| ἤδη ἔσωζεν ὑπὸ λεπτῇ κάμακι τὰ τηλικαῦτα πηδάλια περιστρέφων : ἐδείχθη γάρ μοι ἀναφαλαντίας τις , οὖλος , Ἥρων , | ||
| ἐστι πάντων τῶν , ὡς εἴρηται , συνισταμένων ἰσοσκελῶν . ἐδείχθη δέ , ὅτι οὐδὲ ἐλάχιστον : οὔτε ἄρα μέγιστόν |
| τὰ τρίγωνα . διπλάσιόν ἐστι τὸ ΕΒΖΗ . , ] δέδεικται ἐν τῷ μαʹ θεωρήματι τοῦ αʹ βιβλίου , ὅτι | ||
| τὴν ἐκπνοὴν καὶ τὴν φύσην ἐργαζόμεναι τὴν ἐξ ἐγκεφάλου . δέδεικται γὰρ ἑτέρωθι περὶ τούτων : ἀποδέδεικται δὲ καὶ ὅτι |
| ἔμπροσθεν ἀσεβῶς πεπραγμένων . ἀλλὰ περιττὸς ὁ Φθιώτης τῇ Τροίᾳ δειχθήσεται συλλαμβανόντων αὐτῇ τῶν Ὀλυμπίων τῷ περὶ τὴν Ἕκτορος ἀτιμίαν | ||
| δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ τὸ ΑΒΡ τρίγωνον ὀρθογώνιόν ἐστιν : ὀρθὴ |
| οὐδενὶ ἐξ ἀνάγκης τὸ ἀναιροῦν τὸν τρόπον , ὃ καὶ συνάγεται παρὰ τὸ ἐξ ἀνάγκης οὐδενί . Οὕτω γὰρ συνέπιπτεν | ||
| ὑπαρχόντως , καίπερ τῆς ἐλάττονος πρὸς τῷ ἀναγκαίῳ οὔσης ὑπάρχον συνάγεται : κἂν κίνησις πάσῃ βαδίσει ἀναγκαίως , βάδισις παντὶ |
| πᾶσιν ἀνθρώποις εἶναι γνώριμα : τὰ δὲ ἐκείνων δόγματα κοινὰ ἀπεδείχθη τοῖς ἀφικνουμένοις παρὰ τὸν θεόν , ὡς ὁμοίως ξυμφέρον | ||
| ' , ἔφη , ἐν οἷς σὺ ἔλεγες τοῖς λόγοις ἀπεδείχθη ἄρτι ὅτι ἀδύνατον . Καὶ τοῦτο , ἔφην ἐγώ |
| πρὸς ἀλλήλους δὲ ὑπεροχὴ ἔλλειψις , συμμετρία ἰσότης , ὡς ἐδείξαμεν ἐν τῇ θεωρίᾳ , ὁμοίως δὲ καὶ στερεῷ σώματι | ||
| ὄγκος ἐστίν . ὅπερ ἦν ληρῶδες . πρῶτον μὲν γὰρ ἐδείξαμεν ὅτι οὐδὲ ἡ κοινὴ σύνοδος τῶν τινι συμβεβηκότων ἐκεῖνό |
| τὸ συνεχὲς ὅλως ἐπ ' αὐτοῦ λέγειν . ἐπεὶ γὰρ δείξομεν ἐφεξῆς , ὅτι ταὐτὸν ὁ νοῦς τῇ νοήσει , | ||
| σχολίῳ τοῦ νβʹ : ἀπὸ γὰρ ἑκάστης ἀναγράφοντες τετράγωνον ὁμοίως δείξομεν . Ὥστε καὶ τοῦ ὑπὸ τῶν ΕΓΔ . , |
| ἀπὸ τῆς ΑΓ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΔΖ . Λέγω δὴ ὅτι ἐστὶν καὶ ὡς ἡ ΑΒΓ περιφέρεια πρὸς | ||
| Η καὶ λειπέτω τὴν ΗΕ ἀσύμμετρον οὖσαν ὅλῃ περιφορᾷ . Λέγω , ὅτι οὐδέποτε ἔσται ἅπαντα κατὰ τὰ αὐτά . |
| μίαν διάθεσιν ὑποκεῖσθαι καὶ ποικίλα ἐκκρίνεσθαι διαχωρήματα . οὕτως γὰρ ὑπόκειται εἷς πυρετὸς καὶ τῷ χρόνῳ κατὰ μέρος διάφορον ἐγέννησε | ||
| τὸ μέσον : οὐδὲν γὰρ μᾶλλον τὸ μέσον τῷ μείζονι ὑπόκειται ἢ οὐχ ὑπόκειται , καὶ οὐδὲν μᾶλλον τοῦ ἐλάττονος |
| ὅμοιον ἄρα ἐστὶν τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ . Φανερὸν δὲ καὶ τὸ τούτῳ ἀναστρόφιον , ἐὰν ᾖ ὅμοιον | ||
| νόμῳ γινόμενον καλεῖς παρανόμῳ προῤῥήματι . ΒΟΥΛΗΣΕΙ ΚΑΙ ΔΥΝΑΜΕΙ . Φανερὸν ὅτι πᾶσα βούλησις καὶ δύναμις ἀπὸ τῶν ἐγκωμιαστικῶν τόπων |
| τριπλάσιον . τὸ δὲ δὶς διὰ πασῶν τετραπλάσιόν ἐστιν . ἀποδέδεικται ἄρα τῶν συμφώνων ἕκαστον , ἐν τίσι λόγοις ἔχει | ||
| τὴν ἐξουσίαν ἀνύποιστος . ὁρᾷς ὡς τὸ περιφανῶς μεῖζον ἔλαττον ἀποδέδεικται τῇ μεθόδῳ . τούτοις οὖν καὶ τοῖς τοιούτοις λογισμοῖς |
| μάλιστα μετὰ Κρόνου , φαντασίας κατοιχομένων καὶ θηρίων ἢ δεσμωτῶν ἀποδείκνυται , τοῦ δὲ Διὸς ὁρῶντος αὐτὴν διὰ προφητῶν καὶ | ||
| τά τε καταπλάσματα καὶ ἃ δή τινες μαλάγματα καλοῦσιν οἵας ἀποδείκνυται δυνάμεις τά τε φύματα καὶ τὰ ἀποστήματα διαχέοντα καὶ |
| λόγος ἡ ἀπόδειξις . τὸ γὰρ συνημμένον , ὡς ἔμπροσθεν ἐδείκνυμεν , ὑγιὲς ἀξιοῦσι τυγχάνειν , ὅταν ἀπ ' ἀληθοῦς | ||
| διὰ τὰς ἰσοκωλίας , ὡς ἐν τῷ περὶ τῆς περιβολῆς ἐδείκνυμεν . Καὶ τὸ ὑπερβατὸν δέ , εἰ μὴ κατὰ |
| ] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ] | ||
| λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον |
| προσλαβὼν τὸν ἕτερον , ποιεῖ τετράγωνον . ταῦτα δὲ λήμματα προεδείχθη καὶ ἔστιν τὸ ὀρθογώνιον γ , δ , ε | ||
| ἔχει ὃν ⃞ος ἀριθμὸς πρὸς ⃞ον ἀριθμόν . Τοῦτο δὲ προεδείχθη , καί εἰσιν αἱ πλ . τῶν κύβων , |
| ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ | ||
| ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ |
| καλουμέναις ἐστὶν ἐν Κοίλῃ τὰ καλούμενα Κιμώνια μνήματα , ἔνθα δείκνυται Ἡροδότου καὶ Θουκυδίδου τάφος . εὑρίσκεται δῆλον ὅτι τοῦ | ||
| αὐτῇ ἔχει τὸ τέλος , καὶ οὐ μόνον ἐκ τούτου δείκνυται μὴ συνεστηκὼς ὁ ὅρος , ἀλλὰ καὶ ἐξ αὐτῆς |
| | ἀσφαλέστατοι θησαυροί . πρὸς ] Ἕρμαρχον τη [ | παραστήσομεν ] εἶναι [ | συντομώτερον ] καὶ πλα [ | ||
| δέ γε ἔστι τις κατ ' ἐπικράτειαν κίνησις , ὡς παραστήσομεν : τοίνυν οὐδ ' ἡ κατ ' εἰλικρίνειαν γενήσεται |
| : ὅπερ ἀδύνατον . ἐπεὶ οὖν ψεῦδος ἅμα καὶ ἀδύνατον συνῆκται , οὐ δήπου τὴν αἰτίαν αὐτοῦ ἐπιγράψομεν τῇ ΒΓ | ||
| μὲν οὖν τῷ πρώτῳ συλλογισμῷ τὸ ὑπάρξαι τὸ πρακτὸν ἀγαθὸν συνῆκται τῷ πράξαντι διὰ μέσου τοῦ τρόπου , δι ' |
| ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἐστὶν ἡ ΜΞ . δεικτέον δή , ὅτι ἡ ΜΞ ἐστιν ἡ ῥητὸν καὶ | ||
| σημεῖα γιγνομένας ἀκολούθως τῷ καθ ' ἡμᾶς ἐνιαυσίῳ χρόνῳ . δεικτέον δὴ πρῶτον , ὅτι καὶ κατὰ ταύτας τὰς ὑποθέσεις |
| ἄρα ΣΤ ἐπὶ τὸ Τ παρῆκται διὰ τὸ καὶ τὴν ΜΣ παρῆχθαι ὡς ἐπὶ τὸ Τ μᾶλλον τῶν ἄλλων ἀκτίνων | ||
| τῇ ΜΣ . καὶ δοθεῖσά ἐστιν ἑκάστη τῶν ΜΛ ΛΒ ΜΣ ΣΑ [ οὕτως καὶ ἡ ΖΗ ΔΕ καὶ ΒΛ |
| ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ | ||
| ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν |
| οἰνοχοῇ , ἄξιον κρινάντων αὐτὸν τῶν θεῶν , καὶ ὅτι τέτευχεν ἀθανασίαν τοῖς ἀνθρώποις ἄγνωστον οὖσαν : ἡ δὲ γινομένη | ||
| μεταπιπτόντων . οὔκουν ἐκεῖνος μεμπτέος , ὅτι τοῦ τέλους οὐ τέτευχεν , ἀλλ ' ἐπαινετὸς μέν , ὅτι καλῶς συνελογίσατο |
| κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
| αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
| παραδόξου . τί . . . τοῦτο ] τὸ ἐνθύμημα εἴληπται ἐκ παραδόξου . ὃ δέ φησι τοιοῦτόν ἐστιν : | ||
| εἰδὼς φρόνιμος εἶναι . τὸ δοκεῖ ἐνταῦθα ὡς κοινὸν δοξαζόμενον εἴληπται : δηλοῖ δὲ τὸ ῥητόν , ὅτι καὶ ἀνωτέρω |
| τῆς μεγάλης , ὅσοι ἔσονται λαὸς ἅγιος : τότε αὐτοῖς δοθήσεται πᾶσα εὐφροσύνη τοῦ παραδείσου , καὶ ἔσται ὁ θεὸς | ||
| ἡ ΕΞ καὶ ἡ ΞΟ , καὶ ἡ ΕΟ ὑποτείνουσα δοθήσεται καὶ ἡ ὑπὸ ΟΕΞ γωνία : ὥστε καὶ ἡ |
| ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς | ||
| τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ , |
| μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
| ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
| τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ | ||
| οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ |
| τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
| δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
| τὸ ΗΚ . ἴσον δή ἐστι τὸ ΑΒ στερεὸν τῷ ΗΚ στερεῷ : ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν | ||
| ἄρα καὶ ἡ ΑΗ τῇ ΗΚ . ὥστε καὶ ἡ ΗΚ τῇ ΗΒ ἐστιν ἴση : ὅπερ ἀδύνατον . οὐκ |
| ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
| ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
| ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ . | ||
| τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ |
| τι εἰς τὸ εἶναι ἀπόδειξιν οἱ δογματικοί , καθὼς ἤδη ὑπεμνήσαμεν : συνάγει γὰρ τὸ μὴ εἶναι ἀπόδειξιν , καὶ | ||
| ἀγαθῶν αὐτῷ παρόντων καὶ τῶν κακῶν , ἐν τοῖς ἔμπροσθεν ὑπεμνήσαμεν . λεκτέον οὖν , ὅτι εἰ μήτε ἡ τῶν |
| ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
| , ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
| , οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
| , οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
| φέρε ἡμεῖς καὶ τὴν αἰτίαν προσθῶμεν διὰ τί δέκα . δείκνυμεν δὲ τοῦτο ἐκ διαιρέσεως τοιαύτης : τὸ ὂν ἢ | ||
| ὅταν ᾖ προσῆκον ἐκ τοῦ νόμου , καὶ νῦν δὲ δείκνυμεν οὐκ ἐῶντα γράφειν σε , οὐδ ' ἃ τοῖς |
| ἀλλὰ πρὸς θεῶν ἐπίσχετε [ ] μηδὲ συρίξητε . [ ΙΑ ] Ὅτι μέν , ὦ Ἀθηναῖοι , Φίλιππος οὐκ | ||
| Φθία βαρύνονται , καὶ τὸ δεία . Τὰ διὰ τοῦ ΙΑ ἐπὶ χωρῶν κείμενα παροξύνεται : Λυκία Ἀσία Κιλικία . |
| καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
| ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
| ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ | ||
| ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς |
| ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ . | ||
| ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί |
| ἐπειδὴ ἐν τῷ λόγῳ τῶν καλῶν τι ἡμῖν ἡ σωφροσύνη ὑπετέθη , καλὰ δὲ οὐχ ἧττον τὰ ταχέα τῶν ἡσυχίων | ||
| τε μετρηθῆναι . ὁ μείζων τὸν ἐλάσσονα . , ] ὑπετέθη γὰρ ἐξ ἀρχῆς ἐλάττων ὁ Δ . καὶ εἰλήφθωσαν |
| πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ , | ||
| ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ |
| ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
| καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
| ΤΞΥ ἰσόπλευρόν ἐστιν . καὶ ἐπεὶ πενταγώνου ἐδείχθη ἑκατέρα τῶν ΠΛ , ΠΟ , ἔστι δὲ καὶ ἡ ΛΟ πενταγώνου | ||
| ἐστὶ καὶ τὸ μὲν ΑΗ τῷ ΜΠ , τὸ δὲ ΠΛ τῷ ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν |
| τὸ ΑΔΖ τρίγωνον τῷ εἴδει : λόγος ἄρα ἐστὶ τῆς ΖΑ πρὸς τὴν ΑΔ δοθείς : ἡ δὲ ΑΖ συναμφότερός | ||
| διὰ τὸ ἴσα εἶναι τά τε ἀπὸ τῶν ΒΖ , ΖΑ καὶ τὰ ἀπὸ τῶν ΒΚ , ΚΑ τῷ ἀπὸ |
| παραπεπρεσβευκὼς τῷ δημοσίῳ τὸ ὄφλημα εἰς δικαστήριον ἤγετο , ἐνδείξει ὑπέκειτο , καὶ ὄνομα τῇ κατηγορίᾳ ἔνδειξις . Εἰ δὲ | ||
| , καὶ * τοῖς περὶ αὐτὸν οὐκ ὀλίγοις χώρα τε ὑπέκειτο ἱερὰ καὶ ἦν τοῦ ἱερέως . Πομπήιος δὲ πολλὰς |
| Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει | ||
| , ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ |
| ? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [ | ||
| . τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς |
| ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ | ||
| ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων |
| λ , ἡ δὲ ΔΕ ρκ , τοιούτων ἐστὶν ἡ ΓΕ εὐθεῖα α κ κγ . τῶν δὲ αὐτῶν ἐδείχθη | ||
| τῆς παρούσης καταγραφῆς τὸ ἕτερον εἶδός ἐστιν : ἡ γὰρ ΓΕ ἴση ἐστὶ τῇ ΔΒ . τέμνουσαν ἔλαβεν ὁ στοιχειωτὴς |
| κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ | ||
| , οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων |
| ΝΘ ἄρα πρὸς τὴν ΛΖ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΘΞ πρὸς τὴν ΖΜ . ἐὰν ἄρα ποιῶμεν , ὡς | ||
| ΞΔ μοιρῶν κγ μθ . μείζων ἄρα ἡ ΞΔ τῆς ΘΞ δευτέροις ἑξηκοστοῖς λ ἀνεπαισθήτοις . Πάλιν ὁ τῆς ὑπὸ |
| ΚΗ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ λοιπῇ τῇ ΗΓ ἐστὶν ἴση , ὅπερ : ∼ Φανερὸν δὴ ὅτι | ||
| , ΗΖ . Ἐπεὶ οὖν ἡ ΑΓ μείζων ἐστὶν τῆς ΗΓ [ ηʹ τοῦ τρίτου ] , ἡ δὲ ΓΕ |
| τῇ ΖΗ : καὶ τῇ ΕΔ ἄρα παράλληλός ἐστιν ἡ ΝΚ , ἡ δὲ ΜΘ τῇ ΒΛ . ἐπεὶ οὖν | ||
| ἐπὶ τῆς ἐλλείψεως σημεῖα ἐπιζευγνύουσαι παράλληλοι , καὶ ἐπιζευχθεῖσαι αἱ ΝΚ ΜΘ τεμνέτωσαν ἀλλήλας κατὰ τὸ Τ , καὶ διὰ |
| Β τριπλασίονα λόγον ἔχει ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν , τουτέστιν ἤπερ ὁ Γ ἀριθμὸς πρὸς τὸν | ||
| , ἅ τε ἁρμονία ἐπιστάμονα μὲν ποιεῖ τὰν ἀκοάν , ὁμόλογον δὲ τὰν φωνάν . φαμὶ δὴ ἐγὼ πᾶσαν κοινωνίαν |
| δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη | ||
| ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν |
| καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
| δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
| τὸν λόγον τρεπώμεθα , ἵνα μὴ καί , ὃ νυνδὴ ἐλέγομεν , λίαν πολὺ τῇ ἐλευθερίᾳ καὶ μεταλήψει τῶν λόγων | ||
| ἐκτὸς ἔχει ὀρεκτὸν τὴν ὅλην καὶ πᾶσαν ἐνέργειαν : διόπερ ἐλέγομεν τὸ τοιοῦτον αὐτοκίνητον ἔνδοθεν εἰς τὸ ἐκτὸς ἐνεργεῖν , |
| ὢν πολλαπλάσιός ἐστιν ἁπλῶς , ὁ δὲ ι τοῦ δ διπλασιεφήμισυς ὢν ἐπιδιμερής ἐστιν αὐτοῦ , τὸ δὲ ἐπιδιμερὲς τοῦ | ||
| τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς ἡ γεννωμένη , ἐπεὶ δὲ ἐπίτριτος διπλασιεπίτριτος , καὶ |
| λεγόμενά τισι φύσει ἀγαθὰ καὶ κακῶν ἐστι ποιητικά , ὡς διδάξομεν . δυνάμει ἄρα κακά ἐστι τὰ ὑπό τινων λεγόμενα | ||
| ἐδείξαμεν περὶ τοῦ ποιοῦντος καὶ πάσχοντος διεξελθόντες , καὶ ὕστερον διδάξομεν περὶ γενέσεως καὶ φθορᾶς καὶ πρὸ τούτων ἔτι περὶ |
| εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς | ||
| μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ |
| τὸ πολλὰ καρτερεῖν καὶ πάσχειν τοὺς συγκροτοῦντας πόλεμον . . ΑΙΨΑ ΚΕ ΠΗΔΑΛΙΟΝ . Ἤγουν ταχέως ἂν τὸ πηδάλιον μὲν | ||
| ΧΑΛΕΠΟΙΣ ΒΑΖΟΝΤ ' ΕΠΕΕΣΣΙ ΣΧΕΤΛΙΟΙ , ἤγουν ἄθλιοι . . ΑΙΨΑ ΔΕ ΓΗΡΑΣΚΟΝΤΑΣ ΑΤΙΜΗΣΟΥΣΙ ΤΟ - ΚΗΑΣ . Οἱ παῖδες |
| ] [ ] ΠΑ ? [ ] [ ] ! ΩΝ ? [ ] [ ] ! Η ! [ | ||
| τόνον , οἷον : βαθυλείμων ἀχίτων αὐτόχθων . Αἱ εἰς ΩΝ λήγουσαι μετοχαὶ δισύλλαβοι ὀξυτονούμεναι ὡς ὀνόματα κλινόμενα μετατιθέασι τὸν |
| ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ , | ||
| ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη |
| , τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
| ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
| . ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
| τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
| οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
| περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
| τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
| τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
| οἷον πατὴρ υἱοῦ ἐστι πατήρ , ἀλλὰ καὶ πρὸς ἄλληλα ἀντιστρέφει : ὁ υἱὸς πατρός ἐστιν υἱός : εἰ οὖν | ||
| μέν , ὅτι τῷ Β τὸ Δ ἕπεται καὶ οὐκ ἀντιστρέφει , καὶ ὅτι τὸ Γ καὶ τὸ Β , |
| τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς | ||
| ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου , |
| τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ | ||
| ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ |
| ἀνταγωνιστάς . ἠγνόηκε δὲ ὅτι ὁ ἀγὼν πρὸς τὸ ἐπαγόμενον νοεῖται . ἄνω μὲν οὖν περὶ τῆς νίκης λέγομεν αὐτοὺς | ||
| : οὕτω δ ' ἂν καὶ τὸ δαιμόνων γένος ἐπίμικτον νοεῖται καὶ θεοῖς τε καὶ ἀνθρώποις . Τοῦτο γάρ ἐστιν |
| θρασεῖαν οὕτω . Τάδε γὰρ εἰπεῖν τὴν πανοῦργον κατὰ τὸ φανερὸν ὧδ ' ἀναιδῶς οὐκ ἂν ᾠόμην ἐν ἡμῖν οὐδὲ | ||
| τὴν ΖΔΜ περιφέρειαν διαπορεύεται , καὶ ἡ ΖΔΜ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον : καὶ ἐν ᾧ ἄρα ὁ ἥλιος χρόνῳ |
| προσθείη τὸ δεῖ , ὑφελόμενος ἀναγκαίως τὸ φησίν , καθὼς ἐπεδείξαμεν , πάλιν προσγενήσεται καὶ ἡ αἰτιατική , δεῖ ἀκούειν | ||
| ἐσχάτου γένους τῶν κρειττόνων , ὥσπερ τῆς ψυχῆς , ἀδύνατον ἐπεδείξαμεν τὴν μετουσίαν τοῦ πάσχειν , τί χρὴ δαίμοσι καὶ |
| , ΖΗ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΑΘ , ΒΗ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ παραλληλόγραμμον | ||
| ἴσῳ τριγώνῳ τῇ ΒΖ , γίνεται ὡς συναμφότερος ἡ ΖΒ ΒΗ πρὸς τὴν ΖΗ , οὕτως τὸ ἀπὸ ΑΖ τετράγωνον |
| τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
| ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
| ٤٢ τὸ ΒΔ ٣ ٢٧ ٥٠ ٧ ١٨ τὸ ΛΘ ٣٢ ٣٢ ٩ ٥٢ ٤٢ ἡ ΖΘ ٩ ἡ ΚΘ | ||
| ἤτοι τῆς ἡμισείας τῆς ΑΗ ٢٧ ٢٦ ٣ ٣٨ ٥٨ ٣٢ ١٥ ἡ ΑΖ ٥ ١٧ ٢٨ ٢١ ١٧ ἡ |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| . Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
| καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
| βάθει μᾶλλον . τῶν δὲ ἀμφημερινῶν οὐδὲ ῥῖγοϲ ὡϲ ἐπίπαν προηγεῖται , ἀλλὰ μόνον περιψύχονται . ἔϲτι δὲ ἐν τοῖϲ | ||
| ὅτι μία μὲν ἡ οὐσία πολλὰ δὲ τὰ συμβεβηκότα , προηγεῖται δὲ τὸ ἓν τῶν πολλῶν , ἢ ὅτι φύσει |
| ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν | ||
| περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ |
| ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
| ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
| καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
| ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
| ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν | ||
| ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι |
| τὸ ΛΥ στερεόν , τῆς δὲ ΘΖ βάσεως καὶ τοῦ ΘΥ στερεοῦ ἥ τε ΝΖ βάσις καὶ τὸ ΝΥ στερεόν | ||
| ΖΩΑ . ὁμοίως δὴ δειχθήσεται μείζων ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , |
| ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ | ||
| τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ |
| τὸν Τάναϊν , ὅνπερ τῆς Εὐρώπης καὶ τῆς Ἀσίας ὅριον ὑπεθέμεθα . ἔστι δὲ ταῦτα τρόπον τινὰ χερρονησίζοντα : περιέχεται | ||
| τὸ Ω τῆς Δ αὐτῷ κινήσεως παρούσης , ἣν ἀδιαίρετον ὑπεθέμεθα ; ἀμήχανον γὰρ ἐπὶ τοῦ ἀμεροῦς πρότερον εἶναι τὸ |
| δείξομεν οὕτως : ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΒΝ τῆς ΝΖ , τὸ ἄρα ὑπὸ τῶν ΖΒΝ μεῖζόν ἐστι τοῦ | ||
| ΤΛ πρὸς τὴν ΛΒ , οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ . τῶν ΛΤΒ , ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν |
| τελευταίους , ὡς ἀλόγῳ γνωμολογεῖν οὐκ ἂν προσῆκον . . ΝΥΝ Δ ' ΑΙΝΟΝ . Μυθικὴν παραίνεσιν . Εἰκάζει δὲ | ||
| τοιοῦτο δὲ σύνηθες καὶ παρὰ τῷ πεζῷ λόγῳ . . ΝΥΝ ΔΕ ΕΓΩ ΜΗΤ ' ΑΥΤΟΣ . Τὸ μὲν λεγόμενον |
| ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
| ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
| ἄστει διάγων καὶ πολιτικοῖς καλινδούμενος πράγμασιν . Ἔτι καὶ οὕτως ῥητέον : πέντε εἰσὶν αἱ γνωστικαὶ δυνάμεις τῆς ψυχῆς : | ||
| μὲν οὖν τερατολογίαν τοιαύτην λόγου τινὸς ἀξιῶσαι , ὅμως δὲ ῥητέον , ὡς εἰ καὶ ἐγένετο κατὰ τὴν ἐξ ἀρχῆς |
| , ὡς ἔμπροσθεν ἐδιδάχθημεν , ὁ μὲν ὑπάρχειν τι λέγων κατάφασίς ἐστιν , ὁ δὲ μὴ ὑπάρχειν ἀπόφασις . καὶ | ||
| καὶ τί ἐστιν ἀπόφανσις , πρὸς τούτοις δὲ τί ἐστι κατάφασίς τε καὶ ἀπόφασις . ἐντεῦθεν ἄρχεται διδάσκειν καὶ περὶ |
| ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
| ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
| ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
| ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
| , ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
| ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
| Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
| . ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
| ἐλάσσων ἡ αδʹ , τοῦτο γὰρ φανερόν : ἡ ἄρα αδʹ εὐθεῖα ἐλαχίστη ἐστὶ πασῶν τῶν ἀπὸ τοῦ δʹ πρὸς | ||
| ὁρίζοντι . Συμβαλλέτω κατὰ τὸ λʹ σημεῖον καὶ ἐπεζεύχθωσαν αἱ αδʹ δλʹ αγʹ . Ἐπεὶ ἐν σφαίρᾳ μέγιστος κύκλος ὁ |
| ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ | ||
| ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ |
| ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ | ||
| τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ |
| . τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν | ||
| ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί |