παραπεπρεσβευκὼς τῷ δημοσίῳ τὸ ὄφλημα εἰς δικαστήριον ἤγετο , ἐνδείξει ὑπέκειτο , καὶ ὄνομα τῇ κατηγορίᾳ ἔνδειξις . Εἰ δὲ | ||
, καὶ * τοῖς περὶ αὐτὸν οὐκ ὀλίγοις χώρα τε ὑπέκειτο ἱερὰ καὶ ἦν τοῦ ἱερέως . Πομπήιος δὲ πολλὰς |
' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας οζ β . ἐδέδεικτο δ ' ἡμῖν καὶ ἐν τῷ χρόνῳ τῆς γʹ | ||
ἐφαίνετο , ἐπεῖχεν ἂν τοῦ Τοξότου μοίρας θ μϚ . ἐδέδεικτο δ ' , ὅτι καὶ κατὰ τὴν αʹ ἀκρώνυκτον |
: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , | ||
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ |
ἐπειδὴ ἐν τῷ λόγῳ τῶν καλῶν τι ἡμῖν ἡ σωφροσύνη ὑπετέθη , καλὰ δὲ οὐχ ἧττον τὰ ταχέα τῶν ἡσυχίων | ||
τε μετρηθῆναι . ὁ μείζων τὸν ἐλάσσονα . , ] ὑπετέθη γὰρ ἐξ ἀρχῆς ἐλάττων ὁ Δ . καὶ εἰλήφθωσαν |
. Ἀταία , πόλις Λακωνική . ὁ πολίτης Ἀταιάτης ὡς Κάρυα Καρυάτης , ἢ Ἀταΐτης ἢ Ἀταῖος . Ἀταλάντη , | ||
πάθεσιν ἁρμόζοντες , κακοστόμαχοι δὲ καὶ κεφαλαλγεῖς τοῖς καταχρωμένοις . Κάρυα δὲ τὰ μὲν βασιλικά , ταῦτα καὶ κοινὰ καλούμενα |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν τὸ βʹ ἄστρον | ||
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ |
ἄκρον τῆς οὐρᾶς αὐτῆς παχύ ἐστιν . * πλειοτέρη : προμηκεστέρα τὸ δὲ τοὔνεκα ἢ ὅτι τῷ στόματι μείζων , | ||
ἡ κοτύλη τῆς γλήνης βαθυτέρα ὅσον ἡ κεφαλὴ τοῦ κονδύλου προμηκεστέρα , ἑκάτερον δ ' ἑκατέρῳ καθάπερ στρόφιγγι χώραν ἐπιτήδειον |
ἂν ἐκ ϲηπεδόνοϲ γεννώμενοϲ , ἐϲτὶ δὲ καὶ φυϲώδηϲ . Ζύμη λεπτομερήϲ ἐϲτι καὶ μετρίωϲ θερμή : διὰ τοῦτο τοίνυν | ||
τῆϲ ὀξώδουϲ ποιότητοϲ : δι ' ὃ καὶ κακόχυμοϲ . Ζύμη καὶ αὐτὴ ἐξ ἐναντίων οὐϲιῶν ϲύγκειται : καὶ γὰρ |
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
πολλὰ δὲ καὶ ἄλλα ἐστὶ στύφοντα πᾶσιν ὄντα γνώριμα . Εὔζωμον , μάραθρον , ἄνηθον , σμύρνιον ὁμοίως , σέλινον | ||
Ἐπίθυμον ρμε Ἐρέβινθοϲ ρμϚ Ἕρπυλλοϲ ρμζ Ἐρύϲιμον ρμη Ἐρυθρόδανον ρμθ Εὔζωμον ρν Εὐπατόριον ρνα Εὐφόρβιον ρνβ Ζειά ρνγ Ζιγγίβερι ρνδ |
, τοιούτων ἡ μὲν ΗΜ δ λγ , ἡ δὲ ΜΒ β λζ λ . πάλιν , ἐπεὶ ἡ ὑπὸ | ||
πενταγώνου ἐστὶν ἡ τοῦ εἰκοσαέδρου : εἰκοσαέδρου ἄρα ἐστὶν ἡ ΜΒ . Καὶ ἐπεὶ ἡ ΖΒ κύβου ἐστὶ πλευρά , |
: ὥστε καὶ τὴν αεʹ : τοῦ ἄρα ἡλίου τὴν αεʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , τὸ βʹ | ||
ἐν τῷ ὑπὸ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν αεʹ : τοῦ ἄρα ἡλίου τὴν αεʹ περιφέρειαν διαπορευομένου ἐν |
, τοῖς αὐτοῖς χρόνοις παράκεινται πη μγ ζ κθ καὶ σλε ι ι νγ , καὶ ια μγ μγ κθ | ||
αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ κοίλους ἔταξαν ρι , πλήρεις δὲ ρκε , |
καὶ ἔστω ἀνατολικὰ μὲν μέρη τὰ ζηʹ δυτικὰ δὲ τὰ βγʹ : λέγω ὅτι ὁ ζγʹ κύκλος αἰεὶ διὰ μὲν | ||
διὰ μὲν τῆς ζηʹ περιφερείας ἀνατέλλει , διὰ δὲ τῆς βγʹ δύσεται . Εἰλήφθω γάρ τινα σημεῖα ἐπὶ τῆς ζγʹ |
. ὁ δὲ εἶπεν : Ἐὰν τοιούτους μὴ εὕρω , ἀγοράσω σοι ἕνα τριάκοντα ἐτῶν . Σχολαστικοὶ δύο πατραλοῖαι ἐδυσφόρουν | ||
τοῦτο καὶ ἐγέλασεν . “ ὁ Ξάνθος εἶπε ” θέλεις ἀγοράσω σε ; “ καὶ ὁ Αἴσωπος : ” ἐμοῦ |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
ἡ δὲ ἰσημερινὴ μγʹ ∠ γʹ , ἡ δὲ χειμερινὴ ργ γʹ . ιβʹ . δωδέκατός ἐστιν παράλληλος , καθ | ||
ρ Πάϲτιλλον χολῆϲ καθαρτικόν ρα Βουκελλάτον καθαρτικόν ρβ Φλέγματοϲ καθαρτικόν ργ Μελαγχολικοῦ χυμοῦ καθαρτικόν ρδ Κοινὸν καθαρτήριον ρε Ἀλοηδάρια διὰ |
στερεόν . ποιῶ οὕτως : κυβίζω τὰ ζ , γίνονται τμγ : ταῦτα δίς , γίνονται χπϚ : ταῦτα ἑνδεκάκις | ||
Μο γ : αὐτοὶ δὲ οἱ κύβοι ὁ μὲν αος τμγ , ὁ δὲ βος κζ . β . Εὑρεῖν |
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
. . . . . . . . . . ρνϚ ια ☾ ἐκκέντρου ἀπογείου . . . . . | ||
ἐπικύκλου . . . . . . . . . ρνϚ ια Ἑρμοῦ ἐπικύκλου . . . . . . |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
τῆς διὰ τοῦ βορείου μετώπου τοῦ Σκορπίου καὶ μέσου εὐθείας ἀπεῖχεν εἰς τὰ ὑπολειπόμενα σελήνην , πρὸς ἄρκτους δὲ τοῦ | ||
κγ . τοσαύτας ἄρα μοίρας καὶ κατὰ τὴν τρίτην ἀκρώνυκτον ἀπεῖχεν ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ περιγείου . ἐδείχθη |
ε , τῶν δὲ λοιπῶν τὰ μὲν τρίτα παραυξήσομεν τοῖς τνγ νβ λδ ιγ , τὰ δὲ τέταρτα τοῖς νζ | ||
Ῥύποϲ τμθ Ϲαγαπηνόν τν Ϲάμψυχον τνα Ϲαπρότηϲ ξύλων τνβ Ϲαρκοκόλλα τνγ Ϲατύριον τνδ Ϲέλινον τνε Ϲέριϲ ἢ κιχόριον τνϚ Ϲέϲελι |
ΤΞΥ ἰσόπλευρόν ἐστιν . καὶ ἐπεὶ πενταγώνου ἐδείχθη ἑκατέρα τῶν ΠΛ , ΠΟ , ἔστι δὲ καὶ ἡ ΛΟ πενταγώνου | ||
ἐστὶ καὶ τὸ μὲν ΑΗ τῷ ΜΠ , τὸ δὲ ΠΛ τῷ ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
δυνάμεωϲ : τῷ λεπτομερεῖ δὲ τῆϲ οὐϲίαϲ ἀνωδύνωϲ καίει . Κόνυζα διττή . Κόνυζα καὶ ἡ μείζων καὶ ἡ μικροτέρα | ||
τῶν τιθυμάλλων καὶ σχεδὸν ἤδη τῆς καλουμένης σηπτικῆς δυνάμεως . Κόνυζα καὶ ἡ μείζων καὶ ἡ μικροτέρα δριμείας καὶ πικρᾶς |
πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ , | ||
' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ |
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
: ἢ ταραχή . εἴλησις . ἀνάμιξις . Ἀμύμων : ἄψογος . ἀγαθός . Ἀμῶ : συνάγω . Ἄμητος : | ||
γίνεται μύγμων καὶ ἀμύμων ἐνδείᾳ τοῦ γ , ἤγουν ὁ ἄψογος καὶ εἰς ὃν οὐκ ἔστι μυγμήν , ἤτοι κἂν |
πρὸς αὐτόν : καὶ ἐπεὶ ἑκατέρα τῶν ζδηʹ αδεʹ τὸν αζηʹ κύκλον διὰ τῶν πόλων τέμνει , ἴση ἄρα ἐστὶν | ||
γθκʹ αἰεί ἐστιν ἀφανής . Εἰ γὰρ μὴ ἔστιν ὁ αζηʹ κύκλος αἰεὶ φανερός , ἐν τῇ περιφορᾷ τῆς σφαίρας |
ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ | ||
ἡ μὲν ΛΤΜ τῆς ΜΤ , ἡ δὲ ΠΛ τῆς ΥΤ , ὅλη ἄρα ἡ ΠΜ ὅλης τῆς ΜΥ ἐστὶν |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
. δρακοντία ἤτοι ἀρκολάχανον . δορύκνιον ἤτοι στρύχνον ὀνομαζόμενον . Ἐρυθρόδανον ἤτοι ῥιζάριν τῶν βαφέων . ἐρινεὸς ὁ τῆς ἀγρίας | ||
Ἕρπυλλοϲ θερμαίνει , ὥϲτε καὶ οὖρα καὶ καταμήνια κινεῖν . Ἐρυθρόδανον καταμήνιά τε κινεῖ καὶ τὰ περὶ τὸ δέρμα ἀπορρύπτει |
πλοῖον ἀπὸ μιᾶς φύσεως τοῦ ξυλίνου . Οὐκοῦν καὶ ἡ βαφικὴ τέχνη ἕνεκεν τούτου ἐπενοήθη , ἵνα βαφήν τινα καὶ | ||
πλοῖον ἀπὸ μιᾶς φύσεως τοῦ ξυλίνου . Οὐκοῦν καὶ ἡ βαφικὴ τέχνη ἕνεκεν τούτου ἐπενοήθη , ἵνα βαφήν τινα καὶ |
καὶ κιρρὸν καὶ παλαιόν . Τοὺϲ δὲ ἐπὶ λεπτοῖϲ χυμοῖϲ ϲυγκοπτομένουϲ θεραπευτέον ἐναντίωϲ τοῖϲ εἰρημένοιϲ : καὶ γὰρ τὰ διαγνωϲτικὰ | ||
ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ . καὶ τοὺϲ διὰ ξηρότητα ϲυγκοπτομένουϲ ἐν ταῖϲ τῶν παρο - ξυϲμῶν ἀρχαῖϲ ἄριϲτον προγιγνώϲκειν |
λ λγ μδ κζ # # , Ἄρεως δὲ μοίρας ρνβ λγ ε ιη με να # , Ἀφροδίτης δὲ | ||
δ , ἡ δ ' ἐπὶ τῆς ΘΓ ὁμοίως μοιρῶν ρνβ κζ νϚ . ταύταις δ ' ἀκολούθως καὶ ἡ |
Ψ , Ω , Ι σημεῖα , καὶ ἐπεζεύχθωσαν αἱ ΞΤ , ΞΥ , ΥΦ , ΤΦ , ΧΨ , | ||
. ἀλλ ' ὡς ἡ ΑΥ πρὸς ΥΗ , ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
ἐν ᾧ ὁ ἥλιος τὴν λδκʹ περιφέρειαν διέρχεται ἢ τὴν κλʹ : ἀπὸ ἄρα τῆς ἑσπερίας ἀνατολῆς ἐπὶ τὴν ἑσπερίαν | ||
αὐτοῦ κύκλου : ἴση ἄρα ἐστὶν ἡ δηʹ περιφέρεια τῇ κλʹ περιφερείᾳ : ἐν ἴσῳ ἄρα χρόνῳ τὸ δʹ ἐπὶ |
ἄκρως εἴς τι πεπαιδευμένων καὶ προσποιουμένων παρά τινων μανθάνειν . Δέδοται καὶ κακοῖς ἄγρα : ἐπὶ τῶν παρ ' ἀξίαν | ||
πείθει καὶ αἰδοίους βασιλῆας . Δεινοὶ πλέκειν μηχανὰς Αἰγύπτιοι . Δέδοται καὶ κακοῖς ἄγρα . Δεύτερος πλοῦς . Δελφῖνα λεκάνη |
χολῆς ξανθῆς διαφοραὶ ἕξ : χολὴ ἡ στοιχειώδης καὶ ἡ λεκιθώδης καὶ ἰσατώδης καὶ πρασώδης καὶ ἰώδης καὶ ἡ ὠχρὰ | ||
ὧν παρέρχεται . αὕτη δὲ ἡ ξανθὴ χολὴ παχυνομένη ἢ λεκιθώδης γίνεται ἢ ὀρώδης ὑγρότης συναναμίσγει καὶ ἴσχει ἐπιμιξίαν τῇ |
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
ἐπ ' αὐτὴν κάθετος ἔσται [ . , ] . Μείζων ἄρα γωνία . , ] ἐπεὶ ὀρθογώνιά ἐστιν , | ||
ἀποστάσεις διὰ τὸ ἀπ ' ἀλλήλων ἀποσχισθῆναι οὐχ ἅψονται . Μείζων δὲ πλευρὰ ἡ ΒΖ . , ] μείζων εὐλόγως |
. ρξε δ ∠ ʹγ Σωβάνου ποταμοῦ ἐκβολαί . . ρξε γοʹ δ ∠ ʹδ Πιθωνοβάστη ἐμπόριον . . . | ||
ἀνατολικὸν μέρος , οὗ τὸ πέρας ἐπέχει μοίρας . . ρξε νδ καὶ τὰ καλούμενα Ἀσμίραια ὄρη , ὧν τὰ |
' ὅτε δὴ καὶ κεῖθεν ὑπεύδια πείσματ ' ἔλυσαν , μνήσατ ' ἔπειτ ' Εὔφημος ὀνείρατος ἐννυχίοιο , ἁζόμενος Μαίης | ||
δεκάτῃ θάψαν θεοὶ Οὐρανίωνες . ἣ δ ' ἄρα σίτου μνήσατ ' , ἐπεὶ κάμε δάκρυ χέουσα . νῦν δέ |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
δὲ ἀφροδίσιον τινὶ ἡδονῇ , καὶ τὸ ἀγαθὸν ἄρα τινὶ ἀφροδισίῳ : ὑπέκειτο δὲ καὶ οὐδενί . Καὶ καθ ' | ||
τῷ παρανόμῳ ἀφροδισίῳ , καὶ τὸ ἀγαθὸν ἄρα παντὶ παρανόμῳ ἀφροδισίῳ : ὑπέκειτο δὲ καὶ οὐδενί , ὅπερ ἀδύνατον . |
ʹ κη ὁ δὲ Δοάνας , ἀπὸ μὲν τῶν Δαμάσσων ρξβ κζ ∠ ʹ ἀπὸ δὲ τοῦ Βηπύῤῥου ὄρους . | ||
. . . . . . . . . . ρξβ γʹ Ϛ τὸ μετ ' αὐτὴν ἀκρωτήριον . . |
ἐν τῷ ὑπὲρ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν ζαʹ : τοῦ ἄρα ἡλίου τὴν ζαʹ περιφέρειαν ἐν τῷ | ||
ἄστρον καὶ δύσεται καὶ ἀνατελεῖ : ὥστε τοῦ ἡλίου τὴν ζαʹ περιφέ - ρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , |
. ἐπὶ τὰς ὑποστάσεις : ἔσται ὁ μὲν τρίγωνος Μο ρνγ , ὁ δὲ τετράγωνος Μο ͵Ϛυ , ὁ δὲ | ||
, οἵων δ ' αἱ β ὀρθαὶ τξ , τοιούτων ρνγ λ : ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΖΔΚ |
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ . | ||
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
πεπυρωμένον ἐπιτιθεὶς κατὰ τοῦ νύγματος , καὶ ἀσκοῦ αἰγείου πεπισσωμένου ποδεὼν τὸ σφυρὸν ὁπόταν ἢ μὴν χεὶρ ἢ ἄλλο τι | ||
γαστρός : πόδα δὲ τὸ μόριον , παρόσον ὡς ὁ ποδεὼν τοῦ ἀσκοῦ προέχει . λέγει οὖν ὅτι ἔχρησέ μοι |
Θεανὼ ἡ Ἀντήνορος γυνή . Ὅμηρος [ Ε ] : Πηδαῖον δ ' ἂρ ἔπεφνε Μέγης , Ἀντήνορος υἱὸν , | ||
Θεανὼ ἡ Ἀντήνορος γυνή . Ὅμηρος [ Ε ] : Πηδαῖον δ ' ἂρ ἔπεφνε Μέγης , Ἀντήνορος υἱὸν , |
τοῦ κ καὶ τῆς πλευρᾶς τοῦ σ , ὅπερ ἐστὶ σπβ ν κ , μέσον ὡς ὑπὸ ῥητῶν δυνάμει μόνον | ||
Μηλέα περϲική σοθ Μηλέα ἀρμενιακή σπ Μηλέα μηδική σπα Μῆλα σπβ Μῆον σπγ Μορέα σπδ Μύκητεϲ σπε Μυωτίϲ σπϚ Μυρίκη |
ΕΠ δυνάμεων νδ : περιέχεται γὰρ ὑπὸ τῶν ΕΒ , ΒΠ οὔσης τῆς ΕΒ θ , τῆς δὲ ΒΠ Ϛ | ||
ἡ μὲν ΒΛ τῇ ΛΔ ἐστιν ἴση , ἡ δὲ ΒΠ τῇ ΠΔ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ΑΕΚ |
τῶν θερμαινόντων , εἴ τιϲ ἔξωθεν αὐτῷ χρῆϲθαι βούλοιτο . Κόκκοϲ Κνίδιοϲ . Καθαίρει μὲν καὶ αὐτόϲ : δριμείαϲ δέ | ||
Ὑποκυϲτίϲ σδ Κιϲθὸϲ ἢ λήδων σε Κιϲϲόϲ σϚ Κνῆκοϲ σζ Κόκκοϲ κνίδιοϲ ση Κόκκοϲ βαφική σθ Κοκκυμηλέαϲ ὁ καρπόϲ Κοκκύμηλον |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
τῶν κατὰ τὴν μεγίστην πεντάμηνον ἐπιλαμβανομένων τοῦ λοξοῦ κύκλου μοιρῶν ρνθ καὶ ε ἑξηκοστῶν τμήμασι δυσὶ καὶ ἑξηκοστοῖς ε . | ||
, αἵτινες ἐλάσσονές εἰσιν τῶν κατὰ τὴν μεγίστην πεντάμηνον λαμβανομένων ρνθ ε ἐπὶ τοῦ λοξοῦ κύκλου τμήμασιν β ε . |
ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι μο Ϛ | ||
ποιεῖν ⃞ον , ΔΥ δ ʂ η Μο δ . Δεήσει ἄρα καὶ τὸν ἀπὸ τοῦ γου ⃞ον , προσλαβόντα |
. . . . . . . . . . Ϙγ γοʹ λζ δʹ Τιβρακάνα . . . . . | ||
πη θ πθ οβ Ϙ ιγ Ϙα πα Ϙβ ιβ Ϙγ νζ Ϙδ κθ Ϙε κε ϘϚ πθ Ϙζ οζ |
τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη | ||
ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη |
οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ , τοιούτων ἐστὶν ρϘη νδ , οἵων δὲ αἱ δ ὀρθαὶ τξ , | ||
τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον σ Κιννάρα σα Κίκεωϲ ὁ καρπόϲ |
δώσομεν , καὶ εἰ σφόδρα ἐρεθίζοιντο , καὶ ἀψινθίου ἤτοι χυλίσματος ἢ ἀφεψήματος ὀλίγον προσοίσομεν . οὐδεὶς δ ' ἐστὶν | ||
καταπλασσέσθωσαν δέ , εἰ καὶ τούτου δέοι , χόνδρῳ μετὰ χυλίσματος ἀρνογλώσσου ἢ πολυγόνου ἢ κράμβης : ἄλλως δὲ μετ |
κέντρου τῆς γῆς μέχρι τῆς κορυφῆς τοῦ κώνου τῆς σκιᾶς σξη . ἀπὸ δὲ τῶν διαμέτρων ἡλίου καὶ σελήνης καὶ | ||
κβ , ἀνωμαλίας δὲ ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας σξη μθ , ἀποχῆς δὲ δηλονότι μοιρῶν ο λζ , |
ρξγ νότ . β Ἀττάβα ποταμοῦ ἐκβολαί . . . ρξδ νότ . α Κῶλι πόλις . . . . | ||
κεκαυμέναι ρξα Ὀϲτέα κεκαυμένα ρξβ Περὶ δερμάτων ρξγ Περὶ αἰθυίηϲ ρξδ Περὶ ἀλωπέκων ρξε Περὶ ἀράχνηϲ ρξϚ Περὶ βατράχων ρξζ |
παρ ' αὐτοῖς μὴ ἀδικῇ , ἀλλ ' ἐάν τις ἐξαμαρτάνῃ , κολάζουσιν : οἱ δὲ ὑμέτεροι ῥήτορες τρυφῶσι . | ||
. Οὐκοῦν βελτίων ἔσται , ἐὰν ἑκοῦσα κακουργῇ τε καὶ ἐξαμαρτάνῃ , ἢ ἐὰν ἄκουσα ; Δεινὸν μεντἂν εἴη , |
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς | ||
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ |
⋖ α , κόμμεωϲ ⋖ Ϛ : ὕδωρ ὄμβριον . Καδμίαϲ , ψιμυθίου , χαλκίτεωϲ ὠμῆϲ ἀνὰ ⋖ μ , | ||
# α , κόμμεωϲ # δ : ὕδατι ὀμβρίῳ . Καδμίαϲ # ιε , ψιμυθίου # ιζ , ὀπίου ⋖ |
πρῶτος ἔστω σοι καιρὸς τῆς ἀντιδότου ἀρχομένου ἔαρος καὶ ἡλίου διαπορευομένου τὸν κριόν . εἰ δέ τι κωλύσειεν ἄρχεσθαι τῆς | ||
ἴσας περιφερείας διέρχεται . νυνὶ δὲ τοῦ μὲν ἡλίου ὁμαλῶς διαπορευομένου τὸν κύκλον , αὐτοῦ δὲ τοῦ κύκλου ἀνωμάλως τὰς |
] εξοναρκ ! [ [ ] ! [ [ ] νοτ ! [ [ ] ! ικαι ! ! [ | ||
κα ! ! ! [ ] [ ] ων ? νοτ ? ! [ ] ! ! ! τωδ ! |
ὑποθέμενοι τὴν σελήνην κατὰ τὸ Λ ἀπέχειν τοῦ ἀπογείου μοίρας ροη μϚ , γίνεται ἡ ὑπὸ ΕΘΖ γωνία , τουτέστιν | ||
: καὶ ὅλη ἄρα ἡ ὑπὸ ΒΕΓ τῶν αὐτῶν ἔσται ροη ιϚ . πάλιν , ἐπειδὴ τὸ μὲν Γ περίγειον |
ἐνίοις οὐ ψωριῶσι , καθάπερ οὐδὲ περὶ τὴν Αἰνείαν . Ἁλίσκεται δὲ συκῆ μάλιστα καὶ σφακελισμῷ καὶ κράδῳ . καλεῖται | ||
τῷ Περὶ παθῶν , . , . . . . Ἁλίσκεται : καταλαμβάνεται , κρατεῖται . εἴρηται εἰς τὸ Ἁλῶ |
ῥίζα διαφορεῖ καὶ ἀποκρούεται . Ἡμιονῖτις στύφει μετὰ πικρότητος . Ἠριγέρων ψύχει , διαφορεῖ . Ἰσόπυρον ἢ φασήλιον ῥύπτει , | ||
ἔχειν τι . Ἡμιονῖτις στύψεως ἅμα σὺν πικρότητι μετέχει . Ἠριγέρων δύναμιν ψυκτικήν τε ἅμα καὶ μετρίως διαφορητικὴν ἔχει . |
βορείου Στεφάνου ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : Στάχυς ἑῷος δύνει , καὶ ὁ καλούμενος Κάνωβος κρύπτεται . | ||
: ἐμεσουράνει γὰρ τὰ μέσα τοῦ Καρκίνου . καὶ ὁ Στάχυς ἄρα διὰ τὰ προειρημένα κατὰ μῆκος μὲν ἀπεῖχεν τότε |
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
ρκ , καὶ πάλιν ἡ μὲν τῆς ΖΘ διπλῆ μοιρῶν ρπβ ν καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριθ | ||
τῆς γʹ ἀκρωνύκτου ἀπέχων ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπβ μζ : ἐπέλαβεν ἄρα ἐν τῷ μεταξὺ τῶν β |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
ἡ δὲ πρὸς τὰ Ἠμωδὰ ἐκτροπή . . . . ρξη λθ ἡ δὲ ἐν τούτοις πηγή . . . | ||
ἀλωπέκων ρξε Περὶ ἀράχνηϲ ρξϚ Περὶ βατράχων ρξζ Περὶ γαλῆϲ ρξη Περὶ γῆϲ ἐντέρων ρξθ Περὶ δράκοντοϲ θαλαϲϲίου ρο Περὶ |
. . . . . νϚ ∠ ʹγιβʹ μα ∠ ʹγιβʹ Ῥυνδάκου ποταμοῦ ἐκβολαί . νϚ γʹ μα ∠ ʹδ | ||
ἡ δὲ Πέργαμος τὴν μεγίστην ἡμέραν ἔχει ὡρῶν ιδ ∠ ʹγιβʹ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις εʹ μιᾶς ὥρας |
εἴη ὁ μηνίσκος τῷ εὐθυγράμμῳ . ὅτι δὲ οὗτος ὁ μηνίσκος ἐλάττονα ἡμικυκλίου τὴν ἐκτὸς ἔχει περιφέρειαν , δείκνυσι διὰ | ||
ΕΚ ΚΒ ΒΗ τμημάτων . τούτων οὕτως ἐχόντων ὁ γενόμενος μηνίσκος οὗ ἐκτὸς περιφέρεια ἡ ΕΚΒΗ ἴσος ἔσται τῷ εὐθυγράμμῳ |
κε . ιηʹ . ἡ δόσις γρ . δʹ . Ἑρμοδακτύλου . . . . . . γρ . αʹ | ||
. καὶ ἀλύπως καθαίρει καὶ ἀνωδύνους ποιεῖ τοὺς πάσχοντας . Ἑρμοδακτύλου . . . . . . οὐγγ . γʹ |
ἄστρον ἀνατέλλει . Πάλιν ἐπεὶ τοῦ δʹ δύνοντος τὸ μὲν ζαεʹ ἡμικύκλιον ἐν τῷ ὑπὲρ γῆν ἐστιν , τὸ δὲ | ||
τοίνυν , ὅταν τὸ δʹ δύνῃ καὶ ὁ ἥλιος τὴν ζαεʹ περιφέρειαν διαπορεύηται , ἐν τῷ ὑπὲρ γῆν αὐτὴν διελεύσεται |
ἡμέρας , τηνικαῦτα λευχειμονήσαντες ἐστεφανηφόρησαν . οὗτος ὁ κύκλος εἰ διαιρεθείη εἰς ὀκτὼ μέρη , τέσσαρα μὲν ἕξει ὑπὲρ γῆν | ||
σωματῶδες εἶναι τὸ ἔξωθεν , ὡς εἴρηται , περικείμενον . διαιρεθείη δ ' ἂν τὰ οὕτως ἐχόμενα τοῦτον τὸν τρόπον |
λήμματα τῆς ἀποδείξεώς ἐστιν ἄδηλα , ἄδηλος δὲ καὶ ἡ ἐπιφορά , τὸ δὲ ἐξ ἀδήλων συνεστὼς πάλιν ἄδηλον , | ||
καὶ ἐπιφορά ἐστιν . καὶ κατὰ τοῦτο ἄρα συνάγεται ἡ ἐπιφορά . Ταῦτα μὲν οἱ δογματικοί : τάξει δὲ ῥητέον |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
καὶ Κύρνον Ποπουλώνιον τῆς Τυρσηνίας : τὸ δὲ δίαρμα σταδίων ͵βσʹ . Τῆς Σικελίας κατὰ Τιμοσθένην περίμετρος σταδίων ͵δψμʹ , | ||
: ἐπὶ στόμα Μαιώτιδος στάδια βφʹ : ἐπὶ Τάναϊν στάδια ͵βσʹ . Ἄλλως , ἀπὸ πόλεως εἰς πόλιν : ἀπὸ |
καὶ διὰ μὲν τοῦ Ξ τῇ ΖΑ παράλληλος ἤχθω ἡ ΞΘ , διὰ δὲ τοῦ Θ τῇ ΑΓ ἡ ΘΛΚ | ||
ἀπὸ ΑΕ λόγος σύγκειται ἔκ τε τοῦ τῆς ΝΞ πρὸς ΞΘ καὶ τοῦ τῆς ΠΞ πρὸς ΞΚ . σύγκειται δὲ |
. ὁμολόγως οὖν ταῖς κατὰ τὴν εὐθεῖαν οὐδ ' ὅλως συντετάξεται ἡ πρόθεσις οὔτε κατὰ παράθεσιν οὔτε κατὰ σύνθεσιν διὰ | ||
αὐτῷ καὶ τοῖς ἄλλοις ἔσται τὸ γνωστοῖς εἶναι , καὶ συντετάξεται τοῖς πᾶσι κατὰ τοσοῦτον . Ἔτι δέ , εἰ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
οὐκ ἄρα τὸ Ζ χωρίον μεῖζον τοῦ ΑΒΓΔ κύκλου . Ἐδείχθη δὲ ὅτι οὐδὲ ἔλασσον : ἴσον ἄρα . καὶ | ||
ἐν τοῖς ὅροις : δεδομένα γάρ ἐστι τῷ εἴδει . Ἐδείχθη γὰρ ἐν τῷ σχολίῳ τῷ ἐν τοῖς πρώτοις σχολίοις |
καὶ ἡ Σελήνη ἐν τῷ σχολαστικῷ τόπῳ γενόμενοι καὶ χρονοκρατοῦντες ἐνεργέστεροι καθίστανται , ἐναντιούμενοι δὲ ἐπιτάραχοι . ἐπὶ πάσης δὲ | ||
ἡ διαίρεσις γενομένη δόξας ἀποτελεῖ , οὐχ ὁμοίως δέ : ἐνεργέστεροι γὰρ οἱ τῶν κλήρων τετράγωνοι τόποι . ἐὰν δὲ |
οἷον τὸ σκυτέως ὄργανόν ἐστιν σμίλη : οὐ γὰρ ἡ σμίλη συμπληρωτική ἐστιν τῆς οὐσίας αὐτοῦ , οὐδὲ ταύτης ἀφανισθείσης | ||
λέγεται τὸ ἐπικαττύεσθαι καὶ ἐπικαττύειν . τὰ δὲ ἐργαλεῖα αὐτῶν σμίλη , ἀφ ' ἧς καὶ τὰ σμιλεύματα ἐν Βατράχοις |
κοινὸν ἐκκεκρούσθω τὸ ἀπὸ ΒΖ : λοιπὸν ἄρα τὸ ὑπὸ ΓΕΒ ἴσον ἐστὶν τῷ τε ὑπὸ ΓΑΒ καὶ τῷ ὑπὸ | ||
ὑπὸ ΓΑΒ καὶ τῷ ὑπὸ ΔΕΑ , ὥστε τὸ ὑπὸ ΓΕΒ τοῦ ὑπὸ ΓΑΒ ὑπερέχει τῷ ὑπὸ ΔΕΑ , ὅπερ |
δόξαιμεν ψεύδεσθαι . Μὰ Δία οὐ μέντοι , ἔφη . Φῶμεν ἄρα ; Φῶμεν . Ἔστω δή , ἦν δ | ||
ἢ μὴ φῶμεν αὐτὸν ἐν μέσῳ τῶν παθημάτων εἶναι ; Φῶμεν μὲν οὖν . Πότερον ἀλγοῦνθ ' ὅλως ἢ χαίροντα |
ἢ μέλιτι : καὶ τὰ ψωρώδη δὲ θαυμαϲτῶϲ ἰᾶται . Θέρμοϲ ὁ μὲν ἐδώδιμοϲ ἐμπλαϲτικῆϲ ἐϲτι δυνάμεωϲ , ὁ δὲ | ||
Τὸ ἡμιώβολον ἔχει κεράτιον αʹ ʂ , χαλκοῦϲ δʹ . Θέρμοϲ ἔχει κεράτια βʹ , χαλκοῦϲ εʹ καὶ τριτημόριον [ |