γὰρ αὐτὸν καὶ β αὐτοῦ τέταρτα : λέγων γὰρ δύο τέταρτα ἥμισυ ποιεῖς καὶ οὐδὲν ἄλλο λέγεις ἢ ἡμιόλιον ,
, τέταρτα : ἐπὶ δὲ τρίτα , πέμπτα : καὶ τέταρτα ἐπὶ δεύτερα , ἕκτα καὶ ἑξῆς καὶ τὸ ἀνάπαλιν
8237379 πεμπτα
τὰ τρίτα δ ' Ἀντίλοχος , τέτρατα ξανθὸς Μενέλαος , πέμπτα δὲ Μηριόνης θεράπων ἐὺς Ἰδομενῆος . χωρὶς δὲ τοῦ
. Ἀναλυθέντων αἱ ὀκτὼ μονάδες εἰς πέμπτα : μ ἄρα πέμπτα ἴσα ἐστὶ ἀριθμοῖς ε : Ϟὸς ἄρα ὀκτὼ πέμπτα
7290873 δακτυλικα
ἰσόμετρα . ὧν τὰ μὲν πρῶτα καὶ τρίτα καὶ πέμπτα δακτυλικά . ἀλλὰ τὰ μὲν ἑφθημιμερῆ , τὰ δὲ πέμπτα
δακτυλικὸν ὂν δίμετρον ἀκατάληκτον . κατὰ γὰρ μονοποδίαν μετρεῖται τὰ δακτυλικά . τὰ δὲ τοῦ χοροῦ κῶλά εἰσι δυοκαίδεκα ,
7274113 τροχαϊκα
δίμετρα τὰ Ϛʹ , ιβʹ . τὰ δ ' ἄλλα τροχαϊκὰ , τῇ μὲν δίμετρα , τῇ δ ' Εὐριπίδεια
, τὸν τρίτον ἔχον πόδα τετράβραχυν . τὰ ἑξῆς ἓξ τροχαϊκὰ δίμετρα ἀκατάληκτα ἐπιμεμιγμένα τριβράχεσιν . τὸ δὲ ιγʹ ,
7177705 τριμετρα
δὲ ζʹ ἀκατάληκτον δίμετρον : τὰ ηʹ θʹ ιαʹ δακτυλικὰ τρίμετρα : τὸ ιʹ τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ
ἰαμβικά . εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι
7152148 ἑκτα
τῷ αὐτῷ ὁμώνυμα ταὐτά εἰσι τῷ μέρει ἢ πέμπτα ἢ ἕκτα ἢ ἕβδομα ἢ ὄγδοα , τὰ δὲ τῷ αὐτῷ
καθ ' αὑτά , ἐπὶ δὲ Ἀφροδίτης καὶ Ἑρμοῦ τὰ ἕκτα αὐτῶν ληψόμεθα , καὶ τὰ γενόμενα ἐκθησόμεθα , ἐν
7080035 ιγα
θεωρήματος τοῦ βου . Γίνεται δὲ οὕτως . Τὰ γ ιγα ἐφ ' ἑαυτὰ γίνεται θ ρξθα . Ἀναλυθέντα καὶ
' ἑαυτὰ γίνεται θ ρξθα . Ἀναλυθέντα καὶ τὰ ιθ ιγα εἰς ἑκατοστοεξηκοστοέννατα γίνονται σμζ ρξθα , καὶ γίνονται ὁμοῦ
7058648 κολοβα
, πάντα μακροθυμεῖν κελεύει καὶ μὴ κενοσπουδεῖν : ὅσα δὲ κολοβὰ καὶ βραχέα , σπεύδειν ἐγκελεύεται . Ὅσα δὲ στερεά
τὴν θάλατταν φεύγει . Ἐρετριεῖς δὲ τῇ ἐν Ἀμαρύνθῳ Ἀρτέμιδι κολοβὰ θύουσιν . Πέπυσμαι δὲ πρὸς τοῖς ἤδη μοι προειρημένοις
7053388 βραχυκαταληκτα
. εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι ἡμιόλιον
καὶ βραχυκατάληκτα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ ἀκατάληκτα καὶ βραχυκατάληκτα , ὧν τελευταῖον : ὤλετ ' ἄκλαυστος ἄιστος .
7045576 δωδεκακις
. καὶ ὅτι ἐν ταῖς ἰσημερίαις μόνος τῶν ἄλλων ζῴων δωδεκάκις τῆς ἡμέρας κράζει καθ ' ἑκάστην ὥραν . Θυμὸν
παραχωρήσεις , πεπραγματευμένας δὲ ἔχομεν γραμμικῶς τὰς τῆς σελήνης , δωδεκάκις ἑκάστην τῶν ἐκεῖ παραθέσεων ποιήσαντες διὰ τὸ τὴν μεγίστην
7038790 χοριαμβικα
, ἤτοι ἑφθημιμερῆ καὶ μονόμετρα . τὰ δὲ ἑξῆς ρκαʹ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικά , ἤτοι ἑφθημιμερῆ καὶ πενθημιμερῆ
εἴτε ἐπιτρίτου τετάρτου , καὶ διιάμβου : τὰ ἑξῆς δύο χοριαμβικὰ δίμετρα βραχυκατάληκτα : τὸ τρισκαιδέκατον ἐκ χοριάμβου καὶ σπονδείου
7009993 διαφωνα
, καὶ σύμφωνα μὲν ὁπόσα ὑπὸ συμφώνων φθόγγων περιέχεται , διάφωνα δὲ ὁπόσα ὑπὸ διαφώνων . τῶν δὲ συμφώνων διαστημάτων
σύνθετον τὸ διὰ πασῶν , τὰ δὲ τούτων ἀνὰ μέσον διάφωνα ἔσται . ταῦτα μὲν οὖν λέγομεν ἃ παρὰ τῶν
6978866 ἀναπαιστικα
χοριαμβικὰ ὅμοια ιβʹ . ἆρα φρονοῦσι ] τὰ κῶλα ταῦτα ἀναπαιστικά ἐστι δίμετρα καὶ μονόμετρα ηʹ . χαίρετ ' ἐν
τοῦ χοροῦ κῶλα χοριαμβικὰ , τὰ δὲ τοῦ ἑτέρου προσώπου ἀναπαιστικά . εἰσὶ δὲ τὰ τῆς πρώτης ταύτης στροφῆς κῶλα
6970218 ἐπῳδικα
γὰρ κατὰ σχέσιν τὰ μέν ἐστι μονοστροφικά , τὰ δὲ ἐπῳδικά , τὰ δὲ κατὰ περικοπὴν ἀνομοιομερῆ , τὰ δὲ
δὲ κατὰ σχέσιν τὰ μέν ἐστι μονοστροφικά , τὰ δὲ ἐπῳδικά , τὰ δὲ κατὰ περικοπὴν ἀνομοιομερῆ , τὰ δὲ
6962569 ἰαμβικα
. ἐκ φυγᾶς ] ἐκ τῆς τοῦ Πολυνείκους ἐκβολῆς . ἰαμβικὰ ζʹ . οὐδ ' ἵκεθ ' ὡς κατέκτανεν :
εἰσῆλθεν . ἐν ἀνδρῶν γὰρ σχήματι εἰσήχθησαν . ἐντεῦθέν εἰσιν ἰαμβικὰ τετράμετρα καταληκτικὰ μέχρι τοῦ ” εὐρύπρωκτος εἶναι “ .
6939525 σμγʹ
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους
6925624 ͵ακδ
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη
6898026 ἐπιμερης
τοὺς παρέξοντας ἀφ ' ἑαυτῶν τὰ μέρη , καθὰ ὁ ἐπιμερὴς κέκληται , οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία ,
, ἐπιέβδομος καὶ εἰς ἄπειρον . γʹ . κατὰ γένος ἐπιμερὴς δὲ ὁ μετρούμενος ὑπὸ ἑτέρου ἅπαξ , καὶ περισσεύει
6895449 καταληκτικα
. εἰσὶ δὲ τὰ μὲν δίμετρα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ βραχυκατάληκτα καὶ ἀκατάληκτα . νῦν δ ' ὤρθωσας
] ἐπὶ δακτυλικοῦ Μῶς ' ἄγε Καλλιόπα θύγατερ Διός , καταληκτικὰ δέ , ὅσα μεμειωμένον ἔχει τὸν τελευταῖον πόδα ,
6892347 ρϘϚ
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης
6880670 σνϚʹ
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ
6874719 ἡμιολια
βʹ τὰ δʹ διπλάσια , τῶν δὲ δʹ τὰ Ϛʹ ἡμιόλια . ἵνα δὲ ἀναλόγως μέσον ᾖ , δεῖ αὐτὸ
ἠέ καὶ τὸ ὀά ἰδίως τίθει ἐκτὸς τῶν κώλων ἰωνικὰ ἡμιόλια βʹ : τὸ δὲ γʹ χοριαμβικόν ἑφθημιμερῆ βʹ προσοδιακὸν
6874614 πενθημιμερη
εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ , πενθημιμερῆ καὶ ἡμιόλια , καὶ τρίμετρα βραχυκατάληκτα καὶ καταληκτικά .
, κώλων ἀναπαιστικῶν εʹ . ὧν τὰ αʹ , βʹ πενθημιμερῆ . τὰ γʹ , δʹ δίμετρα ἀκατάληκτα . τὸ
6864800 παλαιστιαια
δὲ ἐπ ' ἐδάφους ἔρεισις τοῦ ποδὸς ἄνθρακος λίθου πάντοθεν παλαιστιαία , κρηπῖδος ἔχουσα τάξιν κατὰ τὴν πρόσοψιν , ὀκτὼ
προτεθείσῃ ῥητῇ εὐθείᾳ , εἴτε πηχυαία ἐστὶν εἴτε ποδιαία εἴτε παλαιστιαία ἢ δακτυλιαία , ἄπειροι σύμμετροι μήκει καὶ ῥηταὶ καὶ
6864158 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6862709 κακοδμα
, οἷϲι πόνοι ϲμικροί , πῦον ὀλίγῳ πλεῖον : μᾶλλον κάκοδμα , ἀλλ ' ἔμπηϲ εὐήθεα καὶ τάδε . ἢν
, θρομβώδεα , ἄλλοτε μὲν μέλανα , παντοίωϲ ποικίλα , κάκοδμα , οὐ φορητά : ἀφέϲιεϲ τῶν ὑγρῶν ἀβούλητοι .
6844116 εἰκοσιεπτα
κατὰ ἁρμονικήν : αἱ κατὰ ἀφαίρεσιν ἄλογοι . Ὁ τοῦ εἰκοσιεπτὰ ἀριθμοῦ τετραγωνισμὸς δίδωσι τῇ οἰκείᾳ πλευρᾷ μοίρας πέντε ,
πεντήκοντα ἑπτὰ τέταρτα . καὶ οὕτως τῷ τετραγωνισμῷ συνάγονται μονάδες εἰκοσιεπτὰ διὰ τῶν τεσσάρων γνωμόνων ἀπό τε αὐτοῦ τοῦ προυποτεθειμένου
6841639 ωξδ
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ
6840321 κυφα
εἴρηται , ὁ δυσχερῶς τινὶ κολλώμενος . Κύμβια : τὰ κύφα ἐκπώματα . Κύμβαλα : οἷον κύφαλά τινα ὄντα :
εἴρηται , ὁ δυσχερῶς τινὶ κολλώμενος . Κύμβια : τὰ κύφα ἐκπώματα . Κύμβαλα : οἷον κύφαλά τινα ὄντα :
6840103 ἐπιμεμιγμενα
μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις , δισπονδείοις καὶ ἐπιτρίτοις , ἑφθημιμερῆ , πλὴν
μονόμετρα ἐκ κρητικῶν : τὰ ιαʹ ιβʹ ιγʹ ἀναπαιστικὰ δίμετρα ἐπιμεμιγμένα ἰάμβοις , τὰ δὲ τῆς ἀντιστροφῆς καὶ δακτύλοις :
6821514 τριτα
λήγοντα τρίτα πρόσωπα τῶν ἑνικῶν καὶ τὰ εἰς ι λήγοντα τρίτα τῶν πληθυντικῶν καὶ τὰς εἰς ι ληγούσας δοτικὰς τῶν
τοῦ μετρίου πιὼν μᾶλλον ἢ φαγών . τὰ δὲ γυμνάσια τρίτα τέτακται ὡς ἐπανορθούμενα τὴν ἀπὸ τῆς τροφῆς πλήρωσιν καὶ
6816054 εὐθυμετρικον
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
6795921 ποδιαια
δυσίν [ ὑπερμετρούντων καὶ ἡμίσεια ] , εἴη ἂν ἡ ποδιαία τῆς κατασκευασθείσης σφαίρας διάμετρος κεγχριαίαις διαμέτροις τὸ μῆκος ἀναπληρουμένη
δὲ τῇ προτεθείσῃ ῥητῇ εὐθείᾳ , εἴτε πηχυαία ἐστὶν εἴτε ποδιαία εἴτε παλαιστιαία ἢ δακτυλιαία , ἄπειροι σύμμετροι μήκει καὶ
6780699 υλβʹ
Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας
. . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ
6780338 συστελλομενα
συλλαβῆς , οἷον δεδεγμένος δέγμενος . Ἔκτασις δὲ ὅταν τὰ συστελλόμενα δίχρονα ἐκταθῇ , ὡς Ἄρες Ἆρες , ἢ ὄντα
καὶ τὰ προσπεφυκότα τῶν ζώων μόνης τῆς ἁφῆς κοινωνοῦντα ὁρᾶται συστελλόμενα καὶ διαχεόμενα , ὧν τὸ μὲν ἡδέος ἐστί ,
6765708 διμετρα
ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται Ἀνακρεόντεια ὡς κατακόρως τούτοις τοῦ
τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ χοριαμβικὰ εἰς βακχεῖον περαιούμενα δίμετρα : τὸ ιεʹ ἀναπαιστικὸν δίμετρον βραχυκατάληκτον : τὰ ιζʹ
6759128 τπδʹ
ὀβολοὺς μηʹ , θέρμους οβʹ , κεράτια ρμδʹ , χαλκοῦς τπδʹ , νομίσματα Ϛʹ . καλεῖται δὲ ἡ # τετρασάριον
καυθέντων καὶ σβεσθέντων ὕδατι καὶ διηθηθέντος τοῦ ὕδατος , ⋖ τπδʹ , τοῦτ ' ἔστι λι δʹ , κηροῦ ⋖
6736954 ἐμβαδομετρικους
. Ὁ ποὺς ὁ Πτολομαϊκὸς ἔχει εὐθυμετρικοὺς δακτύλους ιϚʹ , ἐμβαδομετρικοὺς σνϚʹ , στερεοὺς δὲ ͵δϘϚʹ . Ὁ δὲ Ῥωμαϊκὸς
σνʹʹ . Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ
6732758 ἑφθημιμερη
πέμπτα πενθημιμερῆ . τὰ δεύτερα καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια .
δὲ ζʹ ἑφθημιμερές . πάρεστι δ ' εἰπεῖν ] ὅμοια ἑφθημιμερῆ εʹ . ὁμόσποροι δῆτα ] ἀντισπαστικοὶ θʹ ἡμιόλιοι .
6729368 χαλκουϲ
, ὀβολοὺϲ ξʹ , θέρμουϲ Ϙʹ , κεράτια ρπʹ , χαλκοῦϲ υπʹ . ἔϲτι δὲ ὁ κύαθοϲ κοτύληϲ τὸ Ϛʹʹ
χʹ , θέρμουϲ Ϡʹ , κε - ράτια ͵αωʹ , χαλκοῦϲ ͵δωʹ [ ἄλλοι ͵γχʹ ] . ἡ Πτολεμαϊκὴ μνᾶ
6713187 ὀβολοϲ
κάρυον κεράτια ιηʹ . Τὸ γράμμα κεράτια ἕξ . Ὁ ὀβολὸϲ κεράτια τρία . Ἡ θέρμη κεράτιον ἓν ἥμιϲυ .
# Ϛʹ . Ἡ δραχμὴ ποιεῖ # γʹ . Ὁ ὀβολὸϲ ποιεῖ γράμμα ʂ . Τὸ ϲίκλον ἔχει # τὸ
6711050 πενταγωνοις
τις πρόληψίς ἐστιν εἰς ἐγγραφὴν καὶ περιγραφὴν πενταγώνων καὶ ἐν πενταγώνοις τῷ στοιχειωτῇ συμβαλλόμενον . ἐδείχθη τῆς μὲν ὑπὸ ΖΚΓ
τῆς ΚΛ . καὶ ὑπόκειται κʹ τρίγωνα τὰ ΔΕΖ ιβʹ πενταγώνοις τοῖς ΑΒΓ ἴσα : μεῖζον ἄρα τὸ εἰκοσάεδρον τοῦ
6703678 τμγ
στερεόν . ποιῶ οὕτως : κυβίζω τὰ ζ , γίνονται τμγ : ταῦτα δίς , γίνονται χπϚ : ταῦτα ἑνδεκάκις
Μο γ : αὐτοὶ δὲ οἱ κύβοι ὁ μὲν αος τμγ , ὁ δὲ βος κζ . β . Εὑρεῖν
6703241 οεʹ
καὶ ἀναδρομῆς μήτρας , Ἀσπασίας οδʹ . Περὶ ἐμπνευματώσεως μήτρας οεʹ . Περὶ ὑδρωπιώσης μήτρας οϚʹ . Περὶ μύλης ,
ἐπελογισάμεθα πάλιν διὰ δύο τῶν ὑποκειμένων . ἔτους μὲν γὰρ οεʹ κατὰ Χαλδαίους Δίου ιδʹ ἑῷος ἐπάνω ἦν τοῦ νοτίου
6702616 πτωτικα
φέρεται ἐπὶ τὰ ὁριστικὰ τῶν ῥημάτων , ὥστε τὰ συντασσόμενα πτωτικὰ ἢ ἄλλα τινὰ ἐν ὑπερβατῷ λαμβάνεσθαι . ὅτι καλῶς
τῶν ἄρθρων ἀποφήνασθαι , καθὸ αἱ προθέσεις μόνον ἐπὶ τὰ πτωτικὰ ἐφέροντο , οὐ μὴν ἠδύναντο παρακεῖσθαι τοῖς ἐπιρρήμασιν :
6699303 ἑβδομα
καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . μετροῦνται μέντοι καὶ κατὰ δύο
τοῖς καταγεγραμμένοις γνώμοσι λεπτὰ τέταρτα ιε πέμπτα β ἕκτα μϚ ἕβδομα Ϛ ὄγδοα θ , ἅτινα παρεῶνται ὡς λεπτότατον λίαν
6698884 ἀκαταληκτα
, καὶ ἀντισπαστικὰ πενθημιμερῆ καὶ ἑφθημιμερῆ καὶ ἡμιόλια καὶ δίμετρα ἀκατάληκτα καὶ τρίμετρα βραχυκατάληκτα , ὧν τελευταῖον “ μνήστορες ἐστέ
τῷ αʹ : τὸ ιʹ καὶ τὸ ιαʹ τροχαϊκὰ δίμετρα ἀκατάληκτα : τὸ ιβʹ καὶ ιγʹ , τὸ τῆς γυναικὸς
6698682 ρμδʹ
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς
6698342 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
6675320 ϘϚʹ
νίτρου . . . . . . . δραχ . ϘϚʹ θείου . . . . . . . δραχ
. ρϘβʹ στυπτηρίας ὑγρᾶς . . . . δραχ . ϘϚʹ νίτρου . . . . . . . δραχ
6674024 διπλασια
τῆς σφαίρας διάμετρος τῆς τοῦ τροπικοῦ διαμέτρου : ἡ ἄρα διπλασία τῆς διαμέτρου τῆς σφαίρας ἐλάσσων ἐστὶν ἢ τετραπλασία τῆς
τοῦ διπλασίου ; Δῆλον δή , ὦ Σώκρατες , ὅτι διπλασία . Ὁρᾷς , ὦ Μένων , ὡς ἐγὼ τοῦτον
6673873 λειπουσαις
. Προστιθέμενοι οἱ δ ἀριθμοὶ μὲν ταῖς υ μονάσι ταῖς λειπούσαις ἀριθμοὺς δ , γίνονται υ μονάδες τέλειαι , εἰ
μέρη τοῦ Ὑδροχόου γινομένη πρότερον ἔσται ταῖς εἰς ὅλας ἡμέρας λειπούσαις ὥραις Ϛ . ζητητέον ἄρα , ποῦ καὶ πότε
6655452 ρξθα
ποιοῦσι τξα ρξθα , καὶ τὰ γ ιγα ἀναλυθέντα εἰς ρξθα ποιοῦσι λθ ρξθα , καὶ γίνονται ὁμοῦ ρξθα υ
. Πάλιν τὰ ιθ ιγα ἐφ ' ἑαυτὰ ποιοῦσι τξα ρξθα , καὶ τὰ γ ιγα ἀναλυθέντα εἰς ρξθα ποιοῦσι
6647407 Ϡοβ
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν
6647109 ἰαμβικος
ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον
τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα
6637465 χοριαμβικων
. νενευκυῖαι . ὦ καλλιπύργου : ἑτέρα . . . χοριαμβικῶν ἐπιμεμιγμένων , ὡς τὰ τῆς στροφῆς καθ ' ἕκαστον
τὸ τέλος . νῦν δείξετον : εἴσθεσις . . . χοριαμβικῶν διαφόρως κεκολλημένων δέκα , ὧν τὸ πρῶτον δίμετρον ἀκατάληκτον
6633255 Εὐριπιδεια
, Ϛʹ , θʹ , δίμετρα καταληκτικὰ , ἤτοι ἑφθημιμερῆ Εὐριπίδεια , τὰ δὲ λοιπὰ ἀκατάληκτα : πλὴν τοῦ τελευταίου
τροχαικὸν διὰ τὰ ἑξῆς : τὰ ἑξῆς Ϛʹ τροχαικὰ ἑφθημιμερῆ Εὐριπίδεια : τὸ δὲ ηʹ ἀναπαιστικὸν μονόμετρον . ἐπὶ τῷ
6631058 ἀντιστοιχα
τὰ συστελλόμενα δίχρονα ἐκταθῇ ἢ τὰ βραχέα εἰς τὰ μακρὰ ἀντίστοιχα αὐτῶν μετασταθῇ , οἷον κᾰλός κᾱλός , Ἀ̆πόλλων Ἀ̄πόλλων
ὑμῖν ὑμίν , ἢ τὰ φύσει μακρὰ εἰς φύσει βραχέα ἀντίστοιχα μεταστῇ [ φυσίζωος φυσίζος λαοσῶος λαοσόος ] : ἀργῆτα
6619532 ἀντισπαστικα
† : . , : . , ἰαμβικοὶ τρίμετροι βʹ ἀντισπαστικὰ κῶλα δʹ ὅμοια τοῖς πρὸ αὐτῶν : ἔοικε δὲ
τὸ τίμιον ἔδαφος . ἑτέρα ἀντιστροφή . τὰ δὲ κῶλα ἀντισπαστικὰ τρίμετρα ὅμοια τοῖς ἄνω βʹ . τὸ δὲ γʹ
6618544 ἀσυνδετα
ὡς τὰ τούτου βραχύτερα τέτμηται καὶ καθόλου τὰ κομματικὰ καὶ ἀσύνδετα . [ , ] ἀλλὰ τὸ τοῦ Κεφάλου καλὸν
, οὗ τὸ ἀκόλουθον ἦν οὐκ ἠμέλει . Καὶ τὰ ἀσύνδετα τοῦ ἀφελοῦς ἐστι : λύει γὰρ τὸν ῥυθμόν .
6609573 ὀξυβαφα
κοτύλη χήμας μεγάλας α # , μύστρα μεγάλα γ , ὀξύβαφα δὲ δ , κυάθους δὲ Ϛ , χήμας μικρὰς
μέγα μύϲτρον κυάθουϲ τρεῖϲ . Ἡ κοτύλη καὶ τὸ τρυβλίον ὀξύβαφα δύο . Ὁ ξέϲτηϲ κοτύλαϲ δύο . Ὁ χοῦϲ
6606191 φιβʹ
, καὶ ταῦτα πάλιν ὀκτάκις τπδʹ , οὗ ἐπίτριτος ὁ φιβʹ , μεταξὺ δὲ τούτων δύο ἐπόγδοα , τοῦ μὲν
, τούτου δὲ υπϚʹ , ἀφ ' ὧν ἐπὶ τὰ φιβʹ ὁ λειμματιαῖος γίνεται λόγος . τινὲς δέ φασι μὴ
6598233 τριπλασια
ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [
ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ
6578694 ἡμιση
ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε
τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ
6578277 θερμουϲ
ἀπεψυγμένηϲ ; καὶ ἡμέαϲ ἄνδραϲ ποιέει ζωοῦϲα ἡ θορή , θερμούϲ , ἐνάρθρουϲ , λαϲίουϲ , εὐφώνουϲ , εὐθύμουϲ ,
ϲυνέβη τὸ ἄλγημα , καὶ ϲφοδρότερον μὲν ἐγγίγνεται διὰ τοὺϲ θερμούϲ τε καὶ ψυχροὺϲ χυμούϲ , μέτριον δὲ ἐπὶ τοῖϲ
6577449 ἰσομετρα
τὰ τοῦ χοροῦ ταῦτα κῶλα χοριαμβικά ἐστιν ιαʹ ὅμοια καὶ ἰσόμετρα τοῖς ἄνω . ἔστι δὲ ἀντιστροφὴ τῆς ἄνω στροφῆς
] ἀντιστροφή ἐστιν αὕτη τῆς ῥηθείσης στροφῆς καὶ ἔχει κῶλα ἰσόμετρα ἐκείνῃ εʹ . οὐ κομπάσαιμ ' ἂν ] τῆς
6576136 συγκεχυμενα
, ὅπερ εὐκρίνεια ἐν σαφηνείᾳ : ἐκείνη τε γὰρ τὰ συγκεχυμένα διευκρινεῖ πρὸς σαφήνειαν , ὡς ἐδείκνυμεν ἐν τῷ περὶ
νόμενα , ἀλλὰ τῷ ἑαυτοῦ ἑνὶ δεδεμένα καὶ ἔτι οἷον συγκεχυμένα , τοσοῦτόν γε προβληθέντα ὅσον ἐκεῖνο , μηκέτι ἓν
6574348 ὁλοκληρα
τοῖς τῶν ἄλλων συναναμίξῃ , τὰ μὲν τοῦ ἀετοῦ μένει ὁλόκληρα καὶ ἀνεπιβούλευτα , τὰ δὲ ἕτερα κατασήπεται , τὴν
φίλους εὖ ποιοῦντα καὶ ὅσαι ὧραι , τοὺς δὲ ἐχθροὺς ὁλόκληρα γένη καὶ ἔθνη μετασκευάσαντα εἰς εὔνοιαν ἐκ δυσμενείας .
6574080 ξδʹ
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν
6571537 παʹ
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν
6564234 ὑπογεια
Δήμοις . λέγειν δ ' ἔστι καὶ κατάγεια οἰκήματα καὶ ὑπόγεια . ἔνι δ ' εἰπεῖν λίθον σκληρὸν καὶ λίθον
δίδωσι , μάλιστα καὶ τοῦ περὶ ἀποδημίας κλήρου εἰς τὰ ὑπόγεια πίπτοντος . κἂν οἱ κλῆροι πάλιν ὅ τε τῆς
6558498 δοκιμα
κατ ' Ὀλυμπιάδας [ ? ] ὁρίσαι του . οὐ δοκιμα . τὸ προστα . ἔτι δύο μῆνας : ὅρα
κατ ' Ὀλυμπιάδας [ ? ] ὁρίσαι του . οὐ δοκιμα . τὸ προστα . ἔτι δύο μῆνας : ὅρα
6557770 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6555228 Σαδυαττεω
αὐτοῦ ἀδελφῆς γνήσιον Ἀλυάττην . . : Ὅτι Ἀλυάττης ὁ Σαδυάττεω υἱὸς , βασιλεὺς Λυδῶν , ἕως μὲν νέος ἦν
Βασιλεύοντος δὲ Μύρσου , Δάσκυλος ὁ Δασκύλου τοῦ σφαγέντος ὑπὸ Σαδυάττεω , μὴ τὴν ἐπιβουλὴν εἰς ἑαυτὸν ἐπισπάσηται ὑπὸ τῶν
6548945 ρηʹ
κεράμιον ἔχει ἐλαίου οἴνου μέλιτοϲ λι οβʹ λι πʹ λι ρηʹ [ ἀλ . ρκʹ ] ὁ χοῦϲ λι θʹ
τοῖς ιβʹ ζῳδίοις μερίζοντες ἀνὰ ἔτη θʹ εὑρήσομεν τὴν συμπλήρωσιν ρηʹ ἐτῶν : εἰ δὲ τοῖς ζῳδίοις προμερίζοντες ἐκ δευτέρου
6548398 ἐπιμερες
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον
6546029 ὑπερθετικα
τῶν παρωνύμων καὶ τὰ πατρωνυμικὰ καὶ συγκριτικά , ἔτι δὲ ὑπερθετικὰ καὶ ὑποκοριστικά . ὑπὸ τὴν αὐτὴν δέ ἐστι κατηγορίαν
προπαροξύνεται : φραστός ἄφραστος ἀλίαστος ἄλαστος . ὡσαύτως καὶ τὰ ὑπερθετικὰ : τάχιστος ἄριστος κάλλιστος μεθ ' ὧν ἕκαστος .
6540906 διῃρημενα
, οὕτως τὸ ΔΕ πρὸς τὸ ΕΘ . καὶ ἐπεὶ διῃρημένα μεγέθη ἀνάλογόν ἐστιν , καὶ συντεθέντα ἀνάλογον ἔσται :
μίαν Μύκονον ‚ ἐπὶ τῶν ὑπὸ μίαν γραφὴν ἀγόντων τὰ διῃρημένα τῇ φύσει . καὶ τοὺς φαλακροὺς δέ τινες Μυκονίους
6537581 πδʹ
λγʹ , μβʹ , νζʹ , ξαʹ , ογʹ , πδʹ , Ϙθʹ . ὁ δὲ τὸν γʹ ἔσται ἐν
δʹ ἡμερῶν , λοιπαὶ πδʹ ὧραι ιβʹ : τὰς οὖν πδʹ ἐὰν προσθῶμεν τῇ τοῦ Μεσορὶ Ϛʹ , ἔσται Φαωφὶ
6527799 πενταπλασιος
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν
6524003 χμη
αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη
γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉
6518575 ἑξαμηνου
τὴν στρατείαν , διδόασί τε οἱ Λακεδαιμόνιοι ὅσαπερ ᾔτησε καὶ ἑξαμήνου σῖτον . ἐπεὶ δὲ θυσάμενος ὅσα ἔδει καὶ τἆλλα
ὅλος ὁ κύων ἄνω ἐστὶ , καὶ γίνεται τοῖς ἐκεῖσε ἑξαμήνου φῶς τὰς νύκτας καὶ τὰς ἡμέρας . Ἕως οὗ
6505024 οβʹ
ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται
' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς ,
6498424 χωρι
ἀποβαλὸν τὸ ς οὐ δεόντως , ἀναλόγως βεβαρύνθαι ἐν τῷ χῶρι διατμήγουσιν : ἀναλογώτερά τε τὰ τοιαῦτα εἴη ἐν βαρείᾳ
Καλλίμαχος ἐν Ἑκάλῃ : οἵ νυ καὶ Ἀπόλλωνα παναρκέος Ἠελίοιο χῶρι διατμήγουσι καὶ εὔποδα Δηιώνην Ἀρτέμιδος . Δάλου κασιγνήτα :
6490977 ρκεʹ
υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος #
[ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ
6487940 κυβοκυβον
δύναμιν , ἐπὶ δὲ δυναμόκυβον , κύβον , ἐπὶ δὲ κυβόκυβον , δυναμοδύναμιν . Κυβοστὸν δὲ ἐπὶ μὲν ἀριθμόν ,
κύβον , ἐπὶ δὲ δυναμόκυβον , δυναμοδύναμιν , ἐπὶ δὲ κυβόκυβον , δυναμόκυβον . Δυναμοστὸν δὲ ἐπὶ μὲν ἀριθμόν ,
6483032 πεπε
καθεψώμενον καὶ πινόμενον ἢ καλαμίνθης ἀφέψημα μιγνυμένου μέλιτος ὀλίγου καὶ πεπέ - ρεως ⋖ α . ταῦτα μὲν οὖν ὀδύνης
μελικράτου . Καθαρτικὸν φλεγμαγωγὸν τοῦ Διογένουϲ . Εὐφορβίου # α πεπέ - ρεωϲ # α ἁλὸϲ ἀμμωνιακοῦ # α λειώϲαϲ
6480576 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6476108 ρκαʹ
τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ οὖν τῶν τεσσάρων
παρὰ τὰ ͵βφμα , γίνονται Ϙη δʹ ιαʹ λγʹ μδʹ ρκαʹ τξγʹ . Ἔτεμον σφαῖραν εἰς μέρη τέσσαρα καὶ εὑρέθη
6475929 ͵βμη
] ὑπερέχεται δὲ ͵αψκη . ιζʹ ͵αϠμδ σιϚ . ιηʹ ͵βμη ρδ : ἐπίτριτος τῶ ιεʹ : ὑπερέχει γὰρ αὐτοῦ
χιλιάρχης . αἱ δὲ δύο χιλιαρχίαι μεραρχία καλεῖται , ἀνδρῶν ͵βμη , καὶ ὁ τοῦ μέρους τούτου ἡγούμενος καλεῖται μεράρχης
6467557 ἀμεταβολα
ν , ρ , σ , διπλᾶ τε ὄντα καὶ ἀμετάβολα . Οὐδέποτε τὰ ἁπλᾶ σύμφωνα μετὰ τῶν διπλῶν συμφώνων
δὲ λακπάτητον σημαίνει τὸν ἀπὸ λακτίσματος τόπον πατούμενον . Τὰ ἀμετάβολα πρὸ τῶν ἀφώνων ἐν διαστάσει εἰσὶν , οἷον ἕρπω
6465723 ͵αρνβ
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ
6462965 ἐπωιδου
ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ τῶι τέλει τῆς ἐπωιδοῦ κορωνὶς καὶ παράγραφος . καὶ νὺξ ] τὴν νύκτα
στροφῆς καὶ ἀντιστροφῆς παράγραφος , ἐπὶ δὲ τῶι τέλει τῆς ἐπωιδοῦ κορωνὶς καὶ παράγραφος . Διὸς ] ἤγουν ἐκ Διὸς
6459510 ἑξηκοστα
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς
6456892 τριποδια
ἀπὸ μείζονος . τὸ ιʹ Ἀσκληπιάδειον . τὸ ιαʹ δακτυλικὴ τριποδία . τὸ ιβʹ ἰαμβικὸν ἑφθημιμερές . τὸ ιγʹ ἐξ
τροχαϊκῆς καὶ ἀντισπαστικῆς καὶ ἰαμβικῆς συζυγίας . Τὸ ιαʹ δακτυλικὴ τριποδία ἤτοι δακτυλικὸν τρίμετρον . ὡς δὲ ἐμοὶ δοκεῖ ,
6448396 τκδ
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη
6437965 πενταγωνα
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα .
6434835 ἀτροφα
φόβον . πόνοι : αἱ ἐνέργειαι . περιμάδαρα ἕλκεα : ἄτροφα καὶ ἀνώμαλα . προσάρματα : τροφαί . πόνοι σιτίων
τροφὴν ἡ δὲ πρὸς δύναμιν τοῦ γεννᾷν : ἔνια δὲ ἄτροφα γεννητικὰ δὲ , τὰ δ ' ἴσως ἀνάπαλιν .
6421876 νενεμημενων
τρίποδες εἰσηνέχθησαν πᾶσιν : οὗτοι δὲ ὅσον εἴκοσι κρεῶν μεστοὶ νενεμημένων . καὶ ἐπάγει : μάλιστα δ ' αἱ τράπεζαι
ἐφεστώτων , τῶν δὲ ἄλλων τῶν περὶ βασιλέα τοῖς ἐρύμασι νενεμημένων : Κρίτων ἐν τοῖς Γετικοῖς . . : Λέγει
6421681 ϲμηκτικα
τὸ διὰ βδελλίου καὶ ϲτύρακοϲ Φιλαγρίου ριδ Κολλύρια τραχωματικὰ καὶ ϲμηκτικά ριε Κολλύρια ἔνϲτακτα καλούμενα πρὸϲ ἀμβλυωπίαϲ ριϚ Κολλύριον τὸ
τὸ διὰ βδελλίου καὶ ϲτύρακοϲ Φιλαγρίου ριδ Κολλύρια τραχωματικὰ καὶ ϲμηκτικά ριε Κολλύρια ἔνϲτακτα καλούμενα πρὸϲ ἀμβλυωπίαϲ ριϚ Κολλύριον τὸ
6419778 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .

Back