πρίσματα ἰσοϋψῆ τῷ κυλίνδρῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κυλίνδρου , ἃ ἔσται ἐλάττονα τῆς ὑπεροχῆς , | ||
τριπλασίου τοῦ κώνου , καὶ ἔστω αὕτη ἡ ΖΑ τὰ ἀποτμήματα τοῦ κυλίνδρου . καὶ ἐπεὶ ὁ κῶνος ποδῶν ὑπόκειται |
παρὰ ναῦφιν ἐλευσόμεθ ' αὐτὰ κέλευθα : πολλοὺς γὰρ Τρώων καταλείψομεν , οὕς κεν Ἀχαιοὶ χαλκῷ δῃώσωσιν ἀμυνόμενοι περὶ νηῶν | ||
δίχα καὶ τὴν ἡμίσειαν αὐτῆς δίχα καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομεν περιφέρειαν ἐλάσσονα τῆς ΑΔ . λελείφθω , καὶ ἔστω |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
κυλίνδρου τμημάτων . τέμνοντες δὴ τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐφ ' ἑκάστου τῶν τριγώνων πρίσματα | ||
τοῦ κύκλου . τέμνοντες δὴ τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ |
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
, στερεοῖς καὶ μεγάλοις ὀκτὼ τροχοῖς ὑπειλημμένον : τὰ γὰρ πάχη τῶν ἀψίδων ὑπῆρχε πηχῶν δυεῖν , σεσιδηρωμένα λεπίσιν ἰσχυραῖς | ||
: ἔχει δὲ καὶ διαπήγματα τέσσαρα καὶ περιπήγματα δύο ἕκαστα πάχη ἔχοντα δεκαδάκτυλα , τὰ δὲ πλάτη τριπάλαιστα . Διάπηγμα |
ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων ἡμίση ἐστὶ τὰ | ||
καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ παραλληλεπίπεδα πρίσματα ἰσοϋψῆ : τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ |
Ὅτι μὲν οὖν τῶν εʹ σχημάτων τούτων ἃ δὴ καὶ πολύεδρα καλεῖται τὸ πολυεδρότερον αἰεὶ μεῖζόν ἐστιν φανερὸν ἐκ τῶν | ||
πολὺ πλέον τούς τε κώνους καὶ κυλίνδρους καὶ τὰ καλούμενα πολύεδρα ] . ταῦτα δ ' ἐστὶν οὐ μόνον τὰ |
μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
, οὐδὲν αἰσθητὸν διάφορον ποιούσῃ παρὰ τὰ ἐκ τῶν γραμμῶν συναγόμενα , ἵνα μὴ πλείοσι σελιδίοις χρήσηται . Εἰ γάρ | ||
ἐκ τοῦ αὐτοῦ χωριζόμενα δύο ἐστί , τὰ εἰς ταὐτὸ συναγόμενα καὶ ἀλλήλοις παρατεθειμένα οὐκ ἂν εἴη δύο . ἔχει |
καὶ παρθενών καὶ τὰ τοιαῦτα : ἔστι δὲ καὶ ἄλλα περιέχοντά τινα , οὐκ ἐξ αὐτῶν δὲ καλούμενα , ὡς | ||
, οἰκεῖται δ ' ἐν ὁμαλῷ , κύκλῳ δὲ ὄρη περιέχοντά ἐστιν οὐ μεγάλα . Κλειτορίοις δὲ ἱερὰ τὰ ἐπιφανέστατα |
νδ λ γενόμενα ποιεῖ # γ νδ λ . ταῦτα προστεθέντα τοῖς # ε μ λ γίνεται # θ λε | ||
