Ϛʹ τοῦ γʹ διπλάσια , τὰ δὲ ηʹ τοῦ Ϛʹ ἐπίτριτα : εἰς δ ' οὖν τὸ παρὸν κατὰ τοὺς | ||
καὶ τῶν ἐννέα : τῶν γὰρ ἓξ τὰ μὲν ὀκτὼ ἐπίτριτα , τὰ δ ' ἐννέα ἡμιόλια . τὸ μὲν |
τῆς σφαίρας διάμετρος τῆς τοῦ τροπικοῦ διαμέτρου : ἡ ἄρα διπλασία τῆς διαμέτρου τῆς σφαίρας ἐλάσσων ἐστὶν ἢ τετραπλασία τῆς | ||
τοῦ διπλασίου ; Δῆλον δή , ὦ Σώκρατες , ὅτι διπλασία . Ὁρᾷς , ὦ Μένων , ὡς ἐγὼ τοῦτον |
βʹ τὰ δʹ διπλάσια , τῶν δὲ δʹ τὰ Ϛʹ ἡμιόλια . ἵνα δὲ ἀναλόγως μέσον ᾖ , δεῖ αὐτὸ | ||
ἠέ καὶ τὸ ὀά ἰδίως τίθει ἐκτὸς τῶν κώλων ἰωνικὰ ἡμιόλια βʹ : τὸ δὲ γʹ χοριαμβικόν ἑφθημιμερῆ βʹ προσοδιακὸν |
ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [ | ||
ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ |
ἀλλήλας τῶν ἐξ ἐκείνων εὐθυγράμμων . ὁμοίως καὶ τὰ μήκει τετραπλάσια δυνάμει ἑκκαιδεκαπλάσιά εἰσιν : ἔχουσι γὰρ τετράκις τὸν τετραπλάσιον | ||
τὸ ἀπὸ τῆς ΓΘ , τουτέστιν τὰ ἀπὸ τῶν ΓΕΘ τετραπλάσια τοῦ ἀπὸ ΘΚ , τὰ ἄρα ἀπὸ ΓΕ ΕΘ |
τὰ χρή - ματα εὑρίσκεται : ὅταν δὲ πολλοί , πολλαπλασία ἡ ἀργυρῖτις ἀναφαίνεται . ὥστε ἐν μόνῳ τούτῳ ὧν | ||
ἑκάστης τῶν τοῦ ΑΒΓ ἢ πολλαπλασία ἢ καὶ μείζων ἢ πολλαπλασία κατὰ τοὺς δοθέντας ἀριθμούς . μʹ . Εἰς τὴν |
ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων | ||
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
, στερεοῖς καὶ μεγάλοις ὀκτὼ τροχοῖς ὑπειλημμένον : τὰ γὰρ πάχη τῶν ἀψίδων ὑπῆρχε πηχῶν δυεῖν , σεσιδηρωμένα λεπίσιν ἰσχυραῖς | ||
: ἔχει δὲ καὶ διαπήγματα τέσσαρα καὶ περιπήγματα δύο ἕκαστα πάχη ἔχοντα δεκαδάκτυλα , τὰ δὲ πλάτη τριπάλαιστα . Διάπηγμα |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
παρακειμένων νησιδίων . Ἐν τῷ ἑβδόμῳ λέγει τῆς Εὐρώπης τὰ λειπόμενα μέρη : ἔστι δὲ τὰ πρὸς ἕω πέραν τοῦ | ||
καὶ τῶν ἑξῆς μέχρι τῶν ἐσχάτων τῆς κινναμωμοφόρου : τὰ λειπόμενα καὶ συνεχῆ τοῖς ἔθνεσι τούτοις , ταῦτα δ ' |
: προσέλαβε γὰρ καὶ οὗτος ἀπὸ τοῦ ἐνεστῶτος τὰ δύο ἀρκτικὰ γράμματα τὸ ο μικρὸν καὶ τὸ ρ , πλὴν | ||
τῶν ἐκτὸς τοῦ Ταύρου , τὰ μὲν νότια καὶ τὰ ἀρκτικὰ μέρη τῇ αὐτῇ θαλάττῃ καὶ τοῖς αὐτοῖς ὄρεσιν ἀφοριζομένη |
τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά | ||
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος |
τοῦ φυτοῦ , ἔξωθέν τε τοῦ ϲώματοϲ ἐπιτιθέμενα καὶ εἴϲω λαμβανόμενα . Μῶλυ ἢ βήϲαϲα . Μῶλυ , ὅ τινεϲ | ||
ϲυνήθη τροφήν . τὰϲ μέντοι πρώταϲ ἡμέραϲ βραχύτερα ἔϲτω τὰ λαμβανόμενα καὶ ὑγρότερα καὶ μηδὲν γλίϲχρον ἔχοντα : ἔϲτω δὲ |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
λέγεται ] : Οὔκ , ὦ πάππε , ἀλλὰ πολὺ ἁπλουστέρα καὶ εὐθυτέρα παρ ' ἡμῖν ἡ ὁδός ἐστιν ἐπὶ | ||
ἄμφω τὰ πέρατα ἐφάπτηται τῆς περιφερείας . Ἐπεὶ παντὸς σχήματος ἁπλουστέρα ἐστὶν ἡ γραμμὴ διὰ τὸ ἐξ αὐτῆς ἢ αὐτῶν |
ἕπεσθαι . Πῶς οὖν κελεύεις με βραχέα ἀποκρίνεσθαι ; ἢ βραχύτερά σοι , ἔφη , ἀποκρίνωμαι ἢ δεῖ ; Μηδαμῶς | ||
τὸ γὰρ τύπτεις ὁριστικὸν καὶ τὸ τύπτει διὰ διφθόγγου γραφόμενον βραχύτερά εἰσι παρὰ τὸ ἐὰν τύπτῃς καὶ ἐὰν τύπτῃ ὑποτακτικά |
. εἰσὶ δὲ τὰ μὲν δίμετρα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ βραχυκατάληκτα καὶ ἀκατάληκτα . νῦν δ ' ὤρθωσας | ||
] ἐπὶ δακτυλικοῦ Μῶς ' ἄγε Καλλιόπα θύγατερ Διός , καταληκτικὰ δέ , ὅσα μεμειωμένον ἔχει τὸν τελευταῖον πόδα , |
[ ἃ ] ἕκαστοι παρὰ σφίσι λέγουσιν , ἀποκρῖναι τὰ ἀξιολογώτατα . ὡς οὖν εὖ βεβουλευμένος οὐκ ἔστιν ὅπου παραβήσομαι | ||
ἐδόκουν αἱρήσεσθαι τὰ Ἀντωνίου . Καίσαρι δὲ ἦν δύο ὁμοίως ἀξιολογώτατα , τὰ ἐς αὐτὸν ἀπὸ τοῦ Ἀντωνίου μεταστάντα , |
ὁ Α ἄρα τοῦ Γ ἐστιν ἐπόγδοος . Τὰ ἓξ ἐπόγδοα διαστήματα μείζονά ἐστι διαστήματος ἑνὸς διπλασίου . ἔστω γὰρ | ||
ἐν λόγῳ μὲν ἐπογδόῳ : τὰ γὰρ θʹ τῶν ηʹ ἐπόγδοα : ἡ δὲ τάσις ἐλέχθη τόνος . ὅτι δὲ |
ἀκρίδων καὶ μυιῶν καὶ ἀττελάβων γένος . ταῦτα δὲ καὶ ἄναιμα συμβέβηκεν εἶναι . πτερωτὰ δὲ ἀλεκτρυὼν καὶ τὰ ἄλλα | ||
τοῦ τόπου ἡ τῆς φύσεως αὐτῶν θερμότης , καὶ τὰ ἄναιμα τῶν ἐναίμων καὶ τὰ θήλεα τῶν ἀρρένων , οἷον |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
, καὶ τὰ κτήματα τοῦ ἀποθανόντος πάντα ἀποδόμενος ἀποδώσω τὰ ἡμίσεα τῷ ἀποκτείναντι , καὶ οὐκ ἀποστερήσω οὐδέν . Ἐὰν | ||
δὲ τῶν γεωργουμένων τροφῶν σφισιν ἀπέφερον ἐς Σπάρτην πάντων τὰ ἡμίσεα . προείρητο δὲ καὶ ἐπὶ τὰς ἐκφορὰς τῶν βασιλέων |
πέμπτα πενθημιμερῆ . τὰ δεύτερα καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . | ||
δὲ ζʹ ἑφθημιμερές . πάρεστι δ ' εἰπεῖν ] ὅμοια ἑφθημιμερῆ εʹ . ὁμόσποροι δῆτα ] ἀντισπαστικοὶ θʹ ἡμιόλιοι . |
ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ , ΓΔ | ||
σὺν τῇ προσκειμένῃ ὡς μιᾶς , ἅ εἰσιν ἡμίση τῶν σλδ . Τὰ ἀπὸ τῶν ΑΔ καὶ ΔΒ τετράγωνα διπλάσιά |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
, ὅτι ἀπὸ τοῦ ἐγκεφάλου φέρονται δύο νεῦρα τὰ ὀπτικὰ προσαγορευόμενα : διαφέρει δὲ ταῦτα τῶν ἄλλων νεύρων , ὅτι | ||
πόσον τῆς ὁδοῦ διήνυσαν καὶ τί λείπεται , τὰ νῦν προσαγορευόμενα μίλια πρὸς Ῥωμαίων , τότε σημεῖα καλούμενα , οἱ |
συντάξεως κατὰ τὸ ἑξῆς εἰρήσεται . . Ἐπεὶ οὖν τὰ ὑπόλοιπα τῶν μερῶν τοῦ λόγου ἀνάγεται πρὸς τὴν τοῦ ῥήματος | ||
Ζυγός , Τοξότης , Ὑδροχόος , θηλυκὰ δὲ τὰ τούτων ὑπόλοιπα : Ταῦρος , Καρκίνος , Παρθένος , Σκορπίος , |
μέν ἐστι προκαταρκτικὰ , τὰ δὲ προηγούμενα , τὰ δὲ συνεκτικά . καὶ τῶν νοσημάτων , τὰ μέν ἐστιν ὁμοιομερῆ | ||
. ἀντὶ τοῦ εἰ μὴ ὅσον κατὰ τὰς τῆς ζωῆς συνεκτικά : ταῦτα γὰρ καὶ ἀναγκαῖα . συγγραφικῶς ἐρεῖν . |
τοιοῦτον ἔθος . Γ τῇ πανσελήνῳ ; ] ὅπου ἦν τεσσαρεσκαιδεκαταία ἡ σελήνη : τότε γάρ ἐστι πανσέληνος . ὅλους | ||
τοιοῦτον ἔθος . Γ τῇ πανσελήνῳ ; ] ὅπου ἦν τεσσαρεσκαιδεκαταία ἡ σελήνη : τότε γάρ ἐστι πανσέληνος . ὅλους |
δευτέρου ὅρου καὶ τρίτου καὶ τετάρτου καὶ τὰ λοιπὰ τρία σελίδια ζʹ , ηʹ , θʹ , τῶν ἑξηκοστῶν , | ||
σεληνιακῆς διαμέτρου λδ ἑξηκοστοῖς . τὰ δὲ τῶν δακτύλων τρίτα σελίδια τὸν αὐτὸν τρόπον περιέξει τοῖς ἡλιακοῖς καὶ ὁμοίως τὰ |
μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
τῷ αὐτῷ ὁμώνυμα ταὐτά εἰσι τῷ μέρει ἢ πέμπτα ἢ ἕκτα ἢ ἕβδομα ἢ ὄγδοα , τὰ δὲ τῷ αὐτῷ | ||
καθ ' αὑτά , ἐπὶ δὲ Ἀφροδίτης καὶ Ἑρμοῦ τὰ ἕκτα αὐτῶν ληψόμεθα , καὶ τὰ γενόμενα ἐκθησόμεθα , ἐν |
ἰσόμετρα . ὧν τὰ μὲν πρῶτα καὶ τρίτα καὶ πέμπτα δακτυλικά . ἀλλὰ τὰ μὲν ἑφθημιμερῆ , τὰ δὲ πέμπτα | ||
δακτυλικὸν ὂν δίμετρον ἀκατάληκτον . κατὰ γὰρ μονοποδίαν μετρεῖται τὰ δακτυλικά . τὰ δὲ τοῦ χοροῦ κῶλά εἰσι δυοκαίδεκα , |
καὶ μονόμετρα ιαʹ . δενδροπήμων ] τὰ τοῦ χοροῦ ταῦτα κῶλα χοριαμβικά ἐστιν ιαʹ ὅμοια καὶ ἰσόμετρα τοῖς ἄνω . | ||
ἧς ἡ ἀρχὴ , ἀμηχανῶ . ὅμοια γὰρ ἔχει τὰ κῶλα . ἐς τόνδ ' ἐνέβη ] ἀναπαιστικὰ κῶλα ιʹ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
. Ἔτι δὲ καὶ ἄλλως τὰ πολλὰ προάγειν πέφυκε τὰ διακεκριμένα , τὸ δὲ ἓν ταῦτα συνάγειν εἰς ἕνωσιν . | ||
φαίνηται τὰ διαχωρήματα τοῖς ἀφ ' ἕλκους φερομένοις μήτε πάντη διακεκριμένα , στοχάζεσθαι δεῖ μᾶλλον ἐν τοῖς μέσοις ἐντέροις εἶναι |
καὶ τὰ τοιαῦτα . τῶν ὄντων ἄρα τὰ μέν ἐστι μεριστά , τὰ δὲ ἀμερῆ : τῶν δὲ μεριστῶν τὰ | ||
τὰ οὐράνια , συνεχῆ ὄντα καὶ ἀπαθῆ , φθαρτικὰ καὶ μεριστά . οὐ μόνον δὲ τὰ μόρια τοῦ συνεχοῦς δυνάμει |
τοῦθ ' ἡμῶν βλάψει τὸν λόγον ; Ὅτι προσαγορεύεις αὐτὰ ἀνόμοια ὄντα ἑτέρῳ , φήσομεν , ὀνόματι : λέγεις γὰρ | ||
διαφορῆσαι . καὶ τοιαύτη μὲν ἡ τῶν ἀλειμμάτων χρεία . ἀνόμοια τούτοις κατὰ τὴν δύναμιν τὰ ἐντὸς προσάγεται , ὅπως |
κθʹ ξγʹ τὰ δὲ ἀνατολικώτατα λαʹ γοʹʹ ξγʹ τὰ δὲ ἀρκτικώτατα λʹ γʹʹ ξγʹ δʹʹ τὰ δὲ νοτιώτατα λʹ γʹʹ | ||
. . . . ρξ λζ . Τὰ μὲν οὖν ἀρκτικώτατα τῆς Σηρικῆς κατανέμονται ἔθνη ἀνθρωποφάγων , ὑφ ' οὓς |
τῷ γὰρ μὴ πάσας ἐξηγήσασθαι | , ἔτι καὶ τὰ συντάγματα , ἐν οἷς αὐτῶν ἑκάστη κατεγέγραπτο , σιωπῆς ἱκανῆς | ||
ταῖς τόλμαις καὶ ταῖς ἐμπειρίαις ἀποβαίνουσιν . ἔστι δὲ ἕτερα συντάγματα τῆς πολιτείας τρία , τό τε τῶν νομέων καὶ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ , πενθημιμερῆ καὶ ἡμιόλια , καὶ τρίμετρα βραχυκατάληκτα καὶ καταληκτικά . | ||
, κώλων ἀναπαιστικῶν εʹ . ὧν τὰ αʹ , βʹ πενθημιμερῆ . τὰ γʹ , δʹ δίμετρα ἀκατάληκτα . τὸ |
χρωμάτων ἁπλᾶ καὶ διὰ τί τὰ μὲν σύνθετα τὰ δὲ ἀσύνθετα : πλείστη γὰρ ἀπορία περὶ τῶν ἀρχῶν . ἀλλὰ | ||
εἴπομεν . Τῶν γὰρ εἰς ηξ ὀνομάτων τὰ μὲν ἁπλᾶ ἀσύνθετα διὰ τοῦ Κ κλίνονται μύρμηκος , νάρθηκος , σκώληκος |
πλευρὰ ἔσται μονάδων πέντε : τότε οὔτε τὰ τμήματα μήκει σύμμετρα ἔσται οὔτε ἡ κάθετος . εἰ δὲ ἡ ὑποτείνουσα | ||
εὐθεῖαι ἀσύμμετροι ὦσι , τὰ δὲ ἀπ ' αὐτῶν χωρία σύμμετρα ἀλλήλοις , ἑτέρας δὲ ὅταν καὶ [ τὰ ἀπ |
. εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι ἡμιόλιον | ||
καὶ βραχυκατάληκτα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ ἀκατάληκτα καὶ βραχυκατάληκτα , ὧν τελευταῖον : ὤλετ ' ἄκλαυστος ἄιστος . |
, οὐδὲν αἰσθητὸν διάφορον ποιούσῃ παρὰ τὰ ἐκ τῶν γραμμῶν συναγόμενα , ἵνα μὴ πλείοσι σελιδίοις χρήσηται . Εἰ γάρ | ||
ἐκ τοῦ αὐτοῦ χωριζόμενα δύο ἐστί , τὰ εἰς ταὐτὸ συναγόμενα καὶ ἀλλήλοις παρατεθειμένα οὐκ ἂν εἴη δύο . ἔχει |
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ | ||
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος |
ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
πρὸς τὰ ἀτιμότερα αὐτοῖς χρωμένη , ὕλαις δὲ πρὸς τὰ ἐντιμότερα . ἔσχατον δὲ καὶ ἀκρότατον τῶν εἰδῶν ὁ ποιητικὸς | ||
αἰσθάνεται , τὰ δὲ ἥττω οὔ , οὐδὲ τὰ μὲν ἐντιμότερα ἀπολαύει , τὰ δὲ φαυλότερα οὐκ ἀξιοῦται , ἀλλ |
ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται | ||
' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς , |
, καὶ ἀντισπαστικὰ πενθημιμερῆ καὶ ἑφθημιμερῆ καὶ ἡμιόλια καὶ δίμετρα ἀκατάληκτα καὶ τρίμετρα βραχυκατάληκτα , ὧν τελευταῖον “ μνήστορες ἐστέ | ||
τῷ αʹ : τὸ ιʹ καὶ τὸ ιαʹ τροχαϊκὰ δίμετρα ἀκατάληκτα : τὸ ιβʹ καὶ ιγʹ , τὸ τῆς γυναικὸς |
' εἰ μὲν πᾶσιν , καὶ ἀδυνάτοις ἐπιχειρήσομεν καὶ τὰ ἀντικείμενα παραδεξόμεθα : εἰ δὲ τισίν , εἰπάτωσαν ἡμῖν τίσι | ||
διό φησιν οὐ γάρ ἐστι μεταβολὴ εἰ μὴ εἰς τὰ ἀντικείμενα καὶ τὰ μεταξύ , ὥσπερ ἡνίκα ἐκ λευκοῦ γίνεται |
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
ἐπὶ δὲ τοῦ ἑτερομήκους αἱ μὲν διάμετροι ἴσαι καὶ τὰ ἐμβαδά , αἱ δὲ γωνίαι οὐ τέμνονται εἰς ἴσα ὑπὸ | ||
' ἐστίν , ἀλλ ' ἔχει τῇ δυνάμει μείζονα τὰ ἐμβαδά , ἤπερ φαίνεται . τὸ μεῖζον δὲ πλείονος χρόνου |
ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται Ἀνακρεόντεια ὡς κατακόρως τούτοις τοῦ | ||
τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ χοριαμβικὰ εἰς βακχεῖον περαιούμενα δίμετρα : τὸ ιεʹ ἀναπαιστικὸν δίμετρον βραχυκατάληκτον : τὰ ιζʹ |
τῆς στροφῆς . Τὸ εʹ τροχαϊκὸν δίμετρον ἀκατάληκτον . Τὸ Ϛʹ Ἰωνικὸν δίμετρον καταληκτικὸν ἀπ ' ἐλάττονος ἐκ τροχαϊκῆς συζυγίας | ||
τὸ ἀνάπαλιν : ἐκ μονάδος καὶ δυάδος καὶ ἑαυτῆς τὸν Ϛʹ ποιεῖ κατὰ σύνθεσιν , ὅς ἐστι κυρίως πρῶτος τέλειος |
τεταγμέναις ἡμέραις εἰς πολλὰ διαιρούμενον κυβοειδῆ σχήματα , βοτρυηδὸν ἀλλήλοις προσκείμενα . ἄριστον δ ' αὐτοῦ ἡγητέον τὸ κυάνεον καὶ | ||
καὶ βραχιόνων ἁπαλαῖς ταῖς χερσὶ ψηλαφήσαντας τὰ μέρη καὶ τὰ προσκείμενα τῶν συγκριμάτων ἀφελόντας , θέρους μὲν τοῖς περιβολαίοις σκέπειν |
δὲ ῥόδων κατὰ Θεόφραστον διαφοραὶ πολλαί : τὰ μὲν γὰρ πεντάφυλλα , τὰ δὲ δωδεκάφυλλα , περὶ δὲ Φιλίππους ἔνια | ||
λειότητι καὶ εὐχροίᾳ καὶ εὐοσμίᾳ . τὰ μὲν γὰρ πλεῖστα πεντάφυλλα , τὰ δὲ δωδεκάφυλλα καὶ εἰκοσίφυλλα , τὰ δ |
τὸ πεπερατωμένον σῶμα . εἰ οὖν φαμεν τὸ μεταξὺ τῶν πεπερατωμένων σωμάτων τόπον εἶναι , ἔσται σῶμα ὁ τόπος : | ||
τὰ πεπερατωμένα τῶν πεπερατωμένων ἅψεται ἢ καὶ τὰ πεπερατωμένα τῶν πεπερατωμένων καὶ τὰ πέρατα τῶν περάτων , οἷον ἐπὶ τοῦ |
συναμφότερα δὲ φρονήσει , καὶ ἀσωτίαν φιλαργυρίᾳ ὧν κοινὸν ἀνελευθερία συναμφότερα δὲ ἐλευθεριότητι , καὶ κατάπληξιν ἀναισχυντίᾳ ὧν κοινὸν ἀναίδεια | ||
πρὸς ὃν λέγει . ἦθος δὲ ἢ πάθος ἢ καὶ συναμφότερα , ἐπειδὴ ἢ πρὸς τὰ καθόλου τις ἀποβλέπει ἢ |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
χοριαμβικὰ ὅμοια ιβʹ . ἆρα φρονοῦσι ] τὰ κῶλα ταῦτα ἀναπαιστικά ἐστι δίμετρα καὶ μονόμετρα ηʹ . χαίρετ ' ἐν | ||
τοῦ χοροῦ κῶλα χοριαμβικὰ , τὰ δὲ τοῦ ἑτέρου προσώπου ἀναπαιστικά . εἰσὶ δὲ τὰ τῆς πρώτης ταύτης στροφῆς κῶλα |
δακνώδειϲ , οὖρα δὲ τῶν κατὰ φύϲιν οὐ πάνυ τι ἀπολειπόμενα . ἴαϲιϲ δέ ἐϲτι διὰ φλεβοτομίαϲ ἄχρι λειποθυμίαϲ : | ||
ἡγεμόνες , ὅπου δὲ μέσα καὶ βραχύ τι τῶν ἄκρων ἀπολειπόμενα ἀγγέλους ἔχει τοὺς ἐπιτελοῦντας αὐτὰ καὶ ἀποδεικνύοντας , τὰ |
ταὐτά , τῷ λόγῳ δὲ διαφέροντα ὡς ζητούμενά τε καὶ γινωσκόμενα . Διαφοραῖς χρησάμενος τῇ συνθέσει καὶ τῇ ἁπλότητι τέτταρα | ||
παραληφθήσεται αὐτοῖς τοῖς ὀνόμασιν , καθὼς ἔφαμεν , οὐ μὴν γινωσκόμενα παραγωγὴν ἀναδέξεται ἐξ ὀνόματος τοῦ ἀναιροῦντος τὰς θέσεις τῶν |
ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
πρὸς αὐτὸ τῶν ἀγαθῶν ὁμολογουμένως χρὴ λέγειν , τὰ δὲ ἐναντιούμενα , τῶν οὔτ ' ἀγαθῶν οὔτε κακῶν , ἀλλὰ | ||
σχέσεων πολλαπλασίου τε καὶ ἐπιμορίου σύμφωνα τὰ ἀποτελέσματα καὶ οὐδαμῶς ἐναντιούμενα προβαίνων ἐπ ' ἄπειρον ὄψει . κἀκεῖνο δὲ οὐκ |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
πρὸς ΝΙ : ὥστε καὶ λϚʹ τὰ ἀπὸ ΟΝ πρὸς ψκʹ τὰ ἀπὸ ΝΙ , τουτέστιν πʹ τὰ ἀπὸ ΙΛ | ||
: ἀπ ' Ἰσθμοῦ διὰ Κορινθίου κόλπου εἰς Πάτρας στάδια ψκʹ : ἐπὶ Λευκάδα στάδια ψʹ : ἐπὶ Κόρκυραν στάδια |
. περὶ οὖν τῆς μερικῆς οὐ διαλαμβάνουσιν , ἐπειδὴ τὰ μερικὰ ἀόριστα καὶ ἀπερίληπτά εἰσιν , ἀλλὰ περὶ τῆς καθόλου | ||
τὰ καθ ' ἕκαστα . διὰ τοῦτο καὶ οἱ τὰ μερικὰ μόνον εἰδότες τῶν τὰ καθόλου εἰδότων πρακτικώτεροι . καὶ |
κρείττονος φωτός ; τοῦτο δὲ ἄστρα ὑποχωροῦντα ἡλίῳ καὶ μηδὲν ἡγούμενα πάσχειν μηδὲ ἀπόλλυσθαι διὰ τὴν ἐκείνου [ τοῦ θεοῦ | ||
. καὶ τὴν αἰτίαν αὐτὸς ἀποδέδωκεν ὅτι τὰ μερικὰ καὶ ἡγούμενα ἀεὶ προτάττονται τῶν ἑπομένων καὶ καθολικωτέρων . δευτέραν δέ |
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
ἀεὶ κούφιζε τὸ γʹʹ : λοιπὰ υπʹ : ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται | ||
ἐπὶ τὰ ιβʹ τοῦ πάχους γίνονται ͵γωμʹ : ὧν τὸ ρϘβʹʹ γίνεται κʹ : τοσούτων ποδῶν στερεῶν τὸ ξύλον . |
ὑπερπεπηγότων , τῇ χροιᾷ διακρινοῦμεν ταῦτα : τὰ μὲν γὰρ ϲιδηρίζοντα ἢ κυανόχροα ἢ μολιβδῶδεϲ ἐμφαίνοντα χρῶμα τῶν ϲυμμέτρωϲ πεπηγότων | ||
παριϲθμίοιϲ καὶ ϲταφυλῇ καὶ ὄμμαϲι διαφερόντωϲ ἐπιτήδεια : τὰ δὲ ϲιδηρίζοντα ϲτομάχῳ καὶ ϲπληνὶ χρήϲιμα . δεῖ δὲ τὰϲ εἰϲ |
εὐαζούσαις καὶ τιμώσαις τὸν θεόν : τὰς δὲ γυναῖκας κατὰ συστήματα θυσιάζειν τῷ θεῷ καὶ βακχεύειν καὶ καθόλου τὴν παρουσίαν | ||
καὶ ἐμμεταβόλου διοίσει , καθ ' ἣν διαφέρει τὰ ἁπλᾶ συστήματα τῶν μὴ ἁπλῶν . ἁπλᾶ μὲν οὖν ἐστι τὰ |
ἀγόμενον ὅκως πρὸς τὴν ὑστέρην προστεθῇ , ἐς τοῦτο ἔμπηξον ξυλήφια ὀριγάνου δύο ποιήσας λεῖα : ἔστω δὲ ἑξα - | ||
: ἔστω δὲ ἑξα - δάκτυλα : εἶτα κατέλιξον τὰ ξυλήφια εἰρίῳ ὡς μαλθακωτάτῳ : ἔπειτα ἄνωθεν ῥάμματι κατέλιξον λεπτῷ |
. λδʹ Περὶ τῶν ναρκωτικῶν φαρμάκων . λεʹ Χρίσματα ἐκπυροῦντα παραλαμβανόμενα μετὰ τὰ ναρκωτικά . λϚʹ Φάρμακα καὶ σιτία ἐπὶ | ||
ἔϲτω τὰ ἐπὶ τῆϲ κύϲτεωϲ εἰρημένα , κατὰ τῶν ἰϲχίων παραλαμβανόμενα . ἰδίωϲ δὲ ἐπὶ τούτων διὰ κλυϲτῆροϲ ἐνίεμεν νῦν |
πιλήϲει τῶν δακτύλων εἰϲ τὸ κατὰ φύϲιν ἐπανέρχεται , τὰ λοιπὰ δὲ δυϲαρμόϲτουϲ ἔχει τὰϲ ἐξοχάϲ . εἰ τοίνυν διὰ | ||
ἑαυτῶν , διέφθειραν . καὶ τοῦτον τὸν τρόπον καὶ τὰ λοιπὰ διηγησόμεθα . ἔστι δὲ καὶ οὕτω πρόσταξιν ποιήσασθαι , |
καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . μετροῦνται μέντοι καὶ κατὰ δύο | ||
τοῖς καταγεγραμμένοις γνώμοσι λεπτὰ τέταρτα ιε πέμπτα β ἕκτα μϚ ἕβδομα Ϛ ὄγδοα θ , ἅτινα παρεῶνται ὡς λεπτότατον λίαν |
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ | ||
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα |
ἐζήτηται εἰ ὑπόκειται , τὰ δὲ ζητούμενα οὐκ αὐτόθεν ἐστὶ λήμματα , ἀλλὰ ὀφείλει διά τινος βεβαιωθῆναι . τὸ οὖν | ||
μὲν ἄδηλόν ἐστι τὸ συμπέρασμα , ἄδηλα ἔσται καὶ τὰ λήμματα , εἰ δὲ πρόδηλά ἐστι τὰ λήμματα , πρόδηλον |
. ὥστε καὶ γωνίαι ἡ ὑπὸ ΑΔΒ καὶ ἡ ὑπὸ ΑΚΘ καὶ ἡ ὑπὸ ΑΝΜ ἴσαι εἰσί . καὶ ἐπεὶ | ||
τὴν ΔΗΘ καὶ ἀγάγωμεν τῇ ΕΖ πρὸς ὀρθὰς γωνίας τὴν ΑΚΘ , ἴσαι μὲν γίνονται ἥ τε ὑπὸ ΚΑΗ γωνία |
καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ | ||
τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου |
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
ἡ διπλασία : ἐκ ταύτης γὰρ γεγόνασι . τῶν δὲ ἐπιμερῶν ἡ ἡμιολία , καὶ ἐπὶ τῶν λοιπῶν ὁμοίως . | ||
τοῦ ἐπιμεροῦς γίνεται πολλαπλασιεπιμερής . ἰστέον δὲ κἀκεῖνο ὅτι τῶν ἐπιμερῶν τε καὶ τῶν ἐπιμορίων πάντων οἱ πυθμένες πρῶτοι πρὸς |
, καὶ ταῦτα πάλιν ὀκτάκις τπδʹ , οὗ ἐπίτριτος ὁ φιβʹ , μεταξὺ δὲ τούτων δύο ἐπόγδοα , τοῦ μὲν | ||
, τούτου δὲ υπϚʹ , ἀφ ' ὧν ἐπὶ τὰ φιβʹ ὁ λειμματιαῖος γίνεται λόγος . τινὲς δέ φασι μὴ |
γὰρ αὐτὸν καὶ β αὐτοῦ τέταρτα : λέγων γὰρ δύο τέταρτα ἥμισυ ποιεῖς καὶ οὐδὲν ἄλλο λέγεις ἢ ἡμιόλιον , | ||
, τέταρτα : ἐπὶ δὲ τρίτα , πέμπτα : καὶ τέταρτα ἐπὶ δεύτερα , ἕκτα καὶ ἑξῆς καὶ τὸ ἀνάπαλιν |