. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
ὑπὸ γῆν κέντρῳ πρὸς μεσημβρίαν . δηλοῦσι δὲ καὶ τὰ κέντρα τὴν ἔξοδον δι ' ἧς ἀναχωρήσουσι πύλης οἱ φεύγοντες | ||
δὲ Ὑδροχόος παραποταμίους καὶ ἑλώδεις . Τινὲς δὲ καὶ τὰ κέντρα ἐμέρισαν οὕτως : τὸ μὲν δῦνον τῷ φεύγοντι , |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
τῶν περιφερειῶν αὐτῶν χωρίον , ὃ δὴ καλοῦσιν ἄρβηλον , ἐγγεγράφθωσαν κύκλοι ἐφαπτόμενοι τῶν τε ἡμικυκλίων καὶ ἀλλήλων ὁσοιδηποτοῦν , | ||
, προγραφέντος τοῦδε : Ἔστω κύκλος ὁ ΑΒΓ , καὶ ἐγγεγράφθωσαν εἰς τὸν ΑΒΓ κύκλον πενταγώνου ἰσοπλεύρου πλευραὶ αἱ ΑΒ |
ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
μή , ἐνεργείᾳ πως : ἐν γὰρ τῇ γραμμῇ τὰ σημεῖά πως δυνάμει ὑπάρχουσιν , ἐν ἡμῖν δὲ τὰ μέρη | ||
πρὸς ἀλλήλας δεδομένοι . δʹ . Τῇ θέσει δεδόσθαι λέγονται σημεῖά τε καὶ γραμμαὶ καὶ γωνίαι , ἃ τὸν αὐτὸν |
καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
γὰρ ἐπιούσῃ , φησίν , ἡμέρᾳ ἐν τῇ Θυνίᾳ τὰ ἀπόγεια ἔδησαν . . . , ὡς δῆλον , ἐκ | ||
εἰ μή τι βαρὺ καὶ ἄχρηστον . ἔπειτα ἔλυον τὰ ἀπόγεια καὶ ἀγκύρας ἀνῄρουν καὶ βοῆς καὶ ταραχῆς ὁ λιμὴν |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
καὶ τετάρτης : καμφθέντος γὰρ τοῦ ἀγκῶνος , ἐπὶ πλεῖστον ἀσύμπτωτα μένει τὰ χείλη . Εἰ μὲν διὰ σφίγξιν βιαιοτέραν | ||
οἱ υΗΩΧ , ΦΘΨ ἐφαπτόμενοι τοῦ τυΦ κύκλου , ὥστε ἀσύμπτωτα εἶναι τὰ ἀπὸ τῶν υ , Φ ἡμικύκλια ὡς |
ἡ τοῦ παντὸς κίνησις ἡ ἀπὸ τῶν ἀνατολικῶν ἐπὶ τὰ δυτικά : δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , | ||
ἀεὶ φοιτῶσαι : λείπει χωρία . τὰ ποθέσπερα : τὰ δυτικά . ῥαγίζονται : λυμαίνονται , τρυγῶσι . τὰ Μίκωνος |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
κύκλοι οἱ ΑΕΚΗΓΦΤ , ΒΖΛΘΔΥ ἑνὸς μὲν αὐτῶν τοῦ ΚΛ ἐφαπτόμενοι κατὰ τὰ Κ , Λ σημεῖα , τοὺς δὲ | ||
γεγραμμένοι εἰσὶν κύκλοι μέγιστοι οἱ αβγʹ δβεγʹ ἑνὸς μὲν αὐτῶν ἐφαπτόμενοι τοῦ αδʹ , τὸν δὲ ηζθʹ τέμνοντες , καὶ |
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
βούλονται , ὄρεξις , καὶ μὴ ἐπιθυμία ὁ ἔρως . Διῃρήσθω δὲ τῇδε : ἐὰν μὲν ἐπὶ τὸ καλὸν φαινόμενον | ||
ΓΔ : λέγω , ὅτι ἡ ΓΔ μείζων ἐστίν . Διῃρήσθω ἡ ΑΒ κατὰ τὸ Ε : αἱ ΑΕ , |
ἐπὶ τὰ δυτικά : δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντι - στροφῇ | ||
ἐπὶ τὰ δυτικά . δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντιστρόφῳ δὲ , |
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , | ||
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , |
λάμβανε ὡς ἐπὶ τὴν Σελήνην καὶ ἐπιγνούς , πόσα ἐστὶ δωδεκατημόρια , ἀφαίρει ἀπὸ τῆς διαμετρούσης τὸν Ἥλιον μοίρας : | ||
αὐτὸν περιβάλλουσιν . τῶν δὲ κρατούντων ἀστέρων παραφυλάσσειν χρὴ τὰ δωδεκατημόρια : ἐπὰν γὰρ συνεκπέσῃ εἰς τὸν ὡροσκόπον ῥᾳδίως τέλους |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
τὰς ἀντιλήψεις τῶν σωμάτων : τὰ μὲν γὰρ αὐτῶν εἶναι σκαληνά , τὰ δὲ ἀγκιστρώδη , τὰ δὲ κοῖλα , | ||
τοῦ δὲ ὀκταέδρου ἐξ ὀκτὼ ὁμοίως διαιρουμένου ἑκάστου εἰς ἓξ σκαληνά , τὰ δὲ εἰκοσαέδρου ἐξ εἴκοσι . Τὸ δὲ |
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
πρόσωπον καὶ οἷον ζυγὸν τὰς εἰς τοὔμπροσθεν δύο πλευρὰς τοῦ ῥομβοειδοῦς , οἷον αθξτψαϚχσνη ↑ ↑ , λαβδοειδὲς σχῆμα , | ||
πλευράς τε καὶ γωνίας ἴσας . αὐτὸς δὲ ἐπὶ τοῦ ῥομβοειδοῦς μόνον τοῦτο προσέθηκεν , ἵνα μὴ διὰ ψιλῶν αὐτὸ |
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
, ἤγουν τὰ μέσα τῶν εἰρημένων συρίγγων , εἰς ἃς ἐντίθενται τὰ τοῦ ἄξονος ἄκρα , πλῆμναι δὲ καλούμεναι διὰ | ||
ὀποὶ ϲφοδροτέραν ἔχοντεϲ δύναμιν εἰϲ μὲν τὸ τρῆμα τῶν ὀδόντων ἐντίθενται , τοῦ δὲ ἄλλου ϲώματοϲ ἐὰν ἅψωνται , ἐπικαίουϲιν |
τῶν ἑπομένων , οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα : ὅπερ ἔδει δεῖξαι . Ἐὰν πρῶτον πρὸς δεύτερον | ||
αἵ τε ΒΔ καὶ ΒΕ τῆς ὁμαλῆς καὶ εἰς τὰ ἑπόμενα τοῦ ἐπικύκλου κινήσεως καὶ αἱ ΓΖ καὶ ΓΗ τῆς |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . | ||
ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν | ||
, τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
εἰς ἀδύνατον ἀπαγωγῆς : διὰ ταύτης γὰρ φιλεῖ δείκνυσθαι τὰ ἀντίστροφα τῶν θεωρημάτων καὶ οὕτω φέρεσθαι . ἐν δέ γε | ||
τοῦ πρώτου ἐπὶ τὸ ἔσχατον ἔρχῃ , ἵνα τὰ ἀλλήλοις ἀντίστροφα ᾖ μετ ' ἀλλήλων . ταύτῃ γὰρ κελεύει τὸ |
πρίσματα ἰσοϋψῆ τῷ κυλίνδρῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κυλίνδρου , ἃ ἔσται ἐλάττονα τῆς ὑπεροχῆς , | ||
τριπλασίου τοῦ κώνου , καὶ ἔστω αὕτη ἡ ΖΑ τὰ ἀποτμήματα τοῦ κυλίνδρου . καὶ ἐπεὶ ὁ κῶνος ποδῶν ὑπόκειται |
, σφαίρας γὰρ περιέχειν ἐμψύχους καὶ ζωτικάς , τὰ δὲ περίγεια μηδενὸς αὐτῶν , τῆς δ ' εὐταξίας κατὰ συμβεβηκὸς | ||
