τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω
8355371 ἐκβεβλησθω
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ
8227392 ἐπεζευχθω
Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ
τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς
8184168 ἠχθω
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ
8063558 κεισθω
, ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ
. Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον
7969868 ἐπιζευχθεισα
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ
7883844 διηχθω
ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ '
πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ
7628724 ἠχθωσαν
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ
7530621 γεγραφθω
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α ,
7409213 ἐκβεβλησθωσαν
κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ
τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ
7363533 ἐπεζευχθωσαν
Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ :
ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία
7290634 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
7243606 ἐπιζευχθεισαι
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ ,
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ ,
7206377 πιπτετω
ἐντὸς πεσεῖται τῆς τομῆς . εἰ γὰρ δυνατόν , ἐκτὸς πιπτέτω τῆς τομῆς ὡς ἡ ΓΔΕ , καὶ ἀπὸ τυχόντος
τὸ [ διὰ ] τοῦ κύκλου ἐπίπεδον ἡ ΖΗ μὴ πιπτέτω ἐπὶ τὸ Ε κέντρον , καὶ ἐπιζευχθεῖσα μὲν ἡ
7201237 πεποιησθω
Θ , τὴν δὲ μετὰ τὴν Θ ἀνατολὴν ἑτέραν ἀνατολὴν πεποιήσθω κατὰ τὸ Κ : ἡμέρας ἄρα χρόνος ἐστὶ καὶ
λόγος δοθείς . μὴ ἔστω δὴ ὁ αὐτός , καὶ πεποιήσθω ὡς τὸ ΑΒ πρὸς ΓΔ , οὕτως τὸ ΑΗ
7154023 Ἐστω
Μο ρ : καὶ φανερὰ ἡ ἀπόδειξις . Ἄλλως . Ἔστω κύβος ὁ αος , ὁ δὲ τετράγωνος ὁ βος
γὰρ δι ' ἀδυνάτου εἰσάγει τὸ ἀντικείμενον τῷ ἀναιρουμένῳ . Ἔστω γὰρ τὸ μὲν Α . οὐ καλῶς εἰλημμένοι εἰσὶν
7153043 ἐφαπτομεναι
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ
7039333 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
7037904 τεμνετω
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ
6986783 προσπιπτετωσαν
, τὸ δὲ ὄμμα κείσθω ἐπὶ τοῦ Β , καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΚΒ , ΒΔ , ΒΓ , ΒΖ
. κείσθω δὴ ὄμμα τὸ Δ , ἀφ ' οὗ προσπιπτέτωσαν ἀκτῖνες αἱ ΔΒ , ΔΓ , καὶ ἀπὸ τοῦ
6913831 ἐφαπτομενη
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα
6892527 συμπεπληρωσθω
τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ
ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ ,
6885621 κατηχθω
ἡ ΑΒ , καὶ ἐφαπτομένη ἤχθω ἡ ΓΔ , καὶ κατήχθω τεταγμένως ἡ ΓΕ , κέντρον δὲ ἔστω τὸ Ζ
ΖΘΦ τεταγμένην εἶναι : δευτέρα ἄρα διάμετρος ἡ ΖΦ . κατήχθω ἐπ ' αὐτὴν ἀπὸ τῆς τομῆς ἡ ΜΝ παράλληλος
6774953 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
6721915 γεγραφθωσαν
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου .
6703323 ٥٦
ΘΖ ٢ ١٨ ٩ ٣٦ ἡ ΖΚ ٢ ٣٢ ٣٠ ٥٦ ἡ ΚΕ ١ ١٣ ٣١ ٥٥ γεγονέτω ὡς .
τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠
6689279 ἐφαπτεσθω
ὁ ΑΒΓ κύκλου τινὸς τῶν ἐν τῇ σφαίρᾳ τοῦ ΓΔ ἐφαπτέσθω κατὰ τὸ Γ σημεῖον . λέγω , ὅτι ὁ
, κέντρον δὲ τὸ Γ , καὶ τῆς Α τομῆς ἐφαπτέσθω ἡ ΚΛ , καὶ ἐπεζεύχθω ἡ ΛΓ καὶ ἐκβεβλήσθω
6637896 ΕΖΗ
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ
6625002 ٢٣
٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨
6624765 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
6617857 προσπιπτετω
ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν
ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν
6601657 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
6586713 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
6584046 ٥٠
ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δίς ١١ ١٠ ٥٠ ٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢
٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ ١٢ ٣٠ Ἐκ
6576311 ٢٥
٣ ١٢ ٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ
٤٦ τὸ ἅπαξ ὑπὸ τῶν ΑΒ , ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ
6525918 ΒΕ
ἀπὸ τῶν ΕΖ , ΖΒ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΕ , τοῖς δὲ ἀπὸ τῶν ΕΖ , ΖΛ ἴσον
ΓΔ : τὸ ἄρα ὑπὸ ΑΕ ΕΔ μετὰ τοῦ ὑπὸ ΒΕ ΕΓ ἴσον ἐστὶν τῷ ὑπὸ ΑΓΔ . ιθʹ .
6518055 ἐκκεισθω
ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ
γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου
6513143 ΓΔ
τῆς Β ζ μϚ λϚ ιε οὐδέν . ἀσύμμετρος τῇ ΓΔ μήκει . . , ] δυνάμει δὲ δηλονότι σύμμετρος
ἐστι . καὶ πάντα ἑξάκις . τὸ ἄρα τριακοντάκις ὑπὸ ΓΔ , ΖΗ ἴσον ἐστὶ τῇ τοῦ δωδεκαέδρου ἐπιφανείᾳ .
6512784 ٤٧
ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ τὸ ἀπὸ ταύτης ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١
τῆς ΗΓ ١٠ ١٧ ٨ ٣٤ ١٧ ἡ ΒΓ ٢ ٤٧ ٣٥ ἡ ΗΓ ٣ ١٢ ٢٥ τὸ ἀπὸ τῆς
6502560 ٤٥
٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤
٢٢ ١٠ ٢٠ τὸ ὑπὸ ῥητῆς καὶ τῆς ΑΔ ١ ٤٥ ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ταύτης ἡμίσεια
6493770 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
6492810 ΓΚΘ
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ ,
6492096 ٣٥
τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣
ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ
6467634 ΑΒΓ
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ
6463628 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
6461727 ٢٠
٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ
٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ
6461397 ἐρχεσθω
τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό :
ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ
6456131 ΗΔ
ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου
ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ
6455528 ΑΒ
, ὧν διάμετρος ἡ ΑΒ , καὶ τετμήσθω δίχα ἡ ΑΒ κατὰ τὸ Γ , καὶ διὰ τοῦ Γ ἤχθω
ὁ κύκλος οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ ὑπὸ ΑΒ ΚΛ , διὰ τὸ ἴσην εἶναι πάλιν τὴν ΔΟ
6453196 ١٣
τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦ ١٦ ἡ ΓΖ ٢ ١٣ ٦ ٢٤ ٤ ἡ ΑΗ ٤ ٣٧ ٥٣ λοιπὸν
٤٤ ٣ ἡ ΓΔ ٧ ١٥ ٣٣ ἡ ΔΖ ٥ ١٣ ٣٠ Ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ ἡ ΖΘ
6453054 ΕΖ
ΑΒ πρὸς τὴν ΒΓ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΖ , ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΗ ,
, ἡ ΕΖ τῇ ΓΔ οὐ συμπεσεῖται . ἡ ἄρα ΕΖ οὐδετέρᾳ τῶν ΑΒ , ΓΔ τομῶν συμπεσεῖται : κατὰ
6439347 ٢٩
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤
6436986 ٣٣
τὸ ΘΚ ٥ ٣٥ ٤٣ ٣٤ ٢٤ ἡ ΚΗ οὐδέν ٣٣ ٢٤ ٢١ ١٦ ἡ ΑΓ ١ ٤٠ ٢٧ ἡ
١١ ٢٧ ١٥ ٤٩ τὸ ἀπὸ τῆς ΑΒ ٢ ٤٧ ٣٣ ٢٤ ١٦ τὸ σύναμα ١٣ ٥٩ ٠ ٣٥ ٥
6431842 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
6423923 ΔΕ
ΑΕ τῷ ὑπὸ ΛΟΣ : καὶ ὡς ἄρα τὸ ἀπὸ ΔΕ πρὸς τὸ ἀπὸ ΑΕ , τὸ ὑπὸ ΠΜΘ πρὸς
ΔΒ : ὅτι γίνεται , ὡς ἡ ΒΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΒΖ πρὸς τὴν ΖΕ . ἐπεὶ
6414933 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6409671 ١٠
Ἐκ τῆς εἰς ἀδύνατον ἀπαγωγῆς . Ἡ ἀποτομή ἡ ΕΖ ١٠ ١٨ ٥ ٤٠ ἐκ δύο ὀνομάτων ٥ ٦ ٣٢
πρὸς τὸ ἀπὸ τῆς ΘΗ παραβληθῆναι τὸ ΑΒ χωρίον ١١ ١٠ ٢٠ ἡ αὐτοῦ πλευρὰ ἡ ΑΓ ٣ ٢٠ ٣٢
6408029 ٤٤
τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ ΑΒ ٢٠
ἴσον εἶναι τῷ ΖΛ . Ἡ ΑΒ ٢ ٥ ⸎ ٤٤ ἡ ΓΔ ٤ ἡ ΒΗ ١ ٣٩ ٩ ἡ
6401769 ١٦
٥٦ ٥٢ ١٥ ἡ αὐτῆς ἡμίσεια ٥ ١١ ٥ ⸎ ١٦ ٣٠ τὸ ἀπὸ ταύτης ἤτοι τῆς ἡμισείας τῆς ΑΗ
٤٣ ἡ ΖΒ ١ ١٠ ٢١ ἡ ΑΖ ١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠
6400666 ٤١
ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤
ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥
6397653 ٤٣
τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ ἡ ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣
٢ ١٣ ٥ ٨ ٤٩ ἡ ΚΜ οὐδέν ٢٠ ٨ ٤٣ ١٦ ἡ ΓΜ ٦ ٣٣ ١٣ ٥٢ ٥ ἡ
6396474 ὑποκεισθω
συναγόμενα μόρια ἕξομεν τῆς οἰκείας παραλλάξεως . Ὑποδείγματος δὲ ἕνεκεν ὑποκείσθω τὸ ἀκριβὲς κέντρον τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου
πρὸς ἑκατέραν τῶν ΑΛ , ΛΚ λόγος ἔσται δοθείς . ὑποκείσθω καὶ πρὸς τὸ ΚΔ ἀπόστημα τῆς ΑΚ λόγος δοθείς
6376137 ٥٩
٢٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ٥٠ ٢٨ ٥٩ ἡ αὐτοῦ πλευρά ١ ٤١ ٨ ἡ ΖΗ ٥
٢٤ ١٦ τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ
6373362 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
6372544 ΑΛ
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ
6370729 κατηγμενην
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ
6369129 συμβαλει
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς
6360997 ΚΛ
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι
6358927 ΤΥ
δὴ καὶ ἑκάστη τῶν ΠΡ , ΡΣ , ΣΤ , ΤΥ πενταγώνου ἐστὶν ἰσοπλεύρου τοῦ εἰς τὸν ΕΖΗΘΚ κύκλον ἐγγραφομένου
ταῖς βάσεσι τοῦ ΟΧ κυλίνδρου καὶ ποιείτωσαν τοὺς ΡΣ , ΤΥ κύκλους περὶ τὰ Ν , Ξ κέντρα . καὶ
6356188 ΓΕ
λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη
τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς
6355001 τεμνετωσαν
ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν καθέτῳ ἀγομένῃ περιφέρειαι γραφεῖσαι τεμνέτωσαν ἀλλήλας : καὶ αἱ ἀπὸ τῆς τομῆς ἐπὶ τὰ
πόλος ἔστω τῶν παραλλήλων τὸ Α σημεῖον , καὶ τοῦτον τεμνέτωσαν δύο μέγιστοι κύκλοι οἱ ΒΖΓ , ΔΖΕ πρὸς ὀρθάς
6353535 ٤٦
١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧
Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ
6340344 ΜΝ
ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ
καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος
6337045 ΕΞ
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη .
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ
6332934 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
6332448 ἀπειληφθω
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου
6331551 ٤٢
٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ
٢١ ἡ ΒΕ ١ ٤٠ ١٦ ἡ ΔΖ ٥ οὐδέν ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ
6328727 πεσειται
δὲ ἡ γῆ καὶ ὑποδέξεται τὴν Λαοδίκην ἤτοι ἐν φάραγγι πεσεῖται καὶ ἀποθανεῖται ἡ Λαοδίκη πότε ; ὅταν πορθῆται ἡ
Α τῇ ΑΒ πρὸς ὀρθὰς ἀπ ' ἄκρας ἀγομένη ἐκτὸς πεσεῖται τοῦ κύκλου . Μὴ γάρ , ἀλλ ' εἰ
6328552 ٢٦
ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ τῆς
٥٠ ٢٠ τὸ ἀπὸ ταύτης ٤٢ ٥٢ ٢ ٢٣ ٣٣ ٢٦ ٤٠ ὃ μέλλει πρὸς τὸ ἀπὸ τῆς ΘΗ παραβληθῆναι
6300731 ἐστω
, ἐπ ' ἀσπίδα δὲ τὴν ἐπὶ λαιάν . Οἷον ἔστω σύνταγμα τὸ αβγδ , λοχαγῶν δ ' ἐν αὐτῷ
ὑπόθεσιν ι δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ . καὶ ἔστω δοθὲν τὸ ΑΔ ὂν γ . ἐὰν οὖν ἀπὸ
6298853 ٥٧
ΓΚ ٥ ٢١ ٤٤ ٤٧ ١٢ ἡ ΚΜ οὐδέν ٤٠ ٥٧ ٤٠ ٥٠ τὸ ἀπὸ τῆς ΑΒ ⸎ ٥٢ ٢٥
ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ΑΗ ١٤ ٥ ٥٧ ٤٠ ἡ αὐτῆς ἡμίσεια ٧ ٢ ٥٨ ٥٠ τὸ
6297939 ٢٤
, τὸ ΔΖ ιζ ιδ β λ κ . ٦ ٢٤ ٢٠ ٠ ٥٥ ٢٥ ٤ ١٠ Πόθεν δῆλον ,
٢ ٤٨ ١٠ ١٢ ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη
6294914 ἐστωσαν
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ
6287513 ٤٠
٥ ٢١ ٤٤ ٤٧ ١٢ ἡ ΚΜ οὐδέν ٤٠ ٥٧ ٤٠ ٥٠ τὸ ἀπὸ τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦
٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٠٣ ٩ ٥٦ ٤٠ ἡ ΑΖ ٢٩ ٢٣ ٥٦ ٥٠ ἡ ΖΗ ٠
6286518 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6281865 ٤٩
αὐτῆς ἡμίσεια ٧ ٢ ٥٨ ٥٠ τὸ ἀπὸ τῆς ἡμισείας ٤٩ ٤١ ٥٣ ٢٣ ١ ٢١ ٤٠ τὸ ΑΒ ١٤
τεσσάρων μονάδων τὸ ἀπὸ τῆς ΑΒ ١١٠ ١١٠ ٢٧ ١٠ ٤٩ τὸ ἀπὸ τῆς ΓΒ ٢ ٤٧ ٣٣ ٢٤ ١٦
6279144 ١٤
٥٠ ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ]
٥ ٣٣ ١٨ ٤٠ ٢٥ τὸ ἀπὸ τῆς ΒΕ ١ ١٤ ٣ ٢ ١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ ,
6277234 ΑΕΓ
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν
6262620 ١١
٩ ٢ ٥٠ τὸ ἀπὸ τῆς ΕΗ ٢٦ ٣ ٥٠ ١١ ٨ ١ ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν
١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ ٢ ٢٥ ١١ ἡ ΓΔ ٤ ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣
6256146 ٥٢
٢٥ τὸ ἀπὸ τῆς Θ ٢٥ ٤٢ ٥١ ٢٥ ٤٢ ٥٢ Ἡ Α μονάδων τεσσάρων , ἡ ΓΗ Ϛ ,
πλευρὰ τοῦ ϘϚ ٣ ٤٧ ٥٢ ἡ ΓΒ ٩ ٤٧ ٥٢ τὰ ἀπὸ τῆς Θ ξ , ἡ Θ ἡ
6252627 παρεμπιπτετω
τομῆς ἑτέρα εὐθεῖα οὐ παρεμπεσεῖται . εἰ γὰρ δυνατόν , παρεμπιπτέτω ὡς ἡ ΑΔ , καὶ εἰλήφθω τι σημεῖον ἐπ
τομῆς ἑτέρα εὐθεῖα οὐ παρεμπεσεῖται . εἰ γὰρ δυνατόν , παρεμπιπτέτω ὡς ἡ ΑΔ , καὶ εἰλήφθω τι σημεῖον ἐπ
6251288 ΒΗ
, ΖΗ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΑΘ , ΒΗ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ παραλληλόγραμμον
ἴσῳ τριγώνῳ τῇ ΒΖ , γίνεται ὡς συναμφότερος ἡ ΖΒ ΒΗ πρὸς τὴν ΖΗ , οὕτως τὸ ἀπὸ ΑΖ τετράγωνον
6248002 ١٩
٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ
٤٨ ١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨
6247963 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
6247464 ٣١
٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦
τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ
6247296 ١٢
٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩
٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ
6246996 ΕΖΗΘ
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
6241502 ἡμικυκλιον
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ
6238403 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
6237496 ΑΔ
σημεῖα τὰ Γ Δ : ὅτι , ἐὰν τὸ ἀπὸ ΑΔ καὶ τὸ λόγον ἔχον πρὸς τὸ ἀπὸ ΔΒ τὸν
γωνίαν τὴν ὑπὸ τῶν ΕΑΔ , θέσει ἄρα ἐστὶν ἡ ΑΔ . . . Ἄλλως . Εἰλήφθω ἐπὶ τῆς ΒΓ
6230882 ٢٧
ἡ ΔΚ τεσσάρων μονάδων τὸ ἀπὸ τῆς ΑΒ ١١٠ ١١٠ ٢٧ ١٠ ٤٩ τὸ ἀπὸ τῆς ΓΒ ٢ ٤٧ ٣٣
. ἡ ΑΒ ٢ ٢١ ٣٥ ἡ ΑΔ ١ ٤٠ ٢٧ τὸ ἀπὸ τῆς ΑΒ ٥ ٣٣ ١٨ ٤٠ ٢٥

Back