ὅστις χρηστὸς ἦν ἡδύς τ ' ἀνήρ , τὰ σῦκα προστεθέντα δηλοῦν τὸν τρόπον : νυνὶ δὲ πρὸς μοχθηρὸν ἡδὺ |
οὐκ ἀδύνατον , τὴν σελήνην ἀερομιγὲς ἔχουσαν τὸ οἰκεῖον σῶμα ἰσοταχῆ τὴν προαιρετικὴν πορείαν ἔχειν τοῖς ἐκ λεπτοῦ καὶ κουφοτάτου | ||
, ὅπερ ἐστὶν ἐναργῶς ἄτοπον . τὰ γὰρ ἀντικινούμενα ἀλλήλοις ἰσοταχῆ διπλασίαν ἀφίσταται διάστασιν ἐν τῷ αὐτῷ χρόνῳ , ἐν |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
καὶ συναρμόσας ὡς κάλλιστα διαθείη , αὐλοὺς ἐναρμόσας ἐς τὰ τρυπήματα , καὶ ἐγχέοι ἡσυχῇ ἐς ἓν τῶν χαλκείων ὕδωρ | ||
τι καὶ ὀδοντισμὸς εἶδος αὐλήσεως . καὶ τέως μὲν τέτταρα τρυπήματα εἶχεν ὁ αὐλός : πολύτρητον δ ' αὐτὸν ἐποίησε |
δὲ καὶ τῆς ἀσπίδος πτύχες τὰ διάφορα ἐπ ' ἀλλήλοις ἐλάσματα . πτωχός ὁ ἐπαίτης , παρὰ τὸ πτώσσειν , | ||
περὶ τὴν τῶν [ ὅπλων καὶ ] ἀμυντηρίων κατασκευήν : ἐλάσματα γὰρ σιδήρου κατακρύπτουσιν εἰς τὴν γῆν , καὶ ταῦτα |
, πάντοτε καθολικῶς τριπλασίαζε τὴν διάμετρον , καὶ τὰ συναχθέντα μέριζε παρὰ τὴν ὀνομασίαν τῶν πολυγώνων , καὶ ἕξεις τὴν | ||
, ἐπειδὴ τὴν τοῦ εἰκοσαέδρου γωνίαν περιέχουσι πέντε τρίγωνα , μέριζε παρὰ τὰ πέντε : γίνονται δώδεκα γωνίαι τοῦ εἰκοσαέδρου |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
τὸ δωδέκατον αὐτῶν , ἀνθ ' οὗ ὁ ἥλιος ἔγγιστα ἐπικινεῖται , σκεψόμεθα , ἐν πόσαις ὥραις ἰσημεριναῖς ἡ σελήνη | ||
πάλιν τὸ δωδέκατον αὐτῶν , ἀνθ ' οὗ ὁ ἥλιος ἐπικινεῖται , καὶ τὰ συναχθέντα ἀναλύσομεν εἰς ὥρας ἰσημερινὰς ἐκ |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
ἀεὶ κούφιζε τὸ γʹʹ : λοιπὰ υπʹ : ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται | ||
ἐπὶ τὰ ιβʹ τοῦ πάχους γίνονται ͵γωμʹ : ὧν τὸ ρϘβʹʹ γίνεται κʹ : τοσούτων ποδῶν στερεῶν τὸ ξύλον . |
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , | ||
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , |
ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
περιγραφαῖς τοῦ σώματος εὐρύθμους . καὶ τὰ μὲν τῆς ἀκοῆς τρήματα πολὺ τῶν παρ ' ἡμῖν ἔχειν εὐρυχωρέστερα , καὶ | ||
μὲν ἐμπροσθίοις , δυσὶ δ ' ὀπισθίοις . τὰ δὲ τρήματα ταῦτα γέγονε πρὸς κάλου ἔνδεσιν , ὡς ἐν τοῖς |
κἀν τῇ τῶν μερῶν τὰ μὲν μήκει ἡμίση δυνάμει μὲν τεταρτημόρια , στερεῷ δὲ ὀγδοημόρια , τὰ δὲ μήκει τρίτα | ||
