γωνιῶν μείζων ἐστίν . Ἔστω τρίγωνον τὸ ΑΒΓ , καὶ προσεκβεβλήσθω αὐτοῦ μία πλευρὰ ἡ ΒΓ ἐπὶ τὸ Δ : | ||
μὴ ὑπάρχοντος ἡλίου . κείσθω κάτοπτρον τὸ ΔΖ , καὶ προσεκβεβλήσθω τῇ ΕΔ ἐπ ' εὐθείας ἡ ΔΒ , ἄχρις |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν | ||
ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
: καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ ' | ||
πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ |
ὁ ΑΒΓ κύκλου τινὸς τῶν ἐν τῇ σφαίρᾳ τοῦ ΓΔ ἐφαπτέσθω κατὰ τὸ Γ σημεῖον . λέγω , ὅτι ὁ | ||
, κέντρον δὲ τὸ Γ , καὶ τῆς Α τομῆς ἐφαπτέσθω ἡ ΚΛ , καὶ ἐπεζεύχθω ἡ ΛΓ καὶ ἐκβεβλήσθω |
ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
, ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ | ||
. Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον |
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά | ||
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ |
Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ | ||
τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς |
ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ | ||
: ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : |
ὅλων , ἀπὸ δὲ τοῦ ἐξ ἀρχῆς κύκλου ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΑΛ , ΔΜ : ἡ ἄρα ἀπὸ | ||
ὅλων , ἀπὸ δὲ τῶν ἐξ ἀρχῆς κύκλων ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΜΝ , ΠΡ , ἡ ἄρα ἀπὸ |
ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις | ||
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
, ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις | ||
πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ |
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ , | ||
τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , |
διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι | ||
διὰ τῶν ποιημάτων καὶ παραδιδόναι ἔπειτα λαμπρότατα . ἄλλως . ἔσοπτρόν φησι τῶν καλῶν ἔργων τὸν ὕμνον εἶναι , ὅτι |
ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί . Λοιπὸν δὲ ἕνεκεν τοῦ προχείρου | ||
Α πόλου μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ |
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
, ᾗ ὑπερέχει ὁ κύλινδρος τοῦ τριπλασίου τοῦ κώνου . λελείφθω , καὶ ἔστω τὰ ΑΕ , ΕΒ , ΒΖ | ||
τοῦ ΒΓΔΕ κύκλου περιφερείας ὑπὸ τῆς ἴσης τῇ ΗΑʹ . λελείφθω καὶ ἔστω ἡ ΚΒ περιφέρεια . ἐλάσσων ἄρα καὶ |
٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
ΛΟ , ἴση ἄρα ἔσται καὶ ἡ ΕΗ περιφέρεια τῇ ΚΦ , ὥστε καὶ γωνία ἡ ὑπὸ ΕΣΤ τῇ ὑπὸ | ||
αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ , ΘΧ , ΜΣ παραλληλόγραμμα καὶ τὰ ΛΠ , |
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
ΑΒΓ , καὶ τῇ ΒΓ παράλληλος ἡ ΑΔ , καὶ διαχθεῖσα ἡ ΔΕ τῇ ΒΓ συμπιπτέτω κατὰ τὸ Ε σημεῖον | ||
γὰρ διὰ τοῦ Γ τῇ ΔΑ παράλληλος ἡ ΓΕ καὶ διαχθεῖσα ἡ ΒΑ συμπιπτέτω αὐτῇ κατὰ τὸ Ε . Καὶ |
ἡ ΖΝ ١ ٢٦ ٤١ ٤٠ ٣٢ Τὸ ΓΕ ٥ ٥١ ١٨ ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ | ||
. ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ ΒΓ τὸ καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ |
ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ | ||
Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς |
ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς | ||
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ , | ||
δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ |
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ | ||
ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ |
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
, τὸ ΔΖ ιζ ιδ β λ κ . ٦ ٢٤ ٢٠ ٠ ٥٥ ٢٥ ٤ ١٠ Πόθεν δῆλον , | ||
٢ ٤٨ ١٠ ١٢ ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ | ||
γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου |
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν . | ||
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ |
ΗΘ . , ] ἐπεὶ γὰρ τμῆμα κύκλου ἐστὶ τὸ ΚΝΛ , ἀπὸ τοῦ Μ σημείου πρὸς τὴν περιφέρειαν ἄλλη | ||
κατὰ διάμετρον αὐτῷ τὸ Ζ ἀρξάμενον ἀπὸ τοῦ Κ τὴν ΚΝΛ διαπορεύεται καὶ ἀνατέλλει τὸ ΕΒΖ ἡμικύκλιον : ἐν ᾧ |
ὄψις δὲ ἡ ΒΔ ἀνακλωμένη ἐπὶ τὸ Α , καὶ ὁράσθω τὸ Α , κέντρον δὲ τῆς σφαίρας ἔστω τὸ | ||
σχῆμα ὁτὲ μὲν κοῖλον , ὁτὲ δὲ κυρτὸν ποιεῖ . ὁράσθω γὰρ τὰ ΓΒΔ τοῦ ὄμματος ἐπὶ τοῦ Κ κειμένου |
ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
. * χλοάοντος : γράφεται καὶ κλώθοντος * κλώθοντος : στρεφομένου καὶ ἠρτημένου ἐν ἀρπέζαισιν ἐρίνου : ἐρινεὸν Ἀθηναῖοι ὀνομάζουσιν | ||
πῆχυς πρὸς τὴν σπάθην τῆς χειρὸς κεκαμμένης , ὅτε λοιπὸν στρεφομένου τοῦ ἐν τοῖς σκέλεσιν ἄξονος ὑπὸ τοῦ κάλου καθελκομένη |
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
, ἀλλ ' ὡς ἡ ΘΒ πρὸς ΜΠ , ἡ ΤΒ πρὸς ΜΝ καὶ ἡ Ρ πρὸς ΞΗ , ὡς | ||
ΝΟ πρὸς τὴν ΟΖ . ἐδείχθη δὲ καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν |
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν | ||
τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
ΕΘ εὐθεῖα ε ιη , τοιούτων ἐστὶ καὶ ἡ μὲν ΖΞ ἐκ τοῦ κέντρου τοῦ ἐκκέντρου ξ , ἡ δὲ | ||
τὸ τοῦ διὰ μέσων ἐπίπεδον αἱ ΔΜ καὶ ΕΝ καὶ ΖΞ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΜ καὶ ΚΝ καὶ |
, ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ | ||
, ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ |
τὴν δὲ ” ζώνην ὑπὲρ τοῦ Κριοῦ , πλὴν τὸ Τρίγωνον , ὅ ἐστι „ μεταξύ : τὸν δ ' | ||
τὰ δὴ ἐν δεξιῷ , καὶ τὸ ὑπὲρ τὸν Κριὸν Τρίγωνον , νοτόθεν τοῦ νοτίου Ἰχθύος ἡ κεφαλή . . |
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ | ||
ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν |
πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ , | ||
' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ |
κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β | ||
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν |
ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
: τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
. ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
κατὰ τὸ ὑποκείμενον ἀπόστημα μοῖρα α ιϚ με , ἃ παραλλάξει ἡ σελήνη ἐν τῷ ὑποκειμένῳ κλίματι , τοῦ μὲν | ||
τῶν ἰσημερινῶν χρόνων τὰ τῇ κατὰ μῆκος μόνῃ πάλιν ἐπιβάλλοντα παραλλάξει μετὰ τοῦ τοσούτου μέρους αὐτῶν , ἐὰν αἰσθητὸν ᾖ |
, πρὸς τὴν Ὁμηρικὴν ποίησιν , ὥς φασι , Φειδίου παραβαλλομένου , τοῦ κινήσαντος ὀλίγῳ νεύματι τῶν ὀφρύων τὸν ξύμπαντα | ||
α μγ νε . παρὰ τὴν πλευρὰν γοῦν τοῦ γ παραβαλλομένου τοῦ ἀπὸ τῆς Α πλάτος ποιεῖ τὴν ΓΔ τὸν |
ΑΒΓ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἔστω ὑπὸ γῆν τὸ ΑΔΓ ἡμικύκλιον , | ||
ἐμβαδὸν τοῦ ΑΖΓΗ κύκλου : δηλονότι καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως ἐμβαδὸν ἕξομεν τοιούτων κϚ ιϚ οἵων ἐδείχθη τὸ |
ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ | ||
. ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
οἷόν τε : κἀκεῖνο μὲν ἐπιβολὴ καὶ θίξις ἐστὶ τοῦ νοουμένου , τοῦτο δὲ ὥσπερ κίνησις περὶ αὐτὸ καὶ ἐπέλευσις | ||
ἐξ ἐκείνου γεννᾶσθαι μερικὸν Προμηθέα , Προμηθέως γοῦν τοῦ πρώτου νοουμένου νοός , ἤτοι τῆς καθόλου ψυχῆς τοῦ παντός . |
τοῦ Δ κάθετος ἤχθω ἐπ ' αὐτὸν ἡ ΔΕ καὶ συμβαλλέτω τῷ τοῦ κύκλου ἐπιπέδῳ κατὰ τὸ Ε σημεῖον , | ||
καὶ ἐκβεβλήσθω ἡ ΔΕ ἐπ ' ἀμφότερα τὰ μέρη καὶ συμβαλλέτω τῇ ἐπιφανείᾳ τῆς σφαίρας κατὰ τὰ Ζ , Η |
τὸ ΜΖ : πολλῷ ἄρα τὸ ΜΖ μεῖζόν ἐστι τοῦ ΞΚ . καὶ ἐπεὶ τὰ ΞΝ , ΝΛ , ΛΚ | ||
, ἡ δὲ ΞΛ τῆς ΠΡ , ὅλη ἄρα ἡ ΞΚ ὅλης τῆς ΚΡ ἐστὶ διπλῆ . Πάλιν ἐπεὶ διπλῆ |
τῆς μεγάλης , ὅσοι ἔσονται λαὸς ἅγιος : τότε αὐτοῖς δοθήσεται πᾶσα εὐφροσύνη τοῦ παραδείσου , καὶ ἔσται ὁ θεὸς | ||
ἡ ΕΞ καὶ ἡ ΞΟ , καὶ ἡ ΕΟ ὑποτείνουσα δοθήσεται καὶ ἡ ὑπὸ ΟΕΞ γωνία : ὥστε καὶ ἡ |
ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [ | ||
: ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β |
λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη | ||
τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς |