ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ |
| ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
| ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
| καὶ πρὸς τοῖς Γ , Δ , Ε σημείοις ἔστω ἔνοπτρα ἐπίπεδα , ἀφ ' ὧν ὁρᾶται τὸ Α , | ||
| με πολυδάκρυτον Ἑλλάδι λάτρευμα γᾶθεν ἐξορίζει , χρύσεα δ ' ἔνοπτρα , παρθένων χάριτας , ἔχουσα τυγχάνει Διὸς κόρα : |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| τῇ ΖΗ : καὶ τῇ ΕΔ ἄρα παράλληλός ἐστιν ἡ ΝΚ , ἡ δὲ ΜΘ τῇ ΒΛ . ἐπεὶ οὖν | ||
| ἐπὶ τῆς ἐλλείψεως σημεῖα ἐπιζευγνύουσαι παράλληλοι , καὶ ἐπιζευχθεῖσαι αἱ ΝΚ ΜΘ τεμνέτωσαν ἀλλήλας κατὰ τὸ Τ , καὶ διὰ |
| τῶν δ ' ἄλλων δυοῖν ὡς ἂν ἀπαυγαζομένων ἀπὸ τούτου σκιῶν : ὁποῖόν τι συμβαίνει καὶ τοῖς ἐν αἰσθητῷ φωτὶ | ||
| ἐφ ' ἣν ἐν ταῖς μεσημβρίαις πεσεῖται τὰ ἄκρα τῶν σκιῶν , καὶ διήχθωσαν διὰ τοῦ Ε ἥ τε ἰσημερινὴ |
| , τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν , | ||
| ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων | ||
| μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| λόγῳ , καὶ μᾶλλον , εἰ μὴ ἴσαι εἶεν αἱ ΕΖΚ ταῖς ΑΒΓ ἀλλὰ μείζους αὐτῶν , καὶ φανερόν , | ||
| ὑπὲρ γῆν τὸ ΒΘΔ , μεσημβρινὸς - δὲ κύκλος ὁ ΕΖΚ . καὶ ὁ ἥλιος ἀπὸ θερινῶν τροπῶν πορευόμενος ἔν |
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
| τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν | ||
| ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ |
| ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο | ||
| τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ | ||
| ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα |
| : τὸ μὲν γὰρ δὶς ἀπὸ ΑΒ , διὰ τῶν διχοτομιῶν , ἴσον ἐστὶν τῷ τε δὶς ὑπὸ ΑΔΓ καὶ | ||
| , τῶν δὲ ἄλλων οἱ μὲν ἴσον ἀπέχοντες ὁποτερασοῦν τῶν διχοτομιῶν ὁμοίως εἰσὶ κεκλιμένοι , αἰεὶ δὲ ὁ πορρώτερον τὴν |
| , ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ | ||
| . Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον |
| ἐὰν αἱ τῆς μιᾶς συμπτώσεις μὴ περιέχωσι τὰς τῆς ἑτέρας συμπτώσεις , τὸ μὲν Δ σημεῖον ἐντὸς ἔσται τῆς ὑπὸ | ||
| . Τῶν αὐτῶν ὄντων ἐὰν περιέχωσιν αἱ τῆς μιᾶς εὐθείας συμπτώσεις τὰς τῆς ἑτέρας , καὶ τὸ ληφθὲν σημεῖον ἐν |
| καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
| τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
| ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
| αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
| ἐπί γε τῶν ἀνακλάσεων ἴσας συνίστασθαι γωνίας ὑπὸ τῶν ἡλιακῶν ἀκτίνων ταῖς τῆς ἡμετέρας ὄψεως , ἥτις ἀποδέδεικται πρὸς ἴσας | ||
| . καθόλου δὲ περὶ ὁράσεως οὕτω διωριστέον , ὡς οὐκ ἀκτίνων ἐκπεμπομένων κωνικῶς ἢ σωματικῶς ἢ ἀσωμάτως , ὥς τινες |
| ὁμοίως διῃρήσθωσαν , καὶ τοῦτο ἀεὶ γινέσθω , ἕως οὗ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος , αἵ εἰσιν | ||
| ὁμοίως διῃρήσθωσαν , καὶ τοῦτο ἀεὶ γινέσθω , ἕως οὗ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος , αἵ εἰσιν |
| αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
| ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
| . δῆλον δὲ τοῦτο ἐντεῦθεν : ἐὰν γὰρ ἀνακλάσεως οὔσης ἡλιακῶν ἀκτίνων ἀφ ' ὕδατος ἢ ὅλως ἀπό τινος τῶν | ||
| χαρίεν πρὸς τὴν τῶν ἰχθύων ἀπάτην : ἵστανται γὰρ τῶν ἡλιακῶν ἀκτίνων ἀπεναντίον , ὡς μὴ τὴν σκιὰν αὐτῶν τοὺς |
| , Ε , Α , Ο ἔν τε γὰρ τῇ κωνικῇ ἐπιφανείᾳ ἐστὶ καὶ ἐν τῷ διὰ τοῦ ἄξονος ἐπιπέδῳ | ||
| ἴσος ἐστὶν τῇ ὑπὸ τῆς ΑΒ ἐν τῇ στροφῇ γινομένῃ κωνικῇ ἐπιφανείᾳ διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς |
| γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
| ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
| πλευρὰ ἡ ΔΖ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν καταχθήσονται ἐπὶ τὴν ΔΕ ἐν τῇ δοθείσῃ γωνίᾳ : ἔσται | ||
| ἡ ΕΚ , αἱ δὲ καταγόμεναι ἀπὸ τῆς τομῆς τεταγμένως καταχθήσονται ἐν τῇ ἐφεξῆς γωνίᾳ τῇ Η . φανερὸν δή |
| , κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
| , καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
| ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
| δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
| γῆς εἰτ ' ἐπιπολῆς , ἢ πλείους τῶν ἑξακισχιλίων σταδίων διανύειν , ἄνυδρον καὶ ξηρὰν οὕτω , καὶ ταῦτα ὀρῶν | ||
| ἄλλου ἄλλο γιγνώσκουσα : διὸ καὶ διάνοια καλεῖται παρὰ τὸ διανύειν καὶ διεξιέναι . αὕτη ἐστὶν ἡ δύναμις ἡ συλλογιζομένη |
| τῶν τεσσάρων στοιχείων . Σφαίρας δὲ οὔσης τοῦ Κόσμουὁ γὰρ ζωδιακὸς δείκνυσι τοῦτο , ἐπειδὴ σφαίρας πάσης τὸ κάτω μέσον | ||
| . ὙΠΕΡΤΑΤΑ ΔΩΜΑΤΑ . Τῆς εἱμαρμένης τῆς ἐξ ἀστέρων ὁ ζωδιακὸς κύκλος ἐστὶν , ἐξ οὗ καταπέμπεται τά τε εὐκληρήματα |
| . ἐπεὶ ἴση ἡ ΑΜ τῇ ΔΖ , καὶ αἱ ἡμίσειαι ἄρα ἴσαι εἰσίν . ὥστε καὶ τὸ ἀπὸ τῆς | ||
| δὲ αὐτῶν ἴσαι περιφέρειαι ἀποληφθῶσι πρὸς τοῖς πέρασιν ἐλάττους ἢ ἡμίσειαι οὖσαι τῶν ὅλων τμημάτων , ἀπὸ δὲ τῶν κύκλων |
| εἰσὶν οἱ Β , Γ , Δ τῷ πλήθει τοσοῦτοι εἰλήφθωσαν ἀπὸ τοῦ Ε οἱ Ε , ΘΚ , Λ | ||
| ὡς ἀρχὴ καὶ μὴ οὖσα ἀριθμός , οὐκοῦν ἀπὸ τριάδος εἰλήφθωσαν : γ , ε , ζ , θ , |
| , τὸ δὲ ὄμμα κείσθω ἐπὶ τοῦ Β , καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΚΒ , ΒΔ , ΒΓ , ΒΖ | ||
| . κείσθω δὴ ὄμμα τὸ Δ , ἀφ ' οὗ προσπιπτέτωσαν ἀκτῖνες αἱ ΔΒ , ΔΓ , καὶ ἀπὸ τοῦ |
| , ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
| τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
| ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . | ||
| ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . |
| δέ , τῶν κλιμάτων ἐν παραλληλογράμμῳ σχήματι διαστελλομένων , τὰ ἐγγραφόμενα τρίγωνα καὶ μάλιστα ὅσα σκαληνὰ καὶ ὧν οὐδεμία πλευρὰ | ||
| καὶ τῆς περιφερείας τετραπλάσιόν ἐστιν τοῦ κύκλου . τὰ γὰρ ἐγγραφόμενα τοῖς κύκλοις ἢ περιγραφόμενα ὅμοια πολύγωνα τὰς περιμέτρους ἔχει |
| Ὀλύμπου , πάντες δ ' ἀστέρες ἄλλοι ὑποχθόνιοι φορέωνται ἔκτοσθεν κέντρων , τῆμος ξείνης ἀπὸ γαίης ἄξεται ἀλλοτρίων φωτῶν ἀγνῶτα | ||
| εἶναι ποιεῖ . Οὐ χρὴ δὲ ἐκ μόνων τῶν τεσσάρων κέντρων περὶ τῶν τοιούτων καταστοχάζεσθαι , ἀλλὰ δεῖ καὶ τὴν |
| [ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
| αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
| τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ | ||
| τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ |
| κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
| Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
| Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
| : λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
| Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
| καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
| περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
| τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
| ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
| περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
| ἐν τοῖς ἐπιπέδοις ἦν τὰ μὲν εὐθύγραμμα , τὰ δὲ κυκλικά , τὰ δὲ μικτὰ ὡς οἱ θυραῖοι καὶ αἱ | ||
| τὰς δὲ δέκα σχέσεις , διαμετρικά τε καὶ σφαιρικὰ καὶ κυκλικά , μηδεμίαν δὲ ἰδιάζουσαν ἢ φυσικὴν ἄλλως παραλλαγὴν καθ |
| τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις | ||
| διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν |
| ' οὐ πανταχοῦ , ἡ δύναμις δὲ ἁπανταχοῦ καὶ αἱ ἀκτῖνες , καὶ ἐν γῇ καὶ ἐν θαλάττῃ καὶ ἐν | ||
| τοῦ ἡλίου ὑφίστηται νέφος ὑφ ' οὗ ἐὰν σχίζωνται αἱ ἀκτῖνες χειμερινὸν τὸ σημεῖον . Καὶ ὅταν καυματίας δύηται καὶ |
| ἡ ΘΟ πρὸς ΟΔ , οὕτως ἐστὶν ἡ τῶν ἀπὸ ΟΑ ΑΔ πρὸς τὸ ἀπὸ ΟΔ : καὶ τὸ ἀπὸ | ||
| ΗΑ . ὡς δὲ ἡ ΖΗ πρὸς ΗΑ , ἡ ΟΑ πρὸς ΑΞ : ὡς ἄρα ἡ ΓΑ πρὸς τὴν |
| διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ | ||
| ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν |
| δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
| σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
| ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ | ||
| καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος |
| δύσεως Παροπανισάδαις καὶ Ἀραχωσίᾳ καὶ Γεδρωσίᾳ παρὰ τὰς ἐκτεθειμένας αὐτῶν ἀνατολικὰς πλευρὰς , ἀπὸ δὲ ἄρκτων Ἰμάῳ ὄρει παρὰ τοὺς | ||
| , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν , Δράκοντος |
| τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
| παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
| βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
| Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
| . Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
| περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
| ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ | ||
| ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων |
| προτερήσασι , δίχα μὲν τοῖς ἀρχιτέκτοσι , χωρὶς δὲ τοῖς οἰκοδόμοις καὶ πάλιν τοῖς ἐργαζομένοις : καὶ αὐτὸς δὲ μετὰ | ||
| σπάρτη καὶ τὸ ὀρθογώνιον τρίγωνον , ὃ ἀλφάδιον παρὰ τοῖς οἰκοδόμοις καὶ τέκτοσιν ὀνομάζεται . ἡ μὲν γὰρ κάθετος ἐν |
| τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
| κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
| κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
| τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
| ] καὶ πίσσα ὑγρὰ ἐκλειχομένη : γενναιότατα δὲ βοηθοῦσι καὶ ἀντίδοτοι , ὧν τὰς σκευασίας ἐπὶ τέλει ἀναγράψομεν : κοινῶς | ||
| ῥητίνης # γ ἢ πίσσης ξηρᾶς τὸ αὐτό . Ἡπατικαὶ ἀντίδοτοι . Ἡ πικρὰ ἡπατική . Ἀλόης ⋖ ρ , |
| Ε ἐφελκυστικόν ἐστι τοῦ Ν . ἀλλὰ καὶ τὰ εἰς ΘΕΝ λήγοντα ἐπιρρήματα εἰς Α ποιοῦσιν : ὄπισθεν ὄπισθα , | ||
| τῆς ΕΝ περιφερείας , ὑπερέχει καὶ ὁ ΒΗΛ τομεὺς τοῦ ΘΕΝ τομέως , καὶ εἰ ἐλλείπει , ἐλλείπει . τεσσάρων |