δὲ Ἑρμοῦ περὶ παῖδας ἐπτοημένους . λέγομεν δὲ νῦν ἀπηλιωτικὰ τεταρτημόρια ἐπὶ μὲν τοῦ ἡλίου τὰ προηγούμενα τοῦ τε ἀνατέλλοντος |
εἰ γὰρ θέλομεν δύο ἐπογδόους εὑρεῖν , λαμβάνομεν τὸν δεύτερον ὀκταπλάσιον : τίς δὲ ὁ δεύτερος ; ὁ ξδ . | ||
τὴν πόλιν . πατούμενοι ] ὑβριζόμενοι , θλιβόμενοι . Γ ὀκταπλάσιον χέζομεν : πολλῷ πλείονα , ἵν ' ᾖ τὸ |
καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
μέχρι τῆς περιφερείας οὖσα τοῦ ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , | ||
δέ πως ἢ λελοιφωμένος ἐκ τῶν ἐφ ' ἑκάτερα τοῦ τυμπάνου μερῶν ] . ἐὰν ἄρα τὰ ἐκ τοῦ βάρους |
τῶν περιφερειῶν αὐτῶν χωρίον , ὃ δὴ καλοῦσιν ἄρβηλον , ἐγγεγράφθωσαν κύκλοι ἐφαπτόμενοι τῶν τε ἡμικυκλίων καὶ ἀλλήλων ὁσοιδηποτοῦν , | ||
, προγραφέντος τοῦδε : Ἔστω κύκλος ὁ ΑΒΓ , καὶ ἐγγεγράφθωσαν εἰς τὸν ΑΒΓ κύκλον πενταγώνου ἰσοπλεύρου πλευραὶ αἱ ΑΒ |
μεγάλην λευκὴν ἐκ τοῦ πεδίου ἀναβεβηκυῖαν . ἡ δὲ πέτρα ὑψηλοτέρα ἦν τῶν ὀρέων , τετράγωνος δέ , ὥστε δύνασθαι | ||
κεῖσθαι τοῦτ ' ἔστιν . εἰ οὖν οὔτε ταπεινοτέρα οὔτε ὑψηλοτέρα ἐστὶν ἡ ὄψις τῆς ἐν τῷ ἐπιπέδῳ γεγραμμένης περιφερείας |
εἰ δὲ μὴ ὑπακούσῃ δοῦναι τὸν λίθον , λαβὼν τμητήριον σχίσον τὴν κορυφὴν αὐτοῦ καὶ εὑρήσεις τὸν λίθον ἐνεχθέντα ἐπὶ | ||
δημοσίου , πλείω γὰρ ἰσχύουσιν αὐταί . Ταύτας οὖν ἄρας σχίσον καὶ ἆρον τοὺς λίθους . Εἰσὶ δὲ ἀναγκαῖοι πρὸς |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
ὑπὸ γῆν κέντρῳ πρὸς μεσημβρίαν . δηλοῦσι δὲ καὶ τὰ κέντρα τὴν ἔξοδον δι ' ἧς ἀναχωρήσουσι πύλης οἱ φεύγοντες | ||
δὲ Ὑδροχόος παραποταμίους καὶ ἑλώδεις . Τινὲς δὲ καὶ τὰ κέντρα ἐμέρισαν οὕτως : τὸ μὲν δῦνον τῷ φεύγοντι , |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
: καὶ πικρία στόματος : αὐτοί τε τοὺς ὀφθαλμοὺς ταυρηδὸν σχηματίζοντες , πᾶσά τε ἀπειλὴ περὶ τὸ πρόσωπον , τάς | ||
Καὶ τοῖς σχήμασι δὲ προσχρῶνται δυνάμεις ἔχουσι , καὶ αὑτοὺς σχηματίζοντες ὡδὶ ἐπάγουσιν ἐπ ' αὐτοὺς ἀψοφητὶ δυνάμεις ἐν ἑνὶ |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
, ἤγουν τὰ μέσα τῶν εἰρημένων συρίγγων , εἰς ἃς ἐντίθενται τὰ τοῦ ἄξονος ἄκρα , πλῆμναι δὲ καλούμεναι διὰ | ||
ὀποὶ ϲφοδροτέραν ἔχοντεϲ δύναμιν εἰϲ μὲν τὸ τρῆμα τῶν ὀδόντων ἐντίθενται , τοῦ δὲ ἄλλου ϲώματοϲ ἐὰν ἅψωνται , ἐπικαίουϲιν |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
ἥ γε μὴν ἐνάτη μετ ' αὐτὰς κρίνουσα , καὶ τριγωνικὴν πλευρὰν ἀποσώζουσα , διὰ τοιαύτην ἂν μᾶλλον ῥηθείη δύναμιν | ||
ὄντα καὶ γόνιμα ὅ τε Τοξότης καὶ οἱ Ἰχθύες κατὰ τριγωνικὴν πρὸς τὰ φῶτα διάστασιν , ἥτις ἐστὶ συμφώνου καὶ |
νόμος θεῖος ὤν , καθ ' ὃν τὰ προσήκοντα καὶ ἐπιβάλλοντα ἑκάστοις ἀπενεμήθη . ταύτης τῆς πόλεως καὶ πολιτείας ἔδει | ||
οὖν πρώτη τῆς πραγματείας βίβλος , Κάσσιε Μάξιμε , τὸν ἐπιβάλλοντα λόγον ἀποχρώντως καὶ ὡς μήτε ἐνδεῖν τι τῶν ἀναγκαίων |
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
τε πόλος ἐξαίρεται ὁ παρ ' ἡμῖν , καὶ οἱ ὁρίζοντες μεταπίπτουσι , καὶ ὁ ἄξων οὐδενὸς ἔτι διάμετρος γίνεται | ||
προτιθέντες , ἐς δὲ τὸ ἑκατέροις που αἰεὶ ἡδονὴν ἔχον ὁρίζοντες , καὶ ἢ μετὰ ψήφου ἀδίκου καταγνώσεως ἢ χειρὶ |
εἰς ἀδύνατον ἀπαγωγῆς : διὰ ταύτης γὰρ φιλεῖ δείκνυσθαι τὰ ἀντίστροφα τῶν θεωρημάτων καὶ οὕτω φέρεσθαι . ἐν δέ γε | ||
τοῦ πρώτου ἐπὶ τὸ ἔσχατον ἔρχῃ , ἵνα τὰ ἀλλήλοις ἀντίστροφα ᾖ μετ ' ἀλλήλων . ταύτῃ γὰρ κελεύει τὸ |
τῆϲ κόρηϲ διήκοντα καὶ διὰ τοῦτο παραποδίζοντα τὸ ὁρᾶν , ἀφαιρούμενα ἐλευθεροῖ μὲν τὸν ὀφθαλμὸν τῶν ῥευματιϲμῶν . ἡ δὲ | ||
τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
ἄπειρος κοχλίας . Ὁ μὲν οὖν ἄξων ὁ ἐν τῷ περιτροχίῳ κατασκευάζεται οὕτως : ξύλον δεῖ λαβεῖν εὔτονον τετράγωνον καὶ | ||
καὶ μοχλοῦ καὶ κοχλίου καὶ πολυσπάστου καὶ ἄξονος ἐν τῷ περιτροχίῳ , δι ' ὧν τὸ δοθὲν βάρος τῇ δοθείσῃ |
τῆς κοτυληδόνος πόας , ὑπόκοιλα δέ . Ταῦτα οὖν τὰ στόματα τῶν εἰς τὴν ἐντὸς εὐρυχωρίαν τῆς μήτρας διασπειρομένων ἀγγείων | ||
φῦσαι , αἳ ἐπειδὰν μύσωσι τὰ δεκτικὰ ἑαυτῶν τοῦ πνεύματος στόματα , τότε ἡμεῖς οὐκέτι ὧδέ ἐσμεν , ἀλλ ' |
τῶν λοιπῶν συνάπτει . ὡσαύτως δὲ καὶ τὰ τοῦ ἐπιπέδου μόρια θέσιν ἔχει τινά : ὁμοίως γὰρ ἂν ἀποδοθείη ἕκαστον | ||
οἳ δὲ καὶ ἄλλας τινὰς προσαγαγόντες τομὰς πολλὰ τὰ πρῶτα μόρια τῆς λέξεως ἐποίησαν : ὑπὲρ ὧν οὐ μικρὸς ἂν |
γὰρ πλέον ἔσθ ' ὑπὸ γαῖαν : τοὺς δὲ μέσους τέμνουσι δύω κύκλοι ἄξονος αὐτοῦ ἄκρης ἀρχόμενοι κορυφῆς : αὐτοί | ||
τῆς γραμμῆς τεταγμένως ἀχθεῖσαι ἐπὶ τὰς συζυγεῖς διαμέτρους ὁμοίως αὐτὰς τέμνουσι . τοιούτων δὲ γραμμῶν ὑφισταμένων καὶ ἐν ταῖς πλαγίαις |
αὐτῆς εἴδει ὁμοίῳ τῷ ΒΗ τῷ παραβληθέντι παρὰ τὴν ἑτέραν ἡμίσειαν τῆς ΑΒ , καὶ ἑξῆς τὸ θεώρημα . τὸ | ||
κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς δυτικῆς μοίρας : ὅπου δ ' |
ἀναγκαῖον . ὥσπερ γὰρ ἐπὶ τῶν καθόλου συζυγιῶν οἱ τὴν ἐλάττονα ἔχοντες ἀναγκαίαν οὐ συνῆγον ἀναγκαῖον , οὕτως καὶ ἐπὶ | ||
συμπέρασμα , καὶ πάλιν ἡ ἀντίφασις ἀκολουθήσει , εἴτε τὴν ἐλάττονα εἰς ὑπάρχουσαν μεταλάβωμεν , γίνεται ὁ συλλογισμὸς ἐκ δύο |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων . ὁ μὲν γὰρ ἐφεξῆς | ||
τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιεχόμενα μάθοι τις ἂν καὶ οὕτως . Πᾶσαν στερεὰν |
καὶ τετάρτης : καμφθέντος γὰρ τοῦ ἀγκῶνος , ἐπὶ πλεῖστον ἀσύμπτωτα μένει τὰ χείλη . Εἰ μὲν διὰ σφίγξιν βιαιοτέραν | ||
οἱ υΗΩΧ , ΦΘΨ ἐφαπτόμενοι τοῦ τυΦ κύκλου , ὥστε ἀσύμπτωτα εἶναι τὰ ἀπὸ τῶν υ , Φ ἡμικύκλια ὡς |
ἐφ ' ἑκάστου τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ τριγώνων πυραμίδες τὴν αὐτὴν κορυφὴν ἔχουσαι τῷ κώνῳ : | ||
ἔστω τὰ ἐπὶ τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ . λοιπὸν ἄρα τὸ πρίσμα , οὗ βάσις μέν |
τὰ εʹ , οὕτως τὰ εʹ πρὸς τὰ γʹ καὶ ηʹʹ : ὡς δὲ τὰ εʹ πρὸς τὰ γʹ καὶ | ||
ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται ιβʹ : ὡς εἶναι τὸ ξύλον ποδῶν στερεῶν |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
κατὰ τοὺς τῶν ἡρμοσμένων καὶ συμφώ - νων φθόγγων λόγους διεστῶτα τὰ οὐράνια τῇ ῥύμῃ καὶ τῷ τάχει τῆς φορᾶς | ||
μετέχον τῆς ἰδέας , σημαινόμενον ἐκτίθενται καὶ κατὰ πολὺ ἀλλήλων διεστῶτα καὶ μηδεμίαν ἔχοντα κοινωνίαν , οἶόν τι καὶ ἐπὶ |
ἄγειν ἀνάλογος : θέμα γὰρ ἴδιόν ἐστιν ὀξύτονον , οὐχὶ ἔγκλιμα τῆς σφῶιν . ποῖον γὰρ ἄλλο μόριον βαρυνόμενον δύναται | ||
τοῖς περὶ τὴν Ἑλλάδα τόποις τετηρημένων , κατὰ δὲ τὸ ἔγκλιμα τῶν τόπων τούτων διημαρτήκασι . Παραπέμψαντες οὖν τοῦτο τὸ |
ἀναγεγράφθω κύκλος οὗ ἡ περίμετρος λγ : γίνεται αὐτοῦ τὸ ἐμβαδὸν πϚ ∠ ʹ ηʹ . καὶ ὁμοίως ἀφαιρῶ τὰ | ||
το - μέως δοθέντος , ἀφέλωμεν τὸ τοῦ ΑΓΘ τριγώνου ἐμβαδὸν δοθέν , ἕξομεν λοιπὸν τὸ περιεχόμενον τμῆμα ὑπό τε |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ γίνονται κεʹ : ὁμοῦ ρξθʹ : ὧν πλευρὰ τετράγωνος γίνεται ιγʹ : τοσούτων ἔσται | ||
: ὁμοῦ σνϚ . Καὶ αὖθις ἐννεακαιδεκάκις ιθ , τξα ρξθʹ , καὶ τρὶς ιγ , λθ : ὁμοῦ υ |
ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
: οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
ἡ παραγωγὴ οὐ παραδέχεται : προείρηται δὲ καὶ ἐν τοῖς ἐπάνω . καὶ ἐπὶ πληθυντικῶν , ἡμῶν ἡμέτερος , ὑμῶν | ||
θέλῃ πιεῖν ἐκ τοῦ παρακειμένου ὕδατος , πίπτει ἡ πέτρα ἐπάνω αὐτοῦ καὶ τιμωρεῖται αὐτόν . ἐκ τούτου φησὶν ὅτι |
καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
' εἶδος , τὸ πλάτος λέγω . ἰσόπηχυς : ἴση πήχυος , ἀντὶ τοῦ ἴση . Χροιῇ : τὴν ὄψιν | ||
ἐπὶ τῆς γενικῆς . Καὶ λέγει ὁ Ἡρωδιανός , ὅτι πήχυος ἦν καὶ πελέκυος κατὰ τὴν ἀκολουθίαν , ὥσπερ βότρυς |
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
. καὶ πάντως οἱ ἐπίσημοι ἀστέρες ἐν ζῳδίων καὶ τὰ παρανατέλλοντα δώδεκα ζῴδιά τε τὰ μὲν προσανατέλλουσι , τὰ δὲ | ||
' ἄλλα τῶν κακώσεων τῇ Ἀφροδίτῃ νέμει . Τὰ δὲ παρανατέλλοντα τῷ Κριῷ ζῴδια ταῦτα : Κηφεύς τε Κασσιέπεια , |
τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν | ||
, τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς |
, εὐτόνως | καὶ πηδᾶν καὶ βαστάζειν τὰ ὑπὲρ δύναμιν βάρη , ἀφεψήμασι δὲ διουρητικοῖς χρῆσθαι τοῖς δυναμένοις καὶ καταμήνια | ||
τὸ κέντρον ὁρμᾷ , ὅθεν πρὸς ὀρθὰς γωνίας πανταχόθεν τὰ βάρη καταφέρεται , αἱ δὲ ὀρθαὶ γωνίαι ἀπαρέγκλιτοί εἰσι . |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
ταῖς πέτραις , ἅ φασιν οἱ πολλοὶ πεταλίδας , τὰ κεκολλημένα ὄστρεα τοῖς λεπάδεσσιν . λεπάδεσσι : καὶ κολλιδίοις , | ||
διαίρεσιν τοῦ σχήματος εὑρεθῇ τὰ πτερύγια πρὸς τὰ παρακείμενα σαρκώδη κεκολλημένα , ὑποδέρειν χρὴ ἐξ ἑκατέρου μέρους καὶ τοῖς μοτοῖς |
δὲ τῆς διακριτικῆς ἦν αὐτόθι , μεθιῶμεν σύμπαντα , δίχα τέμνοντες τὴν ταλασιουργίαν διακριτικῷ τε καὶ συγκριτικῷ τμήματι . Διῃρήσθω | ||
εἰσι μὲν δύο ἀπὸ βορρᾶ ἐπὶ νότον διὰ τῶν πόλων τέμνοντες τὴν σφαῖραν καὶ τοὺς ἐν αὐτῆι πάντας ἄλλους κύκλους |
τῷ γὰρ μὴ πάσας ἐξηγήσασθαι | , ἔτι καὶ τὰ συντάγματα , ἐν οἷς αὐτῶν ἑκάστη κατεγέγραπτο , σιωπῆς ἱκανῆς | ||
ταῖς τόλμαις καὶ ταῖς ἐμπειρίαις ἀποβαίνουσιν . ἔστι δὲ ἕτερα συντάγματα τῆς πολιτείας τρία , τό τε τῶν νομέων καὶ |
. καὶ ἔστω ἀναβιβάζων μὲν σύνδεσμος τὸ Γ σημεῖον , καταβιβάζων δὲ τὸ Α : βόρειον δὲ πέρας τὸ Ζ | ||
Ἐκδημίαν δίδωσιν ἀγαθὴν πλέον Συσχηματισθεὶς καλοποιοῖς ἀστέρων , Κάκωσιν ὥσπερ καταβιβάζων νέμει Λύπην τε δεινὴν ἐκ μακρᾶς ἐκδημίας . Ἀναβιβάζων |
, δῆλον ποιήσουσι τῷ κυνηγέτῃ σὺν ταῖς οὐραῖς τὰ σώματα ὅλα συνεπικραδαίνουσαι , πολεμικῶς ἐπιφερόμεναι , φιλονίκως παραθέουσαι , συντρέχουσαι | ||
κοινὸν καὶ πάσῃ χώρᾳ συμβαῖνον , τὸ μεταβάλλεσθαι καὶ τὰ ὅλα καὶ τὰ καθ ' ἕκαστα παρὰ τὰς τῶν ἐπικρατούντων |
ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου | ||
δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας |
κεῖται μεταξὺ τοῦ ἀνταρκτικοῦ καὶ τοῦ ἰσημερινοῦ ἐναντίος τῶι θερινῶι τροπικῶι ἴσος αὐτῶι ὑπάρχων . ἐφάπτεται δὲ αὐτοῦ ὁ ζωιδιακὸς | ||
δὲ νύκτα ὡρῶν ιεʹ κατὰ τὸν αὐτὸν λόγον τῶι θερινῶι τροπικῶι δῆλον . . ὁ δὲ ἰσημερινὸς μεταξὺ τῶν πέντε |
ὑπὸ τοῦ Δ ὄμματος καὶ τῶν ΔΑ , ΔΒ ὄψεων ἐμπεριλαμβάνεται τὸ ΑΒΓ μέρος τοῦ κώνου , καί ἐστιν ἔλαττον | ||
ἐπεζεύχθωσαν αἱ πλευραὶ αἱ ΖΓ , ΓΗ . πάλιν οὖν ἐμπεριλαμβάνεται ὑπὸ τοῦ Ε ὄμματος καὶ τῶν ΕΖ , ΕΗ |
τοῖς βωμοῖς , δεῖν λέγοντες τὸν τὰ ὅλα συνέχοντα καὶ διακρατοῦντα θεὸν καὶ ἀεὶ περιπολοῦντα τὸν κόσμον ἀλλότριον εἶναι μέθης | ||
, κινδυνῶδέϲ ἐϲτι τὸ ϲημεῖον : ὑγραίνειν δὲ αὐτὴν χρὴ διακρατοῦντα τῷ ϲτόματι λινοϲπέρμου ἀφέψημα : βέλτιον δὲ ἐνεργεῖ μυξῶν |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
τὴν δὲ νύκτα ὡρῶν ιεʹ κατὰ τὸν αὐτὸν λόγον τῶι θερινῶι τροπικῶι δῆλον . . ὁ δὲ ἰσημερινὸς μεταξὺ τῶν | ||
ἀκρότατον . ἴσος δὲ ὢν οὗτος ὁ χειμερινὸς τροπικὸς τῶι θερινῶι τροπικῶι ἐτμήθη εἰς μέρη ηʹ καθάπερ ἐκεῖνος . τοὐναντίον |
εἰ μὴ τὴν ἀλεξίκακον τῷ κρυμῷ θάλψιν ἐκ ῥιζῶν τοῖς πέρασιν ἐσπᾶτο καὶ ἠρύετο ; πόθεν δὲ καὶ τὰ φυλλορροοῦντα | ||
ἐπιζευχθείσης ὁμοίως τῆς ὑπὸ δύο πλευρὰς ὑποτεινούσης εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς |
ἐζήτηται εἰ ὑπόκειται , τὰ δὲ ζητούμενα οὐκ αὐτόθεν ἐστὶ λήμματα , ἀλλὰ ὀφείλει διά τινος βεβαιωθῆναι . τὸ οὖν | ||
μὲν ἄδηλόν ἐστι τὸ συμπέρασμα , ἄδηλα ἔσται καὶ τὰ λήμματα , εἰ δὲ πρόδηλά ἐστι τὰ λήμματα , πρόδηλον |
κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |