τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
ἐπιζευγνυμένη εὐθεῖα ἐν τῷ αὐτῷ ἐπιπέδῳ ἐστὶ ταῖς παραλλήλοις . Ἔστωσαν δύο εὐθεῖαι παράλληλοι αἱ ΑΒ , ΓΔ , καὶ | ||
ἀπάγεται γὰρ εἰς τὰ πτωτικὰ τοῦ ἑπτακαιδεκάτου . κγʹ . Ἔστωσαν δύο κύκλοι οἱ ΑΒ ΓΔ , καὶ ἐκβεβλήσθω ἡ |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , ὅ τε δ καὶ ὁ θ καὶ | ||
τετράγωνον , ὃν δὲ πλευρὰν τοῦ τετραγώνου . Ἔστωσαν οἱ δοθέντες δύο ἀριθμοὶ ὅ τε σ καὶ ὁ ε : |
ληψόμεθα τὰς δύο μέσας ἀνάλογον ἐν τῇ συνεχεῖ ἀναλογίᾳ . ἐκκείσθωσαν γὰρ ταῖς ΕΔ ΔΖ ΔΜ ἴσαι αἱ ΕΔ ΔΖ | ||
: ποδηγεῖ γὰρ πρὸς τὴν τοῦ ζητουμένου κατάληψιν . οἷον ἐκκείσθωσαν ταυταδὶ τὰ στοιχεῖα ἰσάριθμα ὄντα καὶ ἀναλογοῦντα τοῖς νοήμασι |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
, ἐπειδήπερ οἱ διὰ τῶν πόλων τοῦ ἑτέρου τῶν εἰρημένων γραφόμενοι μέγιστοι κύκλοι ἀνίσους ἀπολαμβάνουσιν ἐφ ' ἑκατέρου περιφερείας , | ||
τῇ ΘΚ , καὶ οἱ διὰ τῶν Κ καὶ Η γραφόμενοι παράλληλοι ἴσον ἀπέχουσιν ἐφ ' ἑκάτερα τοῦ ἰσημερινοῦ , |
ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . | ||
ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . |
ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν καθέτῳ ἀγομένῃ περιφέρειαι γραφεῖσαι τεμνέτωσαν ἀλλήλας : καὶ αἱ ἀπὸ τῆς τομῆς ἐπὶ τὰ | ||
πόλος ἔστω τῶν παραλλήλων τὸ Α σημεῖον , καὶ τοῦτον τεμνέτωσαν δύο μέγιστοι κύκλοι οἱ ΒΖΓ , ΔΖΕ πρὸς ὀρθάς |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
, καὶ ἀπὸ τοῦ Μ σημείου , καθ ' ὃ τέμνουσιν ἀλλήλους οἱ κύκλοι , ἐπεζεύχθωσαν αἱ ΜΑ , ΜΒ | ||
ἐπεὶ γὰρ ἐν σφαίρᾳ δύο κύκλοι οἱ ΩΒΓ , ΗΘΚ τέμνουσιν ἀλλήλους , διὰ δὲ τῶν πόλων αὐτῶν γέγραπται μέγιστος |
γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
. ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
τούτων λαμβανομένων μέσων γίνονται αἱ τρεῖς μεσότητες : οἷον ἔστωσαν ἄκροι ὅ τε μ καὶ ὁ ι . ἐὰν μὲν | ||
. Ἀλλὰ τριῶν ὄντων τοῦ γένους ἀρχηγετῶν , οἱ μὲν ἄκροι μετωνομάσθησαν , Ἀβραάμ τε καὶ Ἰακώβ , ὁ δὲ |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
λόγον ἔχει ἤπερ ἡ βάσις πρὸς τὴν βάσιν ἀντιπεπονθότως . καταγεγράφθωσαν οἱ κῶνοι , καὶ ἔστω , ὡς ὁ ΑΗΓΔ | ||
σε τούτων διαλανθάνῃ καὶ ἵνα σαφέστερον ἡμῖν ὁ λόγος γένηται καταγεγράφθωσαν πρῶτον πάντα τὰ δεκαεπτὰ σύμφωνα : Β . Γ |
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
εἰσὶν οἱ Β , Γ , Δ τῷ πλήθει τοσοῦτοι εἰλήφθωσαν ἀπὸ τοῦ Ε οἱ Ε , ΘΚ , Λ | ||
ὡς ἀρχὴ καὶ μὴ οὖσα ἀριθμός , οὐκοῦν ἀπὸ τριάδος εἰλήφθωσαν : γ , ε , ζ , θ , |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων | ||
. αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις |
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
καὶ μὴ πρότερον , ἀλλὰ νῦν γε εἰρημένον , οἱ μέγιστοι τῶν ἐν ταῖς τέχναις οὐχ ᾧ μετεσχήκασι τῆς τέχνης | ||
πόλος δὲ ἔστω τῶν παραλλήλων ὁ Α , καὶ γεγράφθωσαν μέγιστοι κύκλοι οἱ ΑΜ ΑΝ ΑΞ : δεῖξαι ὅτι μείζων |
βάσις πρὸς τὴν ΓΔ . ἐπεὶ γὰρ ἴσοι εἰσὶν οἱ κῶνοι , ὡς ἄρα ὁ περὶ τὸ Η κέντρον κύκλος | ||
γὰρ καὶ κατὰ τρίγωνα ὁρώσης τῆς ὄψεως , ὅταν οἱ κῶνοι ἐξ ἀμφοτέρων τῶν ὀμμάτων ἐξίωσι καὶ προσβάλωσιν αἱ ὄψεις |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : | ||
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : |
μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων | ||
μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ |
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
κύκλος ὁ ΛΕΝ . Ἐπεὶ οὖν ἐν σφαίρᾳ δύο κύκλοι ἐφάπτονται ἀλλήλων ὅ τε ΑΕΒ καὶ ὁ ΓΕΔ , διὰ | ||
τὸ Ζ , ἀλλὰ κατὰ τὸ Η . ἐπεὶ οὖν ἐφάπτονται αἱ ΒΔ , ΔΑ , καὶ ἐπὶ τὰς ἁφάς |
διαμνημονεύονται , οἱ δὲ μακρὰν τοῖς τόποις διεστῶτες τοῖς πλεῖστον ἀπέχουσιν ὡς πλησίον παρεστῶσι διὰ τῶν γεγραμμένων ὁμιλοῦσι : ταῖς | ||
τῇ ΚΛ , ἐπεὶ καὶ τῇ ΘΚ : ἴσον γὰρ ἀπέχουσιν ἀπὸ τοῦ κέντρου : καί ἐστιν ἑκατέρα τῶν ΘΚ |
τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
. καὶ ἐπεὶ οἱ ἀπὸ τοῦ αου τρεῖς τοῦ δου ὑπερέχουσι Μο κ , ᾧ δὲ ὑπερέχουσιν οἱ αου τρεῖς | ||
ταῖς οἰκοδομαῖς αἰεὶ κατὰ τὴν εἰς τὸν λόφον ἀνάβασιν ἀλλήλων ὑπερέχουσι καὶ τὸ σχῆμα τῆς ὅλης πόλεως θεατροειδὲς ἀποτελοῦσι . |
καὶ ὥρας κ , μοίρας δὲ ὁμοίως λδ λδ : συνάγονται δὲ καὶ τῆς μέσης κατὰ μῆκος παρόδου κατὰ τὸ | ||
οὗτοι ἐξ ὑποθέσεώς τέ εἰσι καὶ διά τινος τῶν σχημάτων συνάγονται . ἐξ ὑποθέσεως μὲν οὖν εἰσιν , ὅτι , |
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
στοιχείων ὁ οὐρανός : εἰ γὰρ μὴ ὁμολογοῖεν , † ἔσονται λέγειν παρὰ τὴν δόξαν τῶν πολλῶν . στοιχεῖον δὲ | ||
ἐπιφέρει : ” αἱ δ ' ἡμέραι αἱ πρότεραι ἄλογοι ἔσονται , ὅτι ἐμιάνθη κεφαλὴ εὐχῆς αὐτοῦ ” : δι |
ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει , εἰλήφθω , καὶ ἔστω τῶν μὲν Γ , Ε ἰσάκις | ||
μὲν δοθεῖσα γωνία ὀξεῖα ἡ ὑπὸ τῶν ΖΗΘ , καὶ εἰλήφθω ἐπὶ τῆς ΖΗ τὸ Ζ , καὶ κάθετος ἤχθω |
Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
Μο ρ : καὶ φανερὰ ἡ ἀπόδειξις . Ἄλλως . Ἔστω κύβος ὁ αος , ὁ δὲ τετράγωνος ὁ βος | ||
γὰρ δι ' ἀδυνάτου εἰσάγει τὸ ἀντικείμενον τῷ ἀναιρουμένῳ . Ἔστω γὰρ τὸ μὲν Α . οὐ καλῶς εἰλημμένοι εἰσὶν |
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
κύκλοι οἱ ΑΕΚΗΓΦΤ , ΒΖΛΘΔΥ ἑνὸς μὲν αὐτῶν τοῦ ΚΛ ἐφαπτόμενοι κατὰ τὰ Κ , Λ σημεῖα , τοὺς δὲ | ||
γεγραμμένοι εἰσὶν κύκλοι μέγιστοι οἱ αβγʹ δβεγʹ ἑνὸς μὲν αὐτῶν ἐφαπτόμενοι τοῦ αδʹ , τὸν δὲ ηζθʹ τέμνοντες , καὶ |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
ἡμικυκλίῳ ἡμέραι αἱ προγεγενημέναι τοῦ ἡλίου πορευομένου ἀπὸ τροπῶν χειμερινῶν μακρότεραι ἔσονται τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν , νύκτες | ||
, ὡς ἔν τισιν , ἔχει τὸν τρόπον τοῦτον : μακρότεραι τέρψιες ἕψονται ἐρίτιμοί τ ' ἀοιδαί . εἰ δὲ |
ἀγαθὸν συμφύλακα Πέρσαις τε καὶ ἐμοὶ τῆς ἀρχῆς τιμήσω . ἔστων δὲ παρ ' ὑμῖν καὶ ἕδραις ὥσπερ παρ ' | ||
ὀρθῶς ἀποπρεσβεύσας γένηται φανερὸς ἢ κηρυκεύσας , γραφαὶ κατὰ τούτων ἔστων ὡς Ἑρμοῦ καὶ Διὸς ἀγγελίας καὶ ἐπιτάξεις παρὰ νόμον |
δὴ ἐφάπτονται αἱ ΑΓ ΔΖ τῶν τμημάτων ἢ οὔ . ἐφαπτέσθωσαν πρότερον : ἴσον ἄρα ἐστὶν τὸ μὲν ὑπὸ ΒΓΗ | ||
, Δ σημεῖα , καὶ τῶν Α , Β τομῶν ἐφαπτέσθωσαν αἱ ΒΕ , ΑΕ συμπίπτουσαι κατὰ τὸ Ε , |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
δὲ τῶν μὲν Ἑλλήνων ὥσπερ τροφέων ἐπιμελόμενοι , χεῖρά τε ὑπερέχοντες καὶ οἷον κειμένους ἀνιστάντες , τοὺς μὲν ἀρίστους καὶ | ||
ὁ πίθων , οὕτω παρὰ τοῖς ἄφροσι καὶ κόλαξιν οἱ ὑπερέχοντες λέγονται σοφοὶ καὶ πάντα ἔχειν τὰ ἀγαθά : δεῖ |
ὁ ΑΒΓ κύκλου τινὸς τῶν ἐν τῇ σφαίρᾳ τοῦ ΓΔ ἐφαπτέσθω κατὰ τὸ Γ σημεῖον . λέγω , ὅτι ὁ | ||
, κέντρον δὲ τὸ Γ , καὶ τῆς Α τομῆς ἐφαπτέσθω ἡ ΚΛ , καὶ ἐπεζεύχθω ἡ ΛΓ καὶ ἐκβεβλήσθω |
κατὰ τοὺς κυνόδοντας ἐπῆρται , οἷς δὲ τὰ κατὰ τοὺς τομεῖς , κυνώδεις . Τῶν ἐρώντων ὑπάρχει σημεῖα τοιαῦτα : | ||
τὰ αὐτὰ δὴ καὶ οἱ ΘΕΖ , ΘΖΜ , ΘΜΝ τομεῖς ἴσοι ἀλλήλοις εἰσίν . ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ |
μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος | ||
δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
φύσις τοῖσδε τοῖς ἀδελφοῖς : ἀλλήλοις αἴτιοι τῆς αὔξης ἄμφω γενήσονται . ὁρῶντες μὲν γὰρ ἀλλήλους ἴσα βλαστήσουσι , θατέρου | ||
ἄλλοθι τοιοῦτοι γεγόνασι μαρτυρεῖν , καὶ προσμαντεύεσθαί γε ὅτι καὶ γενήσονται . Ἴσως δ ' ἄν τις κἀκεῖνο θαυμάσειεν , |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΒ , ΓΒΑ , ΓΑΒ ἄρα δυσίν ὀρθαῖς ἴσαι εἰσίν . Παντὸς | ||
τῶν ΔΗΕ , περὶ δὲ ἄλλας γωνίας τὰς ὑπὸ τῶν ΓΒΑ , ΕΔΗ τὰς πλευρὰς ἀνάλογον , τῶν δὲ λοιπῶν |
' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
ὁ πλείων καὶ τοῦ πέριξ ἦχος . Πῶς γὰρ ἂν σύμφωνοι ἐγίγνοντό τινες φθόγγοι εἰ μὴ ἰσότης ἦν ; ἀσύγκριτον | ||
, ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ τούτοις δὲ καὶ |
κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
εἶναι καὶ ἀριθμόν , συνάξει , ὅτι ἄρτιοί εἰσιν ἢ περιττοὶ οἱ ἀστέρες , οὔτε δὲ τὸ περιττοὺς αὐτοὺς εἶναι | ||
εἰς περιττόν . καὶ οἱ ἄρτιοι δὲ ἵπποι δύνανται καὶ περιττοὶ γενέσθαι ἑτέρου προσθήκῃ . ἀλλὰ καὶ τὸ χρῶμα εἰ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
, τὸ δὲ ὄμμα κείσθω ἐπὶ τοῦ Β , καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΚΒ , ΒΔ , ΒΓ , ΒΖ | ||
. κείσθω δὴ ὄμμα τὸ Δ , ἀφ ' οὗ προσπιπτέτωσαν ἀκτῖνες αἱ ΔΒ , ΔΓ , καὶ ἀπὸ τοῦ |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
τὸ Θ σημεῖον , οἱ δὲ ΜΝΞ , ΟΠΡ ἴσον ἀπεχέτωσαν ὁποτερασοῦν τῶν διχοτομιῶν , ὁ δὲ ΤΣ πορρώτερον ἐχέτω | ||
καθ ' ἕκαστον τοῦ σπέρματος κόκκους βʹ ἢ γʹ . ἀπεχέτωσαν δὲ οἱ βόθροι ἀπ ' ἀλλήλων διάστημα σπιθαμιαῖον . |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
. πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ | ||
οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ |
ὕψεσιν , ἴσοι εἰσὶν ἐκεῖνοι . Ἔστωσαν ἴσοι κῶνοι καὶ κύλινδροι , ὧν βάσεις μὲν οἱ ΑΒΓΔ , ΕΖΗΘ κύκλοι | ||
ΟΠΡΣ , ΤΥΦΧ ἴσοι ὄντες τοῖς ΑΒΓΔ , καὶ νενοήσθωσαν κύλινδροι οἱ ΠΡ , ΡΒ , ΔΤ , ΤΧ . |
καὶ τῆς σοφίας αἱ ἀρχαὶ ἀπὸ τῶν καθ ' ἕκαστα λαμβάνονται ; καὶ γὰρ καὶ τὴν σοφίαν , ἥτις περὶ | ||
λοιπὰ ὁμοίως . Τινὰ δὲ τῶν θεϊκῶν ὀνομάτων καὶ πλεοναχῶς λαμβάνονται , ὥσπερ τὸ Ζεύς . Σημαίνει γάρ τινα βασιλέα |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
τρίτην ἑκατέρας τῶν δυεῖν ἐλάσσονα , ἰσάκις ἴσοι ἐλαττονάκις , πλινθίδες ἐκλήθησαν : οἱ δὲ δύο μὲν ἴσας , τὴν | ||
, ἢ ἰσάκις ἴσων ἀνισάκις , ἵνα ἢ δοκίδες ἢ πλινθίδες ὦσιν , εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί |
ΗΘ εὐθεῖαι οὐδὲ ἐπὶ τὰ Ε , Η μέρη ἐκβαλλόμεναι συμπεσοῦνται . αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί | ||
ἀγομένη ΗΘ ἴσην ἀποτέμνει τῇ ζητουμένῃ τὴν ΘΒ . [ συμπεσοῦνται γὰρ αἱ ΓΔ ΒΖ ὡς ἐπὶ τὸ Η ἠγμέναι |
ἀδυνάτου δείξεως πᾶσαι : πλὴν οἱ μὲν διὰ τοῦ ἀδυνάτου δειχθήσονται , οἱ δὲ καὶ διὰ τῆς ἀντιστροφῆς : καὶ | ||
ζʹ : ὁ γὰρ τῶν ΒΓ καὶ ΓΔ μετὰ ταῦτα δειχθήσονται . εὑρεθήσονται τοίνυν μεῖζον τόνου ποιοῦντες μέγεθος ἑκάτεροι οἵ |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
αὐτὸν ἀνάγειν . ταύτην τὴν πρόσταξιν ἀνάγραπτον αἱ ἱεραὶ βίβλοι περιέχουσιν εἰς τὴν τῶν καθ ' ἑκάστην γενεὰν ἀρχόντων διδασκαλίαν | ||
ἔδοξε τὰ Ζήνωνος ἢ τὰ Διογένους καὶ Κλεάνθους , ὁπόσα περιέχουσιν αἱ βίβλοι αὐτῶν διδάσκουσαι ἀνθρωποβορίας , πατέρας μὲν ὑπὸ |
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |