ὑπὸ τοῦ Δ ὄμματος καὶ τῶν ΔΑ , ΔΒ ὄψεων ἐμπεριλαμβάνεται τὸ ΑΒΓ μέρος τοῦ κώνου , καί ἐστιν ἔλαττον | ||
ἐπεζεύχθωσαν αἱ πλευραὶ αἱ ΖΓ , ΓΗ . πάλιν οὖν ἐμπεριλαμβάνεται ὑπὸ τοῦ Ε ὄμματος καὶ τῶν ΕΖ , ΕΗ |
Κατὰ δὲ τὰ Σφαιρικὰ βορρόθεν συνανατέλλει ὁ ἀριστερὸς βραχίων τοῦ Ἀρκτοφύλακος , νοτόθεν πρύμνα Ἀργοῦς καὶ τοῦ Κυνὸς τὸ λοιπὸν | ||
Ἑρμοῦ , Διός , Πανός , Ἀφροδίτης . βορρόθεν δύνει Ἀρκτοφύλακος κεφαλὴ καὶ ὁ Ἐνγόνασι καὶ Ἀετὸς καὶ Στεφάνου τὸ |
ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [ | ||
ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ |
κύκλον . τὸ γὰρ τεταρτημόριον οἰκούμενον τῆς γαίας πρὸς τῶν βορείων σύγκειται μερῶν , καὶ τοὺς οἰκοῦντας τοῦτον τὸν νοτιώτερον | ||
χώραν κατὰ θίξιν καὶ τὸν Ἀπηλιωτικὸν ὠκεανόν , ἐκ τῶν βορείων αὐτοῦ μερῶν τὴν Σκυθικὴν χώραν : ἐκ δὲ τῶν |
Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ | ||
τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται |
. . . . . . . . . . Ἰχθύων κδ Ϛʹ βο ιζ ∠ ʹ δʹ ὁ ἐπὶ | ||
. . . . . . . . . . Ἰχθύων κϚ γʹ βο κζ δʹ ὁ ἐν τῷ ἀριστερῷ |
καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
. ἀστέρας δὲ ἔχει * * * . κατὰ τὰ Σφαιρικὰ βορρόθεν ἀνατέλλει Κασσιέπεια καὶ τὰ δεξιὰ μέρη τοῦ Ἵππου | ||
τὸν Δελφῖνα . . . . , Κατὰ δὲ τὰ Σφαιρικὰ βορρόθεν ἀνατέλλει Ἀνδρομέδας μέρη τινὰ τῶν δεξιῶν καὶ τοῦ |
φέρει τόδε τὸ ζῴδιον . Τοὺς δὲ Διδύμους δίεισιν Ἥλιος ἰσοτάχως ἐκ τοῦ Παχὼν τὰς δεκαεπτὰ μέχρι τῶν δεκαπέντε Παϋνὶ | ||
φέρει τόδε τὸ ζῴδιον . Τοὺς δὲ Διδύμους δίεισιν Ἥλιος ἰσοτάχως ἐκ τοῦ Παχὼν τὰς δεκαεπτὰ μέχρι τῶν δεκαπέντε Παϋνὶ |
κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
ἐκείνοις ὑψηλὰ γίνεται , καὶ ἔμπαλιν , ὡς ἀπὸ τῶν νοτίων ἐπὶ τὰ βόρεια τοῦ κόσμου ἐκείνοις ἐγκεκλιμένου . Ἀπὸ | ||
ἐν τῷ ἑπομένῳ ὤμῳ τοῦ Ὑδροχόου . πάλιν τῶν δύο νοτίων Ἰχθύων οἱ ἐν τοῖς στόμασι καὶ τοῦ ἐν τῷ |
, τὰ ὦτα τέτακται . τούτων δὲ τὰ μὲν ἀναπεπταμένα πτερυγώματα , τὰ δὲ ἀνακεκλασμένα εἰς τοὐπίσω ἐκ τῶν ἔμπροσθεν | ||
ὃν ὑμνεῖ ὁ οὐρανὸς τῶν οὐρανῶν , ὃν ὑμνοῦσι τὰ πτερυγώματα τοῦ χερουβίμ . ὁρκίζω σε τὸν περιθέντα ὄρη τῇ |
τοῦ Κηφέως γράφεσθαι αὐτόν , καὶ διὰ τῆς καμπῆς τοῦ Ὄφεως , καὶ παρὰ τὴν οὐρὰν τῆς Μικρᾶς Ἄρκτου . | ||
μέσον αὐτοῦ πρὸς τῇ καμπῇ „ τοῦ διὰ τῶν Ἄρκτων Ὄφεως . ” ὁ δὲ Ἄρατός φησιν : οἱ στάθμη |
Ϛʹ τοῦ γʹ διπλάσια , τὰ δὲ ηʹ τοῦ Ϛʹ ἐπίτριτα : εἰς δ ' οὖν τὸ παρὸν κατὰ τοὺς | ||
καὶ τῶν ἐννέα : τῶν γὰρ ἓξ τὰ μὲν ὀκτὼ ἐπίτριτα , τὰ δ ' ἐννέα ἡμιόλια . τὸ μὲν |
ὑπάρχειν , ὑφ ' ᾧ πυρώδης στεφάνη : καὶ τὸ μεσαίτατον πασῶν περὶ ὃ πάλιν πυρώδης : τῶν δὲ συμμιγῶν | ||
τὸν ὁρίζοντα καὶ νυχθήμερον ἀποτελεῖ : τὸ ἥμισυ ἄρα καὶ μεσαίτατον τῆς γῆς ιβʹ ὡρῶν ἔχει διάστημα . Ἐπὶ δὲ |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
περὶ μὲν τοῦ Δράκοντος οὕτως γράφει : Μεταξὺ δὲ τῶν Ἄρκτων ἐστὶν ἡ τοῦ Ὄφεως οὐρά , τὸν ἄκρον ἀστέρα | ||
τὸ δὲ μέσον αὐτοῦ πρὸς τῇ καμπῇ τοῦ διὰ τῶν Ἄρκτων Ὄφεως . Πάλιν ἐπὶ τῆς Κασσιεπείας ὁ μὲν Εὔδοξος |
: „ εἶτα διὰ τοῦ Τοξότου πρὸς τὰ μέσα τοῦ Αἰγόκερω ” συνάπτει . „ ὁ δὲ Ἄρατός φησιν οὕτως | ||
πάθους ἢ πυρετῶν ἐπιφορᾶς . οἷον ἐπεὶ οἱ Δίδυμοι ὑπὸ Αἰγόκερω ἀναιροῦνται καὶ Ὑδροχόος ὑπὸ τῆς Παρθένου , ὅπερ ἐστὶν |
ἀριθμούς . Γεγονέτω , καὶ ὁ διπλάσιος τοῦ πλήθους αὐτῶν μετρείσθω πρότερον ὑπὸ τετράδος , καὶ ὑποκείσθω ὑπὸ ἕκαστον τῶν | ||
, σύνθετός ἐστιν . μετρηθήσεται ἄρα ὑπὸ ἀριθμοῦ τινος . μετρείσθω ὑπὸ τοῦ Γ . ὁ Γ ἄρα τοῦ Β |
προνοίας καὶ θεῶν . οἱ δὲ Ἐπικούρειοί φασι μὴ εἶναι ζώιδια , ἐπειδὴ ὑπὸ σωμάτων συνέχεται , οἱ δὲ Στωϊκοὶ | ||
δυνατὸν Ἀρατείαν σφαῖραν κατασκευάσαι οὕτως , ὥστε τὰ ἐν αὐτῆι ζώιδια πρὸς ἄλληλά τε καὶ πρὸς τοὺς ἐν τῆι σφαίραι |
πρὸ τῶν ποδῶν τῆς παρθένου : ὡς Κριτόλαος ἐν τετάρτῃ Φαινομένων . : , , , , , , , | ||
ταῖς ἰδίαις Ἐπιστολαῖς Ἄρατος . . . Τὴν δὲ τῶν Φαινομένων ὑπόθεσιν παρέβαλεν αὐτῷ ὁ Ἀντίγονος δοὺς τὸ Εὐδόξου σύγγραμμα |
νότια : καὶ τὰ μὲν ἀφανῆ , τὰ δ ' ἀειφανῆ γένοιτ ' ἂν αὐτῷ τῶν περὶ τοὺς πόλους ἄστρων | ||
λόγον καὶ ἕτερα μέρη πρὸς τῶι Καρκίνωι γίνοιτ ' ἂν ἀειφανῆ τοῦ ζωιδιακοῦ . καὶ οὕτως , ἐφ ' ὅσον |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
περὶ τὴν ηʹ μοῖραν τῶν Χηλῶν κεῖται , τὸ δὲ Θυμιατήριον ὑπὸ τοῖς ἐσχάτοις μέρεσι τοῦ Σκορπίου , ὡς καὶ | ||
Θηρίον , ὃ κρατεῖ ὁ Κένταυρος καθ ' Ἵππαρχον , Θυμιατήριον , Νότιος Ἰχθύς , Κῆτος , Ὕδωρ τὸ ἀπὸ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
. . . Ἰχθύων κγ # βο λβ δʹ ὁ βόρειος αὐτῶν . . . . . . . . | ||
, ἄξων δὲ τῆς σφαίρας ὁ ΒΓ , πόλος δὲ βόρειος ἔστω τὸ Γ , οἴκησις δὲ πρὸς τῷ Ζ |
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων | ||
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ |
παρὰ δὲ τὸ αὐτὸ χαίρω χάρτης , χωρητικὸς ὢν τῶν ἐγγραφομένων . Φιλόξενος ἐν τῷ Περὶ μονοσυλλάβων ῥημάτων . . | ||
ἑξαγώνου καὶ τὴν τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων . Ἔστω κύκλος ὁ ΑΒΓΔΕ , καὶ εἰς τὸν |
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου | ||
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ |
τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν | ||
ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν |
, πάντοτε καθολικῶς τριπλασίαζε τὴν διάμετρον , καὶ τὰ συναχθέντα μέριζε παρὰ τὴν ὀνομασίαν τῶν πολυγώνων , καὶ ἕξεις τὴν | ||
, ἐπειδὴ τὴν τοῦ εἰκοσαέδρου γωνίαν περιέχουσι πέντε τρίγωνα , μέριζε παρὰ τὰ πέντε : γίνονται δώδεκα γωνίαι τοῦ εἰκοσαέδρου |
διεζῶσθαι κύκλοις , ὧν ὀνόματα εἶναι τάδε : ἀρκτικόν , ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , | ||
δὲ τόν τε ἀρκτικὸν καὶ τὸν θερινὸν τροπικὸν καὶ τὸν ἀνταρκτικόν . ἀρκτικὸς δ ' ὁ αὐτὸς καὶ ἀεὶ φανερὸς |
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
. διέχει δὲ τοῦ στόματος τῆς Μαιώτιδος εὐθυπλοοῦσιν ἐπὶ τὰ βόρεια δισχιλίους καὶ διακοσίους σταδίους ὁ Τάναϊς , οὐ πολὺ | ||
ἀπὸ ιδʹ ἕως ιθʹ ὦμοι , ἀπὸ κʹ ἕως κζʹ βόρεια , ἀπὸ κηʹ ἕως λʹ ὄνυχες . Ἀποτελεῖ δὲ |
[ δὲ ] οἵ φασι περὶ τὰς ἐσχάτας μοίρας τοῦ καρκίνου εἶναι τότε τὸν ἥλιον . οὐ γὰρ ἂν μόνως | ||
μεταβάλλειν [ ] γὰρ οὗτος αὑτόν , καὶ σκορπίον ἐκ καρκίνου γίγνεσθαι , ἁλιέων παῖδες ἡμᾶς διδάσκουσι ταῦτα . Ἐπειδὰν |
καὶ παρθενών καὶ τὰ τοιαῦτα : ἔστι δὲ καὶ ἄλλα περιέχοντά τινα , οὐκ ἐξ αὐτῶν δὲ καλούμενα , ὡς | ||
, οἰκεῖται δ ' ἐν ὁμαλῷ , κύκλῳ δὲ ὄρη περιέχοντά ἐστιν οὐ μεγάλα . Κλειτορίοις δὲ ἱερὰ τὰ ἐπιφανέστατα |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
ὁρίζοντι . Τὸ Θ ἄρα τοῖς πρὸς ἀνατολὰς οἰκοῦσι πρότερον ἀνατέλλει καὶ πρότερον δύνει . Λέγω δή , ὅτι καί | ||
τὸ πρότερον ἀνατέλλον πρότερον δύνει καὶ τὸ πρότερον δῦνον πρότερον ἀνατέλλει . ἔστω ἀνατολικὰ μὲν τὰ Γ μέρη , δυτικὰ |
γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε μηδαμῇ δύνασθαι μηχανὰς προσάγειν : ἔχει | ||
χολῶν , ὅταν ϲκευάζῃϲ φάρμακον ἐν ᾧ καὶ χολῆϲ τι περιέχεται . γίγνεται δὲ καὶ παρὰ τὸ χρώμενον τῇ χολῇ |
πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
τὴν ἐναντίαν τούτωι πεποίηται περιφοράν , ἣν νῦν περιγράφει ὁ ζωιδιακός . ἔστι δὲ μυθῶδες τοῦτο καὶ ψεῦδος : τί | ||
τὴν ἐναντίαν τούτωι πεποίηται περιφοράν , ἣν νῦν περιγράφει ὁ ζωιδιακός . . , Οἰν . δὲ ὁ Χῖός φησι |
ἑαυτοῦ ᾗ συμπληροῦται ὑφ ' ἑαυτοῦ , ἔλασσον δὲ ᾗ συμπληροῖ ἑαυτό : τὸ γάρ τινος συμπληρωτικὸν ἔλασσόν ἐστι τοῦ | ||
, πῶς δὲ πτερορρυοῦσα φέρεται εἰς γένεσιν , ὅτε καὶ συμπληροῖ τοῦτο τὸ φαινόμενον ζῷον . Τὸ δὲ ἐκλήθη εἶπεν |
ὁμώνυμος τῇ χερσαίᾳ ὑαίνῃ ἐστί . ταύτης οὖν τὴν δεξιὰν πτέρυγα εἰ ὑποθείης ἀνθρώπῳ καθεύδοντι , εὖ μάλα ἐκταράξεις αὐτόν | ||
. καὶ δὴ συλλαβὼν τὰ ὄρνεα θατέρου μὲν τὴν δεξιὰν πτέρυγα , τοῦ γυπὸς δὲ τὴν ἑτέραν ἀπέτεμον εὖ μάλα |
γινώσκειν ὅτι αὐτὸς ἐπεξηγεῖται τί ἐστιν ἄκνηστις διὰ τοῦ εἰπεῖν μέσα νῶτα , ἤτοι ἡ ῥάχις , ἢ τὰ μέσα | ||
ἡ ΓΔ : δεικτέον , ὅτι καὶ ἡ ΓΔ δύο μέσα δυναμένη ἐστίν . Ἐπεὶ γὰρ δύο μέσα δυναμένη ἐστὶν |
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
ἀλλήλαις ὑποτιθέμεθα ὁμαλὰς καὶ περὶ τὸ τοῦ διὰ μέσων τῶν ζῳδίων κέντρον ἀμφοτέρας , ὧν μίαν μὲν τὴν περιάγουσαν τὸ | ||
καὶ χρηματίζων ἢ ἐπαναφερόμενος ἢ ἀποκεκλικώς , καὶ τοὺς τῶν ζῳδίων οἰκοδεσπότας , καθὼς καὶ ὁ παλαιὸς μέμνηται λέγων : |
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
. Ὅταν δὲ ὁ Ὄφις δύνῃ , ὃν ἔχει ὁ Ὀφιοῦχος , συγκαταδύνει μὲν αὐτῷ ὁ ζῳδιακὸς ἀπὸ Σκορπίου μοίρας | ||
Ὠρίων . . . . Βορρόθεν δὲ δύνει Ἀρκτοφύλαξ , Ὀφιοῦχος πλὴν τῆς κεφαλῆς καὶ τοῦ Στεφάνου τὸ ἥμισυ . |
ἔχει ὁ Λέων * * . κατὰ δὲ τὰ Σφαιρικὰ βορρόθεν συνανατέλλει ὁ ἀριστερὸς βραχίων τοῦ Ἀρκτοφύλακος , νοτόθεν πρύμνα | ||
. ἀστέρας ἔχει * * . κατὰ δὲ τὰ Σφαιρικὰ βορρόθεν ἀνατέλλει Ἀνδρομέδας μέρη τινὰ τῶν δεξιῶν καὶ τοῦ Ἵππου |
ἄγειν ἀνάλογος : θέμα γὰρ ἴδιόν ἐστιν ὀξύτονον , οὐχὶ ἔγκλιμα τῆς σφῶιν . ποῖον γὰρ ἄλλο μόριον βαρυνόμενον δύναται | ||
τοῖς περὶ τὴν Ἑλλάδα τόποις τετηρημένων , κατὰ δὲ τὸ ἔγκλιμα τῶν τόπων τούτων διημαρτήκασι . Παραπέμψαντες οὖν τοῦτο τὸ |
ὑπὸ γένειον καὶ κατὰ τοῦ ὠτὸς ἐπὶ βρέγμα καὶ τὰ ὀπίσθια ἀντικειμένου ὠτὸς καὶ ὑπὸ γένειον καὶ λοβὸν ὠτὸς ἐπὶ | ||
δύο δὲ τὰ ὄπισθεν τῶν ὤτων ἀναγαγεῖν καὶ κατὰ τὰ ὀπίσθια τῆς κορυφῆς πάλιν πρὸς ἄλληλα ἁμματίσαι ἅμματι ἁπλῷ , |
ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς | ||
τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν |
. . . . . . . . . . Διδύμων κε γʹ βο λθ ∠ ʹ γʹ δʹ τῶν | ||
γούνατα κεῖται ἀρηρότος Ἡνιόχοιο . αἱ μὲν οὖν κεφαλαὶ τῶν Διδύμων οὐ κεῖνται ἐπὶ τοῦ θερινοῦ τροπικοῦ . ὁ μὲν |
ἔχει , καὶ τῶν μορίων τὰ μὲν ὑπερέχει τὰ δὲ εἰσέχει , καὶ ποιεῖ τὴν τραχύτητα . διττὸν δὲ τὸ | ||
. . . . . . . . τὴν ἑσπέραν εἰσέχει ἀπὸ τοῦ καλουμένου Ἀτλαντικοῦ πελάγους τὴν εἰσροὴν ἔχουσα , |
ξδʹ , ὅς ἐστι τετράγωνος ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος | ||
τῶν σνηʹ λόγῳ πρὸς τὰ σνϚʹ , ὅς ἐστιν ἐπὶ ρκηʹ . Τὴν δὲ βραχεῖαν οὕτω παραλλαγὴν δυνατὸν εἶναι κρῖναι |
ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
τὰ εʹ , οὕτως τὰ εʹ πρὸς τὰ γʹ καὶ ηʹʹ : ὡς δὲ τὰ εʹ πρὸς τὰ γʹ καὶ | ||
ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται ιβʹ : ὡς εἶναι τὸ ξύλον ποδῶν στερεῶν |
Δομιτίου δ ' αὐτὴν ἱππεῦσι πολλοῖς καὶ ψιλοῖς εὐμαρῶς οἷα πλινθίον πυκνὸν κυκλώσαντος , οὔτε ἐκδραμεῖν ἔτι ἔχουσα οὔτε ἐξελίξαι | ||
συνεστήσατο μάχην . οἱ δ ' Ἰλλυριοὶ συντάξαντες ἑαυτοὺς εἰς πλινθίον ἐρρωμένως ὑπεστήσαντο τὸν κίνδυνον . καὶ τὸ μὲν πρῶτον |
ʹ γʹ γʹ ἐλς τῆς ἑπομένης τοῦ ῥόμβου πλευρᾶς ὁ νότιος . . . . . . . . Αἰγόκερω | ||
εἰς ω . καὶ παρ ' Ὁμήρῳ : κατὰ δὲ νότιος ῥέεν ἱδρώς . ἀντὶ τοῦ κατὰ νῶτον ἐφέρετο . |
εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι | ||
ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς |
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
. Σκορπίου κε Ϛʹ νο λδ Ϛʹ δʹ με ὁ βορειότερος αὐτῶν . . . . . . . . | ||
καὶ τοῦ ἐλαχίστου ἀποστήματος ε μοίραις ἑκάτερος αὐτῶν τὸ πλεῖστον βορειότερος καὶ νοτιώτερος γίνεται τῶν ἐναντίων κατὰ τὸν ἐπίκυκλον παρόδων |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
μὲν καθόλου ληφθέντος τοῦ δὲ ἐπὶ μέρους καὶ ἐν τούτῳ περιεχομένου . δέδεικται γάρ , ὅτι , εἰ εἴη συλλογισμός | ||
τῶν ἱερῶν ἀφυλάκτων ὄντων ἤδη καὶ συμφέρον . φυσικῶς οὖν περιεχομένου τῷ συμφέροντι τοῦ δυνατοῦ , ἀναγκαίως καὶ ὑποτέτακται αὐτῷ |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
τοῦ γυναικείου αἰδοίου : περισφίγγεται γὰρ ὁ τράχηλος ὑπὸ τῶν πτερυγωμάτων : τούτων δ ' ἀφέστηκε τὸ στόμιον ταῖς μὲν | ||
τοῦ κόλπου μείζονος τοῦ λωτοῦ , πτύγματα ἐπιτιθέσθω κατὰ τῶν πτερυγωμάτων , ἵνα κατ ' αὐτῶν ἡ διόπτρα ἐργάζηται . |
κἂν εἴκοσι καὶ πλέον : ὅταν δὲ πρὸς τὴν κάλλιστον Παρθένον ἔλθῃ τόπων , ἀμφίκυρτος ἐνναήμερος γνωρίζεται τοῖς πᾶσιν , | ||
. ὁ δὲ Ἄρατος : δὲ ποσσὶν ὕπο σκέπτοιο Βοώτεω Παρθένον . Ἐπὶ δὲ τοῦ Ἐνγόνασιν ὁ μὲν Εὔδοξός φησι |
ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
ἐπὶ τοῦ κανόνος τῆς ὀρθῆς σφαίρας τῇ μὲν ἀρχῇ τοῦ Καρκίνου παράκεινται χρόνοι ρπα Ϛ , τῇ δὲ ἀρχῇ τῶν | ||
ὁ Λέων ἀνατέλλῃ , συνανατέλλει μὲν αὐτῷ ὁ ζῳδιακὸς ἀπὸ Καρκίνου μοίρας ηʹ μέσης ἕως Λέοντος ιθʹ μέσης : μεσουρανεῖ |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
. δῆλον δὲ τοῦτο ἐντεῦθεν : ἐὰν γὰρ ἀνακλάσεως οὔσης ἡλιακῶν ἀκτίνων ἀφ ' ὕδατος ἢ ὅλως ἀπό τινος τῶν | ||
χαρίεν πρὸς τὴν τῶν ἰχθύων ἀπάτην : ἵστανται γὰρ τῶν ἡλιακῶν ἀκτίνων ἀπεναντίον , ὡς μὴ τὴν σκιὰν αὐτῶν τοὺς |
' , εἰ καὶ κινηθῇ κυνήγιν , ἐκεῖνον τοξεῦσαι τὸν ἐγγίζοντα αὐτὸ πρὸς μέτρον σαγίττας μένοντα ἐν τῇ τάξει αὐτοῦ | ||
μετέρχεται . Τὰ δηλοῦντα τὰ ἀποτελέσματα τῆς ἐκλείψεώς εἰσι τὰ ἐγγίζοντα κέντρα : σκόπει δὲ καὶ τὴν φύσιν τῶν συνόντων |
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
μετὰ τὸν δεύτερον χρόνον εὐθὺς ὑποδείξασα . Ἐπεὶ οὖν δὶς καταμετρεῖται ἡ σκιὰ τῆς γῆς ὑπὸ τοῦ σεληνιακοῦ μεγέθους , | ||
. ἀλλ ' οὐδὲ μεριστός . ἕκαστον γὰρ τῶν μεριστῶν καταμετρεῖται ὑπό τινος ἑαυτοῦ μέρους , καθ ' ἕκαστον μέρος |
τοῦ τροπικοῦ , ὁ δὲ ἀριστερὸς τρίτῳ μέρει ἑνὸς ζῳδίου νοτιώτερός ἐστι τοῦ τροπικοῦ : ὁ μὲν γὰρ δεξιὸς ὦμος | ||
ἀλεκτρυόνες ὑπεράγαν οὐκ ᾄδουσιν ἐν τοῖς ὑγροῖς χωρίοις καὶ ἔνθα νοτιώτερός ἐστιν ὁ ἀήρ . ψυχροὶ δὲ ἄρα ὄντες τὴν |
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
καὶ καταχριϲθεὶϲ μεθ ' ὕδατοϲ λέπραϲ ἀφίϲτηϲιν . τὰ δὲ τορνεύματα τοῦ ξύλου ποθέντα φαϲὶν ἀναιρετικὰ εἶναι . Μελίλωτον μικτῆϲ | ||
καὶ ξὺν μέλιτι . Ἕτερον : ὄξος , ἐναφεψῶν λωτοῦ τορνεύματα , ἔστω δὲ λευκὸν τὸ ὄξος , κἄπειτα μῖξαι |
ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
ἐπίκειται . καὶ οὕτω μὲν ἡ κνήμη εἰς τὰ ἄνω διαρθροῦται : ἀλλ ' οἷον ὑποβέβληται * * * πρὸς | ||
ταύτης ἐστὶ τὰ ἄρθρα : ὡς γάρ φησιν αὐτὸς , διαρθροῦται , οὕτως ἡμεῖς ἀνατρέπομεν αὐτήν . οἱ μέντοι δοξάζοντες |
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
τούτου γινομένου : τοῖς δ ' ὑπ ' αὐτῶι τῶι πόλωι ὁ ἰσημερινὸς τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν | ||
δὲ ὁ τῶι ἀρκτικῶι ἴσος ὑπάρχων πρὸς τῶι νοτίωι τεθεμάτισται πόλωι , οἱ δὲ διὰ τῶν πόλων καὶ λοξοὶ παρὰ |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ | ||
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος |
, ἤγουν ἐν τῇ ἀρχῇ , νωμῶν καὶ κινῶν καὶ οἰκονομῶν οἴακα πόλεως , ἤγουν τὴν τῆς πόλεως κυβέρνησιν , | ||
, οὗτος τὰ μέγιστα μὲν πράττων ὁρᾶται , τάδε δὲ οἰκονομῶν ἀόρατος ἡμῖν ἐστιν . ἐννόει δ ' ὅτι καὶ |
ὑγιῶς εἴρηται . τῶν δ ' ἐν τῇ οὐρᾷ τοῦ Νοτίου Ἰχθύος ὁ μάλιστα ἡγούμενος ἐπέχει τοῦ Αἰγόκερω πλεῖον ἢ | ||
ἐπέπλει . μετὰ δὲ ταῦτα καὶ οἱ Ἀθηναῖοι ἐκ τοῦ Νοτίου καθελκύσαντες τὰς λοιπὰς τριήρεις ἀνήχθησαν , ὡς ἕκαστος ἤνοιξεν |
, καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος | ||
κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |