συναγόμενα μόρια ἕξομεν τῆς οἰκείας παραλλάξεως . Ὑποδείγματος δὲ ἕνεκεν ὑποκείσθω τὸ ἀκριβὲς κέντρον τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου
πρὸς ἑκατέραν τῶν ΑΛ , ΛΚ λόγος ἔσται δοθείς . ὑποκείσθω καὶ πρὸς τὸ ΚΔ ἀπόστημα τῆς ΑΚ λόγος δοθείς
7754419 Ἐστω
Μο ρ : καὶ φανερὰ ἡ ἀπόδειξις . Ἄλλως . Ἔστω κύβος ὁ αος , ὁ δὲ τετράγωνος ὁ βος
γὰρ δι ' ἀδυνάτου εἰσάγει τὸ ἀντικείμενον τῷ ἀναιρουμένῳ . Ἔστω γὰρ τὸ μὲν Α . οὐ καλῶς εἰλημμένοι εἰσὶν
7015750 ἀπειληφθω
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου
6963871 ἐκκεισθω
ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ
γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου
6916954 ἀνατελλετω
, ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ '
τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου -
6893483 νοεισθω
μοίρᾳ , τόδ ' αὐτὸ καὶ ἐπὶ τῶν ἄλλων ζωδίων νοείσθω , ὡς θέμις , συγκρίνοντός μου ἢ ὡροσκοποῦντος ♌
δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ νοείσθω πρῶτον ἐπ ' αὐτοῦ τοῦ ἀπογείου τὸ κέντρον τοῦ
6822148 αγβʹ
: ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ
συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ
6740197 ἐπικυκλος
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα
6731684 ἐφαπτομενη
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα
6643250 ἐφαψεται
, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἀγομένη ἐφάψεται τῆς τομῆς . ἤχθω γὰρ ἐφαπτομένη ἡ ΔΖ ,
ἡ ἀπὸ τοῦ γενομένου σημείου ἐπὶ τὸ ληφθὲν σημεῖον ἐπιζευγνυμένη ἐφάψεται τῆς τομῆς . ἔστω παραβολή , ἧς διάμετρος ἡ
6629063 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
6586150 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
6529831 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6497062 νενοησθω
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον ,
6452081 κεισθω
, ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ
. Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον
6423438 γεγραφθω
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α ,
6402800 προκεισθω
. ιθʹ . Τούτου προδειχθέντος ἔστω σφαῖρα μετέωρος , καὶ προκείσθω τό τε σημεῖον εὑρεῖν , ἐφ ' ὃ πεσεῖται
, Η γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΗΘ , καὶ προκείσθω τὴν ΗΘ δηλονότι εὑρεῖν . προειλήφθω δὴ καὶ ἐνταῦθα
6396506 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
6396474 εἰληφθω
τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω
6365706 ἐπεζευχθω
Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ
τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς
6350304 Νοεισθω
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ
6349100 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
6344784 ἐξαρμα
ὡρῶν ἰσημερινῶν ιδʹ καὶ τριῶν ἔγγιστα πεμπτημορίων , τὸ δὲ ἔξαρμα τοῦ πόλου μοιρῶν λζʹ ὡς ἔγγιστα . ὅπου δὲ
Διομήδης διέφθαρτο καὶ αὐτὸς ὑπὸ τῆς συνουσίας καὶ οὐδὲν ἔχων ἔξαρμα φύσεως ἔτι ταπεινότερος ἐγεγόνει πρὸς τὰ ἐπιταττόμενα . καίτοι
6333347 καλεισθω
τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι .
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ
6327353 τομη
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ
6312504 δυνετω
τρόπον . Ἀνατελλέτω γὰρ ὁ ἥλιος πρὸς τῷ Ζ , δυνέτω δὲ πρὸς τῷ Η , καὶ ἔστω ἐλάσσων ἡ
διέρχεται τὸν μεσημβρινὸν ὅ τε Κριὸς καὶ ὁ Ταῦρος . δυνέτω δὲ τὸν αὐτὸν τρόπον ἡ ἀρχὴ τοῦ Κριοῦ ,
6301474 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6262664 ΠΔΡ
δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ
τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας
6249083 Δυνατον
δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν
καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν ,
6240229 τεταρτημοριον
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ
6239254 ὁριζων
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα
6235545 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
6198024 ἐστω
, ἐπ ' ἀσπίδα δὲ τὴν ἐπὶ λαιάν . Οἷον ἔστω σύνταγμα τὸ αβγδ , λοχαγῶν δ ' ἐν αὐτῷ
ὑπόθεσιν ι δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ . καὶ ἔστω δοθὲν τὸ ΑΔ ὂν γ . ἐὰν οὖν ἀπὸ
6186532 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
6178436 ἀσυμπτωτος
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ
6175364 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
6174717 κινεισθω
πρὸς τὰ κβ δʹ , καὶ ἐπὶ τούτου τοῦ κυκλίσκου κινείσθω ὁ ἀστὴρ περὶ τὸ κέντρον αὐτοῦ ἰσοταχῶς , ὡς
τοῦ Δ κέντρου πρὸς ὀρθὰς ἀνήχθω ἡ ΔΒ , καὶ κινείσθω κανόνιόν τι περὶ τὸ Α σημεῖον οὕτως ὥστε τὸ
6160446 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6153128 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
6145852 μεσημβρινος
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν
6130206 γινεσθω
. ταύτην οὐσίαν ἔχω τοῦ ἀγαθοῦ , τὰ δὲ ἄλλα γινέσθω ὡς ἂν διδῶται : οὐ διαφέρομαι . Τῶν ὄντων
, καὶ ὅτι εἰ ταύτῃ τοῖς θεοῖς φίλον , ταύτῃ γινέσθω : διὰ τί μὴ θαρρήσῃ παρρησιάζεσθαι πρὸς τοὺς ἀδελφοὺς
6114334 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
6106593 ΘΚΛ
ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ ,
δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ
6105884 τεμνετω
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ
6097056 ἐφαπτεται
κύκλῳ . ἀλλὰ καὶ παράλληλος : ὁ ΑΒΓ ἄρα κύκλος ἐφάπτεται καὶ ἑτέρου κύκλου τοῦ ΒΗ ἴσου τε καὶ παραλλήλου
πολλῶν τῶν κατ ' ἀλήθειαν σύν τισι Μούσαις καὶ Χάρισιν ἐφάπτεται ἑκάστοτε . Περὶ δὲ τῆς ἐρωτικῆς καὶ μουσικῆς τί
6094359 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6087291 εἰκοσαεδρον
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι
6063152 γθʹ
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε
6061683 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6052429 ἡμικυκλιον
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ
6050352 ὀρθογωνιου
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου
6045797 ἐκβεβλησθω
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ
6042510 δειχθησεται
ἔμπροσθεν ἀσεβῶς πεπραγμένων . ἀλλὰ περιττὸς ὁ Φθιώτης τῇ Τροίᾳ δειχθήσεται συλλαμβανόντων αὐτῇ τῶν Ὀλυμπίων τῷ περὶ τὴν Ἕκτορος ἀτιμίαν
δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ τὸ ΑΒΡ τρίγωνον ὀρθογώνιόν ἐστιν : ὀρθὴ
6036445 ἰσημερινη
ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠
ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ ,
6031540 ὑπερπεσειται
οὔτε ἐφάψεται οὔτε τεμεῖ τὸ ΖΘΗ τμῆμα , ἀλλ ' ὑπερπεσεῖται . ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω
διὰ τοῦ Κ ἐλεύσεται [ ὁ ΕΗΘ κύκλος ] ἢ ὑπερπεσεῖται τὸ Κ ὡς ἐπὶ τὰ Β μέρη : οὐδὲν
6029798 ΖΗΘ
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς
6022252 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
6019462 πυραμις
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν
6013202 παραβολη
δὲ τούτου τὸ κτήσασθαι . παραβολὴ καὶ παράδειγμα διαφέρει . παραβολὴ μὲν γάρ ἐστιν ἡ οἵα τε γενέσθαι ἐπὶ πράγματος
. ὁρμῆς : κινήσεως . Ὡς δ ' ὅτε : παραβολὴ , παράδειγμα . νούσῳ : ἰωνικόν . πολυκηδέϊ :
6003364 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
5981488 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
5952731 κεντρον
γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ]
ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται :
5943230 γεʹ
ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος
5935424 κωνου
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ
5935061 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
5931641 ἐπιπεδωι
ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου
δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας
5905634 ἀξων
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ
5903363 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν
5876388 τεταγμενως
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν ,
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ
5874414 διαστηματι
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ
5871461 διοριζοντος
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν .
5871114 ἡμικυκλιου
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω ,
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ
5871069 παρακεισθω
ῥηθέντων τινῶν αὐτοῖς καὶ μὴ ἀποβάντων οὕτως ἐξηπατῆσθαι νομίζουσι , παρακείσθω σοι καὶ οὗτος ὁ λόγος , ὡς ἄρα οἱ
ἐνόπτρου θεωρεῖται τὸ ΕΔ ἐν γωνίᾳ τῇ ὑπὸ ΑΒΓ . παρακείσθω δὴ ἔνοπτρον ἐπίπεδον τὸ ΑΓ ἁπτόμενον τῶν ὄψεων κατὰ
5864922 ΔΚΕ
ΕΒ , ΒΝ πίπτουσιν . ἔστιν δὲ καὶ ἡ ὑπὸ ΔΚΕ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΚΔΕ ἐστὶν
ΘΓ ἐν τῷ ΑΠΘΓ τετραπλεύρῳ . κἂν τυχοῦσα κλασθῇ ἡ ΔΚΕ , αἱ τρεῖς ὁμοῦ αἱ ΔΚ ΚΕ ΕΖ τῶν
5861555 τεταρτημοριου
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς
5857746 Λεγω
ἀπὸ τῆς ΑΓ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΔΖ . Λέγω δὴ ὅτι ἐστὶν καὶ ὡς ἡ ΑΒΓ περιφέρεια πρὸς
Η καὶ λειπέτω τὴν ΗΕ ἀσύμμετρον οὖσαν ὅλῃ περιφορᾷ . Λέγω , ὅτι οὐδέποτε ἔσται ἅπαντα κατὰ τὰ αὐτά .
5852376 ΛΒ
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι
5848501 ٣١
٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦
τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ
5840592 ΒΜΖ
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ
5827953 αδʹ
ἐλάσσων ἡ αδʹ , τοῦτο γὰρ φανερόν : ἡ ἄρα αδʹ εὐθεῖα ἐλαχίστη ἐστὶ πασῶν τῶν ἀπὸ τοῦ δʹ πρὸς
ὁρίζοντι . Συμβαλλέτω κατὰ τὸ λʹ σημεῖον καὶ ἐπεζεύχθωσαν αἱ αδʹ δλʹ αγʹ . Ἐπεὶ ἐν σφαίρᾳ μέγιστος κύκλος ὁ
5817598 κυκλος
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ
5816588 κωνος
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν
5815729 ΚΛ
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι
5804645 ἐδειχθη
ἤδη ἔσωζεν ὑπὸ λεπτῇ κάμακι τὰ τηλικαῦτα πηδάλια περιστρέφων : ἐδείχθη γάρ μοι ἀναφαλαντίας τις , οὖλος , Ἥρων ,
ἐστι πάντων τῶν , ὡς εἴρηται , συνισταμένων ἰσοσκελῶν . ἐδείχθη δέ , ὅτι οὐδὲ ἐλάχιστον : οὔτε ἄρα μέγιστόν
5799972 τεταχθω
γου καὶ αου , προσλαβόντα συναμφότερον , ποιεῖν ⃞ον . τετάχθω ὁ γος ʂ α , καὶ γίνεται ὁ μὲν
μὲν οὖν , διότι βραδεῖα καὶ θηλυτέρα , δευτερεύουσαν τάξιν τετάχθω , | προνομία δ ' ἔστω τις ἐξαίρετος ὁράσει
5796692 ΝΘ
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ :
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται
5790217 ἀνατολικον
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας
5783703 ὑποκειται
μίαν διάθεσιν ὑποκεῖσθαι καὶ ποικίλα ἐκκρίνεσθαι διαχωρήματα . οὕτως γὰρ ὑπόκειται εἷς πυρετὸς καὶ τῷ χρόνῳ κατὰ μέρος διάφορον ἐγέννησε
τὸ μέσον : οὐδὲν γὰρ μᾶλλον τὸ μέσον τῷ μείζονι ὑπόκειται ἢ οὐχ ὑπόκειται , καὶ οὐδὲν μᾶλλον τοῦ ἐλάττονος
5783234 πεποιησθω
Θ , τὴν δὲ μετὰ τὴν Θ ἀνατολὴν ἑτέραν ἀνατολὴν πεποιήσθω κατὰ τὸ Κ : ἡμέρας ἄρα χρόνος ἐστὶ καὶ
λόγος δοθείς . μὴ ἔστω δὴ ὁ αὐτός , καὶ πεποιήσθω ὡς τὸ ΑΒ πρὸς ΓΔ , οὕτως τὸ ΑΗ
5780706 περιλαμβανων
προσδοκῶσα σαρκικῶς αὐτῷ συμμιγῆναι , αὐτὸς δὲ ὡς ἰδίαν μητέρα περιλαμβάνων , καὶ τοῖς ὀφθαλμοῖς περιλάμπων οὓς ἐθήλασε μασθούς ,
μὲν τοῦ φάναι ὃν ἀριθμὸς πρὸς ἀριθμὸν ἐπλεόναζεν ὁ ὅρος περιλαμβάνων καὶ τὰ μὴ συμμέτρους ἔχοντα τὰς πλευράς , διὰ
5780382 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
5772259 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
5770650 ἐπιζευχθεισα
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ
5761706 συμβαλει
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς
5759173 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
5758909 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
5744203 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
5727757 ἐφαπτεσθω
ὁ ΑΒΓ κύκλου τινὸς τῶν ἐν τῇ σφαίρᾳ τοῦ ΓΔ ἐφαπτέσθω κατὰ τὸ Γ σημεῖον . λέγω , ὅτι ὁ
, κέντρον δὲ τὸ Γ , καὶ τῆς Α τομῆς ἐφαπτέσθω ἡ ΚΛ , καὶ ἐπεζεύχθω ἡ ΛΓ καὶ ἐκβεβλήσθω
5724419 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
5716522 ἐρχεσθω
τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό :
ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ
5710902 ἀποδεικνυται
μάλιστα μετὰ Κρόνου , φαντασίας κατοιχομένων καὶ θηρίων ἢ δεσμωτῶν ἀποδείκνυται , τοῦ δὲ Διὸς ὁρῶντος αὐτὴν διὰ προφητῶν καὶ
τά τε καταπλάσματα καὶ ἃ δή τινες μαλάγματα καλοῦσιν οἵας ἀποδείκνυται δυνάμεις τά τε φύματα καὶ τὰ ἀποστήματα διαχέοντα καὶ

Back