περὶ τὸ Ε κέντρον μεταβιβάζον τά τε ἀπόγεια καὶ τὰ περίγεια δι ' ἐτῶν ρ μοῖραν α , τὴν δὲ |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
γινώσκειν ὅτι αὐτὸς ἐπεξηγεῖται τί ἐστιν ἄκνηστις διὰ τοῦ εἰπεῖν μέσα νῶτα , ἤτοι ἡ ῥάχις , ἢ τὰ μέσα | ||
ἡ ΓΔ : δεικτέον , ὅτι καὶ ἡ ΓΔ δύο μέσα δυναμένη ἐστίν . Ἐπεὶ γὰρ δύο μέσα δυναμένη ἐστὶν |
ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
δὲ τὸ Β , ὄψεις δὲ αἱ ΒΑ , ΒΓ ἀνακλώμεναι ἐπὶ τὰ Ε , Δ , ὁρώμενον δὲ ἔστω | ||
δὲ τὸ Β , ὄψεις δὲ αἱ ΒΓ , ΒΔ ἀνακλώμεναι ἐπὶ τὰ Ε , Κ . οὐκοῦν φαίνεται ἐκβληθεισῶν |
Ὅτι μὲν οὖν τῶν εʹ σχημάτων τούτων ἃ δὴ καὶ πολύεδρα καλεῖται τὸ πολυεδρότερον αἰεὶ μεῖζόν ἐστιν φανερὸν ἐκ τῶν | ||
πολὺ πλέον τούς τε κώνους καὶ κυλίνδρους καὶ τὰ καλούμενα πολύεδρα ] . ταῦτα δ ' ἐστὶν οὐ μόνον τὰ |
κἀν τῇ τῶν μερῶν τὰ μὲν μήκει ἡμίση δυνάμει μὲν τεταρτημόρια , στερεῷ δὲ ὀγδοημόρια , τὰ δὲ μήκει τρίτα | ||
δὲ Ἑρμοῦ περὶ παῖδας ἐπτοημένους . λέγομεν δὲ νῦν ἀπηλιωτικὰ τεταρτημόρια ἐπὶ μὲν τοῦ ἡλίου τὰ προηγούμενα τοῦ τε ἀνατέλλοντος |
Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
πολὺς τῶν τοῦ Νίγρου στρατιωτῶν γίνεται , ὡς τῶν μὲν ἀνατολικῶν εὐθέως θραῦσαι τὴν ἐλπίδα , τῶν δὲ Ἰλλυριῶν ἐπιρρῶσαι | ||
καθώς φησιν ὁ Παρθένιος : Κωρυκίων σεύμενος ἐξ ὀρέων , ἀνατολικῶν ὄντων . δύναται δὲ οὕτως καλεῖσθαι , καθ ' |
ἐζήτηται εἰ ὑπόκειται , τὰ δὲ ζητούμενα οὐκ αὐτόθεν ἐστὶ λήμματα , ἀλλὰ ὀφείλει διά τινος βεβαιωθῆναι . τὸ οὖν | ||
μὲν ἄδηλόν ἐστι τὸ συμπέρασμα , ἄδηλα ἔσται καὶ τὰ λήμματα , εἰ δὲ πρόδηλά ἐστι τὰ λήμματα , πρόδηλον |
χρήσιμον ἕκαστον τὸ γένος . ἐπὶ δὲ τὸ πλεῖστον αἱ κόλουροι καὶ φορμύνιοι καὶ δίφοροι καὶ Μεγαρικαὶ καὶ Λακωνικαὶ συμφέρουσιν | ||
ἐαρινὴν ἐν Κριῶι , τὴν δὲ μετοπωρινὴν ἐν Χηλαῖς . κόλουροι δὲ κέκληνται , διότι δοκοῦσιν ἡμῖν κεκολοῦσθαι ὥσπερ τὰς |
καὶ τὸν Ἥλιον τῆς ἐξόδου καὶ τὰ τούτου τετράγωνα καὶ διάμετρα , καὶ εἰ μὲν ἀγαθοποιοὶ εἶεν ἐν τούτοις ἡ | ||
δὲ καὶ καθ ' ἕκαστον ἔτος τὰ τετράγωνα καὶ τὰ διάμετρα σχήματα τῶν κακοποιῶν πρὸς τὸ λαχὸν ζῴδιον τὸν ἐνιαυτόν |
Ε ἡ ΕΛ , ἐφ ' ἧς δηλονότι διὰ τὰ προαποδεδειγμένα ἡ μέση τοῦ ἡλίου πάροδος θεωρηθήσεται . καὶ ἐπιζευχθείσης | ||
πρὸς τὸ ἀπὸ τῆς Δ . ἔσονται δὴ διὰ τὰ προαποδεδειγμένα αἱ Α , Δ ῥηταὶ δυνάμει μόνον σύμμετροι . |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
τε πόλος ἐξαίρεται ὁ παρ ' ἡμῖν , καὶ οἱ ὁρίζοντες μεταπίπτουσι , καὶ ὁ ἄξων οὐδενὸς ἔτι διάμετρος γίνεται | ||
προτιθέντες , ἐς δὲ τὸ ἑκατέροις που αἰεὶ ἡδονὴν ἔχον ὁρίζοντες , καὶ ἢ μετὰ ψήφου ἀδίκου καταγνώσεως ἢ χειρὶ |
ἐξουσίας , ἀνατολὰς , ἐπιτολὰς , δυνάμεις , βασιλείας , ὑψώματα καὶ λαμπηνὰς , ταπεινώσεις καὶ οἴκους καὶ τὸ μεγαλοδύναμον | ||
ζῳδιακοῦ μέρεσι κατά τε τοὺς καλουμένους οἴκους καὶ τρίγωνα καὶ ὑψώματα καὶ ὅρια καὶ τὰ τοιαῦτα . καὶ τὸ μὲν |
, στερεοῖς καὶ μεγάλοις ὀκτὼ τροχοῖς ὑπειλημμένον : τὰ γὰρ πάχη τῶν ἀψίδων ὑπῆρχε πηχῶν δυεῖν , σεσιδηρωμένα λεπίσιν ἰσχυραῖς | ||
: ἔχει δὲ καὶ διαπήγματα τέσσαρα καὶ περιπήγματα δύο ἕκαστα πάχη ἔχοντα δεκαδάκτυλα , τὰ δὲ πλάτη τριπάλαιστα . Διάπηγμα |
ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
αἰτήματα καλοῦνται ὡς αἰτούμενα καὶ χρῄζοντα ἀποδείξεως . Τὰ αὐτὰ ἀξιώματα καλοῦνται καὶ κοιναὶ ἔννοιαι , κοιναὶ μὲν ἔννοιαι , | ||
γεωμετρῶν καὶ τὰ τῶν ἀριθμητικῶν καὶ τὰ τῶν ἄλλων ἐπιστημῶν ἀξιώματα , περὶ ὧν ἁπάντων οὐχ ἕτερός τις , ἀλλ |
δὲ φωνὴν γυμνάζειν ἐν τοῖς δρόμοις καὶ ταῖς πρὸς τὰ σιμὰ ἀναβάσεσι διαλεγόμενον καὶ λόγους τινὰς ἢ στίχους ἅμα τῷ | ||
καὶ ἐμφράξεώς τις ὑπόνοια εἴη περὶ τὰ κυρτὰ ἢ τὰ σιμὰ , συνεψεῖν τότε κάλλιόν ἐστι καὶ σέλινον : μετὰ |
ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων ἡμίση ἐστὶ τὰ | ||
καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ παραλληλεπίπεδα πρίσματα ἰσοϋψῆ : τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ |
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ | ||
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα |
πρὸς τὸ ποιὰ εἶναι , τὰ δ ' αὐτὰ τὰ προηγούμενα . οὕτως καὶ ἀνθρώπου οὐ τὴν ὕλην δεῖ τιμᾶν | ||
διόπερ εἰ καὶ ὁ ἑλληνισμὸς διὰ δύο μά - λιστα προηγούμενα ἔτυχεν ἀποδοχῆς , τήν τε σαφήνειαν καὶ τὴν προσήνειαν |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
ἀκρατοῦς . ἔστι δὲ τὸ ἀληθές , ὅτι κατὰ τὰ ὑποκείμενα οὐ διαφέρουσι . καὶ ὁ ἐγκρατὴς γὰρ καὶ ὁ | ||
τὰ κινοῦντα τῶν κινουμένων . διότι φησὶ τὸ δὲ τὰ ὑποκείμενα μὴ εἶναι , ἃ ποιεῖ τὴν αἴσθησιν , καὶ |
ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ | ||
ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα |
, ᾗ ὑπερέχει ὁ κύλινδρος τοῦ τριπλασίου τοῦ κώνου . λελείφθω , καὶ ἔστω τὰ ΑΕ , ΕΒ , ΒΖ | ||
τοῦ ΒΓΔΕ κύκλου περιφερείας ὑπὸ τῆς ἴσης τῇ ΗΑʹ . λελείφθω καὶ ἔστω ἡ ΚΒ περιφέρεια . ἐλάσσων ἄρα καὶ |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
. Πρὸς γὰρ τοῦτο τὸ ἓν κλίμα καὶ αἱ κρικωταὶ σφαῖραι κατασκευάζονται καὶ αἱ στερεαί , τῶν ἀρκτικῶν μόνων μεταπιπτόντων | ||
μὴ , ἐπίδεσις μὲν οὐκ ἐπιτήδειον , διάτασις δὲ , σφαῖραι ποιηθεῖσαι , οἷαι πέδαις , ἡ μὲν παρὰ σφυρὸν |
ἑξῆς οὔτ ' ἐν τοῖς ἐλαχίστοις οὔτ ' ἐν τοῖς ἀνίσοις οὔτ ' ἐν τοῖς ἴσοις ἀεὶ ζητητέον διαστήμασιν , | ||
: δισχιδὴς δ ' οὗτος κατὰ τὴν ἔκφυσιν γίνεται τοὐπίπαν ἀνίσοις μέρεσι , καὶ διεξέρχεταί γε αὐτὸν μέσος ὁ τὸν |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
τοῦ ζῳδιακοῦ κατὰ τὰς δύσεις πρὸς μεσημβρίαν , ἐὰν τὰ συνδύνοντα ἄστρα ἀπὸ τῶν συνανατελλόντων ἀπέχῃ ἔλαττον ζῳδίου περιφερείας , | ||
κατὰ τὰς δύσεις ἐπὶ τὰ πρὸς ἄρκτους , ἐὰν τὰ συνδύνοντα ἀπὸ τῶν συνανατελλόντων ἄστρων ἀπέχῃ ἐλάττονα ἡμίσους ζῳδίου περιφέρειαν |
ἂν αὖ βουληθῶσιν ἀπ ' ἐσχάτων τῆς Ἑλλάδος ἐπ ' ἔσχατα ἀφικέσθαι , πάντες οὗτοι ὥσπερ κύκλου τόρνον τὰς Ἀθήνας | ||
μὴ ἄκρων ἑκατέρωθεν αὐτοῖς παρακειμένων , ἀλλ ' οὐδὲ τὰ ἔσχατα εἴη ἂν ἔσχατα μὴ πρώτων καὶ μέσων προηγουμένων . |
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
συμβαίνειν , σίνη πάθη ἐκζέματα ἐκβιάσματα ἐξανθήματα συγγενήματα σημεῖά τινα χαλάσματα : τὰ δὲ πρακτικὰ καὶ διανοητικὰ ἐξ ὑστέρου γίνεται | ||
ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' ἀλλήλων ὑπὸ λοβοὺς ὤτων ἄγεται , αἱ |
τὴν ἐναντίαν τούτωι πεποίηται περιφοράν , ἣν νῦν περιγράφει ὁ ζωιδιακός . ἔστι δὲ μυθῶδες τοῦτο καὶ ψεῦδος : τί | ||
τὴν ἐναντίαν τούτωι πεποίηται περιφοράν , ἣν νῦν περιγράφει ὁ ζωιδιακός . . , Οἰν . δὲ ὁ Χῖός φησι |
ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
ἐπὶ τρίτους καὶ ἐπὶ τετάρτους „ : ἐπὶ γὰρ τὰ ἀποτελέσματα καὶ ὡς ἂν ἔγγονα τῶν λογισμῶν στείχουσιν αἱ τιμωρίαι | ||
καὶ ἀσυνδέτου ὄντος τῷ ὡροσκόπῳ οὐχ ὁμοίως εὑρίσκομεν σύμφωνα τὰ ἀποτελέσματα . ὅταν οὖν μὴ εὕρωμεν καλῶς κείμενον τὸ τῆς |
οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ . διὰ δὲ τὰ προδεδειγμένα πάλιν καὶ ἡ ὑπὸ τοῦ ἐαρινοῦ ἰσημερινοῦ σημείου γινομένη | ||
γίνεται τὸ ΕΖΗ τρίπλευρον τῷ ΕΚΛ , ἐπεὶ διὰ τὰ προδεδειγμένα καὶ τὰς τρεῖς πλευρὰς ταῖς τρισὶ πλευραῖς ἴσας ἔχει |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |