, ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ | ||
. Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον |
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά | ||
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ |
τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις | ||
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω |
Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ | ||
τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς |
ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ | ||
γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου |
ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ ' | ||
πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ |
Μο ρ : καὶ φανερὰ ἡ ἀπόδειξις . Ἄλλως . Ἔστω κύβος ὁ αος , ὁ δὲ τετράγωνος ὁ βος | ||
γὰρ δι ' ἀδυνάτου εἰσάγει τὸ ἀντικείμενον τῷ ἀναιρουμένῳ . Ἔστω γὰρ τὸ μὲν Α . οὐ καλῶς εἰλημμένοι εἰσὶν |
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
Θ , τὴν δὲ μετὰ τὴν Θ ἀνατολὴν ἑτέραν ἀνατολὴν πεποιήσθω κατὰ τὸ Κ : ἡμέρας ἄρα χρόνος ἐστὶ καὶ | ||
λόγος δοθείς . μὴ ἔστω δὴ ὁ αὐτός , καὶ πεποιήσθω ὡς τὸ ΑΒ πρὸς ΓΔ , οὕτως τὸ ΑΗ |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν | ||
ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
, ἐπ ' ἀσπίδα δὲ τὴν ἐπὶ λαιάν . Οἷον ἔστω σύνταγμα τὸ αβγδ , λοχαγῶν δ ' ἐν αὐτῷ | ||
ὑπόθεσιν ι δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ . καὶ ἔστω δοθὲν τὸ ΑΔ ὂν γ . ἐὰν οὖν ἀπὸ |
Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις | ||
πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ |
ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
ἐντὸς πεσεῖται τῆς τομῆς . εἰ γὰρ δυνατόν , ἐκτὸς πιπτέτω τῆς τομῆς ὡς ἡ ΓΔΕ , καὶ ἀπὸ τυχόντος | ||
τὸ [ διὰ ] τοῦ κύκλου ἐπίπεδον ἡ ΖΗ μὴ πιπτέτω ἐπὶ τὸ Ε κέντρον , καὶ ἐπιζευχθεῖσα μὲν ἡ |
τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
. ιθʹ . Τούτου προδειχθέντος ἔστω σφαῖρα μετέωρος , καὶ προκείσθω τό τε σημεῖον εὑρεῖν , ἐφ ' ὃ πεσεῖται | ||
, Η γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΗΘ , καὶ προκείσθω τὴν ΗΘ δηλονότι εὑρεῖν . προειλήφθω δὴ καὶ ἐνταῦθα |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
τῆς μεγάλης , ὅσοι ἔσονται λαὸς ἅγιος : τότε αὐτοῖς δοθήσεται πᾶσα εὐφροσύνη τοῦ παραδείσου , καὶ ἔσται ὁ θεὸς | ||
ἡ ΕΞ καὶ ἡ ΞΟ , καὶ ἡ ΕΟ ὑποτείνουσα δοθήσεται καὶ ἡ ὑπὸ ΟΕΞ γωνία : ὥστε καὶ ἡ |
μονάδες ρ , οἵτινές εἰσιν ἴσοι μονάσι ρκ . Καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια , ἤτοι ἀπὸ ἴσων ἴσα . | ||
λοιπὸς περισσὸς ἔσται . Ἀπὸ γὰρ ἀρτίου τοῦ ΑΒ περισσὸς ἀφῃρήσθω ὁ ΒΓ : λέγω , ὅτι ὁ λοιπὸς ὁ |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
συναγόμενα μόρια ἕξομεν τῆς οἰκείας παραλλάξεως . Ὑποδείγματος δὲ ἕνεκεν ὑποκείσθω τὸ ἀκριβὲς κέντρον τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου | ||
πρὸς ἑκατέραν τῶν ΑΛ , ΛΚ λόγος ἔσται δοθείς . ὑποκείσθω καὶ πρὸς τὸ ΚΔ ἀπόστημα τῆς ΑΚ λόγος δοθείς |
: τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
. ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
, καὶ ἐπεζεύχθω ἡ ΑΒ , καὶ ἀπὸ τῆς ΑΒ ἀναγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον δύο πλευρὰς πλείους ἔχον | ||
μὴ ἔστω δὴ ὅμοιον τὸ Α τῷ Β , καὶ ἀναγεγράφθω ἀπὸ τῆς ΕΖ τῷ Α ὅμοιον καὶ ὁμοίως κείμενον |
κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
γωνιῶν μείζων ἐστίν . Ἔστω τρίγωνον τὸ ΑΒΓ , καὶ προσεκβεβλήσθω αὐτοῦ μία πλευρὰ ἡ ΒΓ ἐπὶ τὸ Δ : | ||
μὴ ὑπάρχοντος ἡλίου . κείσθω κάτοπτρον τὸ ΔΖ , καὶ προσεκβεβλήσθω τῇ ΕΔ ἐπ ' εὐθείας ἡ ΔΒ , ἄχρις |
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ | ||
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ |
ΜΝ , καὶ ἔτι τὴν ΗΚ τῇ ΝΛ , καὶ περιγεγράφθω περὶ τὸ ΛΜΝ τρίγωνον κύκλος ὁ ΛΜΝ καὶ εἰλήφθω | ||
οὗ ἔστω κέντρον τῆς βάσεως τὸ Α σημεῖον , καὶ περιγεγράφθω περὶ τὸ Α κύκλος ὁ ΒΓ , καὶ κείσθω |
τῇ εὐθείᾳ τὸ βάρος ὥστε ἠρεμεῖν : λέγω δὴ ὅτι ἐκβληθεῖσα ἡ ΑΒ εὐθεῖα συμπεσεῖται τῇ πρότερον ἐναπειλημμένῃ . εἰ | ||
γενέσθαι . ὁμοίως δὲ καὶ ἀπὸ τῆς χολῆς , ἥτις ἐκβληθεῖσα καὶ ἀνατιναγεῖσα πρὸς τὸ τῶν πολεμίων μέρος ἧτταν τούτων |
διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι | ||
διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι |
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
, καὶ ἐπιζευχθεῖσα ἡ ΚΔ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΒΑ ἐκβληθείσῃ κατὰ τὸ Μ : λέγω ὅτι ἐστὶν ὡς ἡ | ||
καὶ ἐπιζευχθεῖσα μὲν ἡ ΔΛ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΓΒ ἐκβληθείσῃ κατὰ τὸ Η , τῇ δὲ ΒΓ πρὸς ὀρθὰς |
σημεῖα τὰ Γ Δ : ὅτι , ἐὰν τὸ ἀπὸ ΑΔ καὶ τὸ λόγον ἔχον πρὸς τὸ ἀπὸ ΔΒ τὸν | ||
γωνίαν τὴν ὑπὸ τῶν ΕΑΔ , θέσει ἄρα ἐστὶν ἡ ΑΔ . . . Ἄλλως . Εἰλήφθω ἐπὶ τῆς ΒΓ |
ΘΖ ٢ ١٨ ٩ ٣٦ ἡ ΖΚ ٢ ٣٢ ٣٠ ٥٦ ἡ ΚΕ ١ ١٣ ٣١ ٥٥ γεγονέτω ὡς . | ||
τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
διῆκταί τις ἡ ΗΤ , ἡ ΟΡ ἄρα πρὸς τὴν ΡΤ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΡΤΗ γωνία πρὸς | ||
ἡ ΡΤ : ἴση ἄρα ἐστὶ καὶ ἡ ΜΣ τῇ ΡΤ . ἔστι δὲ καὶ ὅλη ἡ ΜΣΞΥ ὅλῃ τῇ |
δὲ ἡ γῆ καὶ ὑποδέξεται τὴν Λαοδίκην ἤτοι ἐν φάραγγι πεσεῖται καὶ ἀποθανεῖται ἡ Λαοδίκη πότε ; ὅταν πορθῆται ἡ | ||
Α τῇ ΑΒ πρὸς ὀρθὰς ἀπ ' ἄκρας ἀγομένη ἐκτὸς πεσεῖται τοῦ κύκλου . Μὴ γάρ , ἀλλ ' εἰ |
ἡ ΑΒ , καὶ ἐφαπτομένη ἤχθω ἡ ΓΔ , καὶ κατήχθω τεταγμένως ἡ ΓΕ , κέντρον δὲ ἔστω τὸ Ζ | ||
ΖΘΦ τεταγμένην εἶναι : δευτέρα ἄρα διάμετρος ἡ ΖΦ . κατήχθω ἐπ ' αὐτὴν ἀπὸ τῆς τομῆς ἡ ΜΝ παράλληλος |
ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς | ||
, ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς |
δὴ καὶ ἑκάστη τῶν ΠΡ , ΡΣ , ΣΤ , ΤΥ πενταγώνου ἐστὶν ἰσοπλεύρου τοῦ εἰς τὸν ΕΖΗΘΚ κύκλον ἐγγραφομένου | ||
ταῖς βάσεσι τοῦ ΟΧ κυλίνδρου καὶ ποιείτωσαν τοὺς ΡΣ , ΤΥ κύκλους περὶ τὰ Ν , Ξ κέντρα . καὶ |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι | ||
٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢ |
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣ | ||
ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ |
ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δίς ١١ ١٠ ٥٠ ٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ | ||
٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ ١٢ ٣٠ Ἐκ |
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧ | ||
Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ |
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١ | ||
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨ |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς | ||
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον |
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
τομῆς ἑτέρα εὐθεῖα οὐ παρεμπεσεῖται . εἰ γὰρ δυνατόν , παρεμπιπτέτω ὡς ἡ ΑΔ , καὶ εἰλήφθω τι σημεῖον ἐπ | ||
τομῆς ἑτέρα εὐθεῖα οὐ παρεμπεσεῖται . εἰ γὰρ δυνατόν , παρεμπιπτέτω ὡς ἡ ΑΔ , καὶ εἰλήφθω τι σημεῖον ἐπ |
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ] | ||
λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον |
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη . | ||
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ |
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
ἀπὸ τῶν Δ καὶ Ν σημείων - ἐπὶ τὴν ΑΘ ἐκβληθεῖσαν αἱ ΔΦ καὶ ΝΧ . ἐπεὶ τοίνυν ἡ ΞΕ | ||
ἐσχατιὰς τῆς Ἀττικῆς . Ἀριστοφάνης Γήρᾳ ἔδει δέ γ ' ἐκβληθεῖσαν εἰς Ἁλμυρίδας τῇ θυγατρὶ τῇδε μὴ παρέχειν σε πράγματα |
ἀδιάφορος οὖσα ὥσπερ καὶ ἡ κάθετος . διττὴ δὲ ἡ κάθετός ἐστιν , ἡ μὲν ἐπίπεδος , ἡ δὲ στερεά | ||
ὅλως τὸ τῆς ὀρθῆς εἶδος . σύμβολον γὰρ καὶ ἡ κάθετός ἐστιν ἀρρεψίας καὶ ἀχράντου καθαρότητος καὶ μέτρου θείου καὶ |
: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , | ||
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ |
٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ | ||
٢٢ ١٠ ٢٠ τὸ ὑπὸ ῥητῆς καὶ τῆς ΑΔ ١ ٤٥ ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ταύτης ἡμίσεια |
ΑΕ τῷ ὑπὸ ΛΟΣ : καὶ ὡς ἄρα τὸ ἀπὸ ΔΕ πρὸς τὸ ἀπὸ ΑΕ , τὸ ὑπὸ ΠΜΘ πρὸς | ||
ΔΒ : ὅτι γίνεται , ὡς ἡ ΒΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΒΖ πρὸς τὴν ΖΕ . ἐπεὶ |
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή | ||
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ |
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ τὸ ἀπὸ ταύτης ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ | ||
τῆς ΗΓ ١٠ ١٧ ٨ ٣٤ ١٧ ἡ ΒΓ ٢ ٤٧ ٣٥ ἡ ΗΓ ٣ ١٢ ٢٥ τὸ ἀπὸ τῆς |
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ | ||
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ |
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ | ||
٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ | ||
παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ . |
, καὶ ἀπ ' αὐτοῦ προσπιπτέτω ἀκτὶς ἡ ΔΘ καὶ ἀνακεκλάσθω ὡς ἡ ΘΒ ἐπὶ τὸ Β πέρας , καὶ | ||
ἐπὶ τὸ Β , προσπεπτωκέτω δὲ ἡ ΔΓ ἀκτὶς καὶ ἀνακεκλάσθω ἐπὶ τὸ Κ . ἀνακλασθήσεται δὴ ἐπάνω τοῦ Θ |
τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ ἀπὸ τοῦ Ι ἐπὶ τὸ Α | ||
. ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω ἡ ΚΙ , καὶ τετμήσθω ἡ ΖΗ τῇ ΒΓ ὁμοίως κατὰ |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
. καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ | ||
ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ | ||
ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥ |
ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ | ||
: ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : |
ἀπὸ ΖΝ ΝΒ ὑπεροχῇ . ἀλλὰ ἡ τῶν ἀπὸ ΖΔ ΔΒ ὑπεροχή ἐστιν τὸ ὑπὸ ΑΒΔ : καὶ ἡ τῶν | ||
ΑΓ , ΓΒ ἔλαττον τοῦ δὶς ὑπὸ τῶν ΑΔ , ΔΒ , λείπεται τὰ ἀπὸ τῶν ΑΓ , ΓΒ τετράγωνα |
ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ , | ||
δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ | ||
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν |
τὸ ΑΒΓ , καὶ ἀπὸ τοῦ Δ κέντρου πρὸς ὀρθὰς ἀνήχθω ἡ ΔΒ , καὶ κινείσθω κανόνιόν τι περὶ τὸ | ||
καὶ ἤχθωσαν αὐτοῦ διαγώνιοι αἱ ΔΒ , ΓΑ , καὶ ἀνήχθω πρὸς ὀρθὰς ἀπὸ τοῦ Ε τῷ ἐπιπέδῳ μετέωρος εὐθεῖα |
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |