| κρείττονος φωτός ; τοῦτο δὲ ἄστρα ὑποχωροῦντα ἡλίῳ καὶ μηδὲν ἡγούμενα πάσχειν μηδὲ ἀπόλλυσθαι διὰ τὴν ἐκείνου [ τοῦ θεοῦ | ||
| . καὶ τὴν αἰτίαν αὐτὸς ἀποδέδωκεν ὅτι τὰ μερικὰ καὶ ἡγούμενα ἀεὶ προτάττονται τῶν ἑπομένων καὶ καθολικωτέρων . δευτέραν δέ |
| ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
| τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
| ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
| εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
| μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
| ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
| καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
| ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
| τῶν ἑπομένων , οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα : ὅπερ ἔδει δεῖξαι . Ἐὰν πρῶτον πρὸς δεύτερον | ||
| αἵ τε ΒΔ καὶ ΒΕ τῆς ὁμαλῆς καὶ εἰς τὰ ἑπόμενα τοῦ ἐπικύκλου κινήσεως καὶ αἱ ΓΖ καὶ ΓΗ τῆς |
| τοῦθ ' ἡμῶν βλάψει τὸν λόγον ; Ὅτι προσαγορεύεις αὐτὰ ἀνόμοια ὄντα ἑτέρῳ , φήσομεν , ὀνόματι : λέγεις γὰρ | ||
| διαφορῆσαι . καὶ τοιαύτη μὲν ἡ τῶν ἀλειμμάτων χρεία . ἀνόμοια τούτοις κατὰ τὴν δύναμιν τὰ ἐντὸς προσάγεται , ὅπως |
| δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
| δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
| , δῆλον ποιήσουσι τῷ κυνηγέτῃ σὺν ταῖς οὐραῖς τὰ σώματα ὅλα συνεπικραδαίνουσαι , πολεμικῶς ἐπιφερόμεναι , φιλονίκως παραθέουσαι , συντρέχουσαι | ||
| κοινὸν καὶ πάσῃ χώρᾳ συμβαῖνον , τὸ μεταβάλλεσθαι καὶ τὰ ὅλα καὶ τὰ καθ ' ἕκαστα παρὰ τὰς τῶν ἐπικρατούντων |
| καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . μετροῦνται μέντοι καὶ κατὰ δύο | ||
| τοῖς καταγεγραμμένοις γνώμοσι λεπτὰ τέταρτα ιε πέμπτα β ἕκτα μϚ ἕβδομα Ϛ ὄγδοα θ , ἅτινα παρεῶνται ὡς λεπτότατον λίαν |
| ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
| μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
| μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
| οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
| παρακειμένων νησιδίων . Ἐν τῷ ἑβδόμῳ λέγει τῆς Εὐρώπης τὰ λειπόμενα μέρη : ἔστι δὲ τὰ πρὸς ἕω πέραν τοῦ | ||
| καὶ τῶν ἑξῆς μέχρι τῶν ἐσχάτων τῆς κινναμωμοφόρου : τὰ λειπόμενα καὶ συνεχῆ τοῖς ἔθνεσι τούτοις , ταῦτα δ ' |
| πιλήϲει τῶν δακτύλων εἰϲ τὸ κατὰ φύϲιν ἐπανέρχεται , τὰ λοιπὰ δὲ δυϲαρμόϲτουϲ ἔχει τὰϲ ἐξοχάϲ . εἰ τοίνυν διὰ | ||
| ἑαυτῶν , διέφθειραν . καὶ τοῦτον τὸν τρόπον καὶ τὰ λοιπὰ διηγησόμεθα . ἔστι δὲ καὶ οὕτω πρόσταξιν ποιήσασθαι , |
| τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
| . ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
| ἡ ΔΕΖ βάσις πρὸς τὴν ΑΒΓ βάσιν , οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλαττόν τι τῆς ΑΒΓΗ πυραμίδος στερεόν . | ||
| ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν , οὕτως τὸ τῆς ΔΕΖΘ πυραμίδος ὕψος πρὸς τὸ τῆς ΑΒΓΗ πυραμίδος ὕψος . |
| τὰ χρή - ματα εὑρίσκεται : ὅταν δὲ πολλοί , πολλαπλασία ἡ ἀργυρῖτις ἀναφαίνεται . ὥστε ἐν μόνῳ τούτῳ ὧν | ||
| ἑκάστης τῶν τοῦ ΑΒΓ ἢ πολλαπλασία ἢ καὶ μείζων ἢ πολλαπλασία κατὰ τοὺς δοθέντας ἀριθμούς . μʹ . Εἰς τὴν |
| παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
| γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
| γὰρ αὐτὸν καὶ β αὐτοῦ τέταρτα : λέγων γὰρ δύο τέταρτα ἥμισυ ποιεῖς καὶ οὐδὲν ἄλλο λέγεις ἢ ἡμιόλιον , | ||
| , τέταρτα : ἐπὶ δὲ τρίτα , πέμπτα : καὶ τέταρτα ἐπὶ δεύτερα , ἕκτα καὶ ἑξῆς καὶ τὸ ἀνάπαλιν |
| λόγον , ἐνταῦθα δὲ ἀνάπαλιν : φησὶ γάρ : εἰσὶν ὁμόλογα τὰ Α , Β καὶ Γ , Δ , | ||
| τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις , καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον |
| τῆς ἐνστάσεως ἢ τῆς ἀντιπαραστάσεως πρώτης τιθεμένης , ἀλλ ' ἐναλλὰξ τοῦτο πασχούσης ἑκάστης , ὃν τρόπον φαμὲν δεῖν ἀνασκοπεῖν | ||
| τὴν ΑΓ , οὕτως ἡ ΒΔ πρὸς τὴν ΔΓ , ἐναλλὰξ ὡς ἡ ΑΒ πρὸς τὴν ΒΔ , οὕτως ἡ |
| τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
| ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
| ἀλλήλας τῶν ἐξ ἐκείνων εὐθυγράμμων . ὁμοίως καὶ τὰ μήκει τετραπλάσια δυνάμει ἑκκαιδεκαπλάσιά εἰσιν : ἔχουσι γὰρ τετράκις τὸν τετραπλάσιον | ||
| τὸ ἀπὸ τῆς ΓΘ , τουτέστιν τὰ ἀπὸ τῶν ΓΕΘ τετραπλάσια τοῦ ἀπὸ ΘΚ , τὰ ἄρα ἀπὸ ΓΕ ΕΘ |
| ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
| πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
| ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
| κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
| , Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
| ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
| τῆς σφαίρας διάμετρος τῆς τοῦ τροπικοῦ διαμέτρου : ἡ ἄρα διπλασία τῆς διαμέτρου τῆς σφαίρας ἐλάσσων ἐστὶν ἢ τετραπλασία τῆς | ||
| τοῦ διπλασίου ; Δῆλον δή , ὦ Σώκρατες , ὅτι διπλασία . Ὁρᾷς , ὦ Μένων , ὡς ἐγὼ τοῦτον |
| , ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
| κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
| ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
| δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
| τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
| κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
| συντάξεως κατὰ τὸ ἑξῆς εἰρήσεται . . Ἐπεὶ οὖν τὰ ὑπόλοιπα τῶν μερῶν τοῦ λόγου ἀνάγεται πρὸς τὴν τοῦ ῥήματος | ||
| Ζυγός , Τοξότης , Ὑδροχόος , θηλυκὰ δὲ τὰ τούτων ὑπόλοιπα : Ταῦρος , Καρκίνος , Παρθένος , Σκορπίος , |
| ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
| [ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
| ἀλλ ' αὐτὸς καὶ ὁρῶν τὰ ὁρατὰ καὶ ἀκούων τὰ ἀκουστὰ γιγνώσκοις καὶ μὴ ἐπὶ μάντεσιν εἴης , εἰ βούλοιντό | ||
| μέρεσιν ἐνέργειαι , ὥσπερ τὰ ὁρατὰ τῆς ὁράσεως καὶ τὰ ἀκουστὰ τῆς ἀκοῆς , ἴσως δὲ καὶ τὰ νοητὰ τοῦ |
| ἀφαιρουμένων ρκη ἑξηκοστοτετάρτων , ἤτοι μονάδων δύο , καταλειπόμενα Ϙζ ἑξηκοστοτέταρτα ἔσται ὁ προστιθέμενος . . Προστιθέμενα γὰρ τὰ Ϙζ | ||
| ποιοῦσι ιε ὄγδοα . Ταῦτα ἐφ ' ἑαυτὰ ποιεῖ σκε ἑξηκοστοτέταρτα : ταῦτα ἴσα τῷ ἐλάττονι . Τῆς δὲ συνθέσεως |
| γέγραπται ὁ ΜΚΞΝ , ὁ ΜΚΞΝ ἄρα δίχα τεμεῖ τὰ ἀπειλημμένα τμήματα : ἴση ἄρα ἐστὶν ἡ μὲν ΑΕΚ περιφέρεια | ||
| αὐτῶν μέγιστος κύκλος γέγραπται ὁ ΛΕΜ , δίχα τεμεῖ τὰ ἀπειλημμένα τμήματα αὐτῶν : ἴση ἄρα ἐστὶν ἡ ΖΜ περιφέρεια |
| . ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
| ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
| τῷ αὐτῷ ὁμώνυμα ταὐτά εἰσι τῷ μέρει ἢ πέμπτα ἢ ἕκτα ἢ ἕβδομα ἢ ὄγδοα , τὰ δὲ τῷ αὐτῷ | ||
| καθ ' αὑτά , ἐπὶ δὲ Ἀφροδίτης καὶ Ἑρμοῦ τὰ ἕκτα αὐτῶν ληψόμεθα , καὶ τὰ γενόμενα ἐκθησόμεθα , ἐν |
| Ϛʹ τοῦ γʹ διπλάσια , τὰ δὲ ηʹ τοῦ Ϛʹ ἐπίτριτα : εἰς δ ' οὖν τὸ παρὸν κατὰ τοὺς | ||
| καὶ τῶν ἐννέα : τῶν γὰρ ἓξ τὰ μὲν ὀκτὼ ἐπίτριτα , τὰ δ ' ἐννέα ἡμιόλια . τὸ μὲν |
| μέν ἐστι προκαταρκτικὰ , τὰ δὲ προηγούμενα , τὰ δὲ συνεκτικά . καὶ τῶν νοσημάτων , τὰ μέν ἐστιν ὁμοιομερῆ | ||
| . ἀντὶ τοῦ εἰ μὴ ὅσον κατὰ τὰς τῆς ζωῆς συνεκτικά : ταῦτα γὰρ καὶ ἀναγκαῖα . συγγραφικῶς ἐρεῖν . |
| ἐπὶ δὲ τοῦ ἑτερομήκους αἱ μὲν διάμετροι ἴσαι καὶ τὰ ἐμβαδά , αἱ δὲ γωνίαι οὐ τέμνονται εἰς ἴσα ὑπὸ | ||
| ' ἐστίν , ἀλλ ' ἔχει τῇ δυνάμει μείζονα τὰ ἐμβαδά , ἤπερ φαίνεται . τὸ μεῖζον δὲ πλείονος χρόνου |
| ὀξεῖα . Διὰ τί μὴ καὶ τὸ τρίπλευρον καὶ τετράπλευρον πολύπλευρα ὠνόμασε ; πολλὰ γὰρ τὰ τρία καὶ τέτταρα . | ||
| καὶ τοιαῦτα , οἷα ἐπίπεδα ἡ γεωμετρία θεωρεῖ , μήτε πολύπλευρα οὕτω ποικίλα οἷα ἡ στερεομετρία ἐπισκέπτεται , ἢ γωνιῶν |
| καὶ τὰ τοιαῦτα . τῶν ὄντων ἄρα τὰ μέν ἐστι μεριστά , τὰ δὲ ἀμερῆ : τῶν δὲ μεριστῶν τὰ | ||
| τὰ οὐράνια , συνεχῆ ὄντα καὶ ἀπαθῆ , φθαρτικὰ καὶ μεριστά . οὐ μόνον δὲ τὰ μόρια τοῦ συνεχοῦς δυνάμει |
| πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ | ||
| κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν |
| τῷ γὰρ μὴ πάσας ἐξηγήσασθαι | , ἔτι καὶ τὰ συντάγματα , ἐν οἷς αὐτῶν ἑκάστη κατεγέγραπτο , σιωπῆς ἱκανῆς | ||
| ταῖς τόλμαις καὶ ταῖς ἐμπειρίαις ἀποβαίνουσιν . ἔστι δὲ ἕτερα συντάγματα τῆς πολιτείας τρία , τό τε τῶν νομέων καὶ |
| πέντε ὡς ἐν πλείοσιν ἐλάσσονα , καὶ ἐν τοῖς πέντε περισχεθήσεται τὰ τέσσαρα καὶ ἐν τοῖς τέτταρσι τὰ τρία καὶ | ||
| . εἰ δὲ ὅλα ὅλων ἅπτεται , σημεῖα ἐν σημείοις περισχεθήσεται καὶ τὸν αὐτὸν ἐφέξει τόπον . εἰ δὲ τὸν |
| ταὐτά , τῷ λόγῳ δὲ διαφέροντα ὡς ζητούμενά τε καὶ γινωσκόμενα . Διαφοραῖς χρησάμενος τῇ συνθέσει καὶ τῇ ἁπλότητι τέτταρα | ||
| παραληφθήσεται αὐτοῖς τοῖς ὀνόμασιν , καθὼς ἔφαμεν , οὐ μὴν γινωσκόμενα παραγωγὴν ἀναδέξεται ἐξ ὀνόματος τοῦ ἀναιροῦντος τὰς θέσεις τῶν |
| δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
| ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
| βιβλίων εἰς ἐπίκρυψιν μεμηχανῆσθαι , οὐχ ἥκιστα δὲ καὶ τὰ προκείμενα , πρῶτον μὲν διὰ τὴν συνήθη βραχυλογίαν , ἔπειθ | ||
| διὰ τούτων δείκνυσι . πάνυ δὲ ἀσαφῶς καὶ περινενοημένως τὰ προκείμενα ἀπαγγέλλει . ἔστι δ ' ὁ λόγος δι ' |
| ζῳδιακός , ἰσημερινά , τὰ δὲ τεταρτημόριον αὐτῶν ἑκατέρωθεν ἀπέχοντα τροπικά , καὶ τούτων τὸ μὲν πρὸς ἄρκτους ἐγκεκλιμένον σημεῖον | ||
| σημεῖα , τουτέστι τά τε δύο ἰσημερινὰ καὶ τὰ δύο τροπικά . ἐνταῦθα μέντοι τις ἀπορήσειεν ἂν ἤδη , τίνι |
| βάσιν , οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλαττόν τι τῆς ΑΒΓΗ πυραμίδος στερεόν . Λέγω δή , ὅτι οὐκ ἔστιν | ||
| ΑΒΓΗ πυραμίδα . ὡς δὲ τὸ Χ στερεὸν πρὸς τὴν ΑΒΓΗ πυραμίδα , οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλασσόν τι |
| , ἃ δὲ ὑπομνηστικῶς , ὡς τὰ διὰ σημείων τινῶν καταλαμβανόμενα : ἐνδεικτικῶς δὲ οὐδὲν καταλαμβάνεται , οὔθ ' ἑτέρῳ | ||
| τοῦτο σύμμετρον καὶ ἄμετρον μὴ φαινόμενον , τὰ ἐκ τούτου καταλαμβανόμενα φαίνοιτ ' ἄν ; εἰ δὲ δὴ καὶ πρὸς |
| ἐπὶ τὰ δυτικά : δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντι - στροφῇ | ||
| ἐπὶ τὰ δυτικά . δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντιστρόφῳ δὲ , |
| τοῦ φυτοῦ , ἔξωθέν τε τοῦ ϲώματοϲ ἐπιτιθέμενα καὶ εἴϲω λαμβανόμενα . Μῶλυ ἢ βήϲαϲα . Μῶλυ , ὅ τινεϲ | ||
| ϲυνήθη τροφήν . τὰϲ μέντοι πρώταϲ ἡμέραϲ βραχύτερα ἔϲτω τὰ λαμβανόμενα καὶ ὑγρότερα καὶ μηδὲν γλίϲχρον ἔχοντα : ἔϲτω δὲ |
| ΑΒΓΔ πυραμίδι πρίσματα πρὸς τὰ ἐν τῇ ΜΝ ΞΟ πυραμίδι πρίσματα πάντα ἰσοπληθῆ . Αἱ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι | ||
| ΑΔΕ , ΖΗΘ καὶ ἄλλα αὐτοῖς ἴσα τῷ πλήθει στερεὰ πρίσματα τρία τὰ ΑΒΓΔΕΜ , ΑΔΕΜ , ΖΗΘΝ σύνδυο λαμβανόμενα |
| τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
| ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
| τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
| γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
| , τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
| καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
| ἀριθμοῦ τινος κατὰ ἕτερον ἀριθμὸν διαίρεσις εἰς ἴσα τε καὶ ἰσοπλήθη ταῖς τοῦ ἀριθμοῦ μονάσι διαιρουμένου , εἴτε μονάδας ἐπὶ | ||
| ἀριθμοῦ τινος κατὰ ἕτερον ἀριθμὸν διαίρεσις εἰς ἴσα τε καὶ ἰσοπλήθη ταῖς τοῦ ἀριθμοῦ μονάσι διαιρουμένου , εἴτε μονάδας ἐπὶ |
| τὰς ἀντιλήψεις τῶν σωμάτων : τὰ μὲν γὰρ αὐτῶν εἶναι σκαληνά , τὰ δὲ ἀγκιστρώδη , τὰ δὲ κοῖλα , | ||
| τοῦ δὲ ὀκταέδρου ἐξ ὀκτὼ ὁμοίως διαιρουμένου ἑκάστου εἰς ἓξ σκαληνά , τὰ δὲ εἰκοσαέδρου ἐξ εἴκοσι . Τὸ δὲ |
| μέτειμι δὴ τῇ τάξει ἐπὶ τὴν ῥάχιν . Τῆς ῥάχεως ὑβώματα τὰ πρόσφατα ἐκ πληγῆς γινόμενα καταρτίζεται : πρὸς δὲ | ||
| τοῦ Ἱπποκράτους ὀργάνῳ καταρτίζονται , προηγουμένως δὲ τὰ τῆς ῥάχεως ὑβώματα : τῶν δὲ τῆς ῥάχεως ὑβωμάτων μάλιστα θεραπευτὰ νενόμισται |
| τοῖς κάτω . ἔστι γὰρ τὰ ἄνω τοῦ μέσου ὑπεναντίως κείμενα τοῖς κάτω . τοῖς γὰρ κατωτάτω τὰ μέσα ἐστὶν | ||
| : τὰ δὲ ξυμφέροντα , τὰ μὲν ὑπὸ τῶν νόμων κείμενα [ ] δεσμὰ [ ] τῆς φύσεως ἐστί [ |
| # . ἀκολούθως δὲ τούτοις καὶ τὰ κατὰ μῆκος μέσα κινήματα , ἵνα μὴ καὶ τὸ τῶν περιδρομῶν πλῆθος ἀναλύοντες | ||
| σπινθηρίζειν . Ξενοφάνης πάντα τὰ τοιαῦτα νεφῶν πεπυρωμένων συστήματα ἢ κινήματα . Ἀναξίμανδρος ἐκ τοῦ πνεύματος ταυτὶ πάντα συμβαίνειν : |
| , οὐδὲν αἰσθητὸν διάφορον ποιούσῃ παρὰ τὰ ἐκ τῶν γραμμῶν συναγόμενα , ἵνα μὴ πλείοσι σελιδίοις χρήσηται . Εἰ γάρ | ||
| ἐκ τοῦ αὐτοῦ χωριζόμενα δύο ἐστί , τὰ εἰς ταὐτὸ συναγόμενα καὶ ἀλλήλοις παρατεθειμένα οὐκ ἂν εἴη δύο . ἔχει |
| ἡ νηστεία τελεία . οὕτω δὲ ποιήσεις : συντελέσας τὰ προγεγραμμένα , ἐν ἐκείνῃ τῇ ἡμέρᾳ ᾗ νηστεύεις μηδὲν γεύσῃ | ||
| φαρμακεῖαι . Ζεὺς δὲ συνὼν ἢ μαρτυρῶν μετὰ ἀφροδισίας τὰ προγεγραμμένα ἐπιτελεῖ λεληθότως καὶ ἐπὶ μείζονα προβιβάζονται ὕπαρξιν , μάλιστα |
| καὶ πάλιν ἀνιστάμενοι κατὰ πρωὶ εὑρίσκομεν τὸν αὐτὸν ἐν ἀνατολαῖς ἀνατέλλοντα ; νουθέτησόν με πρὸς ταῦτα , εἰ σὺ εἶ | ||
| . Ἰνδῶν γὰρ ἡ γῆ γείτων ἡλίου : πρῶτοι γὰρ ἀνατέλλοντα τὸν θεὸν ὁρῶσιν Ἰνδοί , καὶ αὐτοῖς θερμότερον τὸ |
| ε τετράγωνα γ πεντάγωνα . ἔχουσι τὰ ιγ τετράγωνα ε ἑξάγωνα . ἔχουσι τὰ μγ τετράγωνα ιβ ἑπτάγωνα . ἔχουσι | ||
| Μάλιστα δ ' ἅπερ κακοποιῶν ἀστέρων , Τὰ δ ' ἑξάγωνα σὺν τριγώνοις ἰστέον Ἀγαθὰ μᾶλλον ἐξ ἀγαθῶν ἀστέρων : |
| ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
| ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
| ' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
| δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
| ἀναγομένη αὐτὴ καθ ' αὑτὴν λογίζεται οὐκέτι ὄντα τῇ αἰσθήσει καταληπτά , ὡς ὅταν τὴν οὐσίαν γνωρίζῃ τῶν αἰσθητῶν . | ||
| ἅπερ ἐκτὸς ὑπόκειται , τούτων τε τὰ μὲν ὁρατὰ ὁράσει καταληπτά ἐστι τὰ δὲ ἀκουστὰ ἀκοῆι καὶ οὐκ ἐναλλάξ , |
| πρὸς τὸ ποιὰ εἶναι , τὰ δ ' αὐτὰ τὰ προηγούμενα . οὕτως καὶ ἀνθρώπου οὐ τὴν ὕλην δεῖ τιμᾶν | ||
| διόπερ εἰ καὶ ὁ ἑλληνισμὸς διὰ δύο μά - λιστα προηγούμενα ἔτυχεν ἀποδοχῆς , τήν τε σαφήνειαν καὶ τὴν προσήνειαν |
| . Ἔτι δὲ καὶ ἄλλως τὰ πολλὰ προάγειν πέφυκε τὰ διακεκριμένα , τὸ δὲ ἓν ταῦτα συνάγειν εἰς ἕνωσιν . | ||
| φαίνηται τὰ διαχωρήματα τοῖς ἀφ ' ἕλκους φερομένοις μήτε πάντη διακεκριμένα , στοχάζεσθαι δεῖ μᾶλλον ἐν τοῖς μέσοις ἐντέροις εἶναι |
| , ὅτι ἀπὸ τοῦ ἐγκεφάλου φέρονται δύο νεῦρα τὰ ὀπτικὰ προσαγορευόμενα : διαφέρει δὲ ταῦτα τῶν ἄλλων νεύρων , ὅτι | ||
| πόσον τῆς ὁδοῦ διήνυσαν καὶ τί λείπεται , τὰ νῦν προσαγορευόμενα μίλια πρὸς Ῥωμαίων , τότε σημεῖα καλούμενα , οἱ |
| τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
| λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
| ͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
| ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
| πρὸς τὸν λεγόμενον καθ ' ὑπεραιώρησιν καταρτισμόν . τὰ δὲ διαπήγματα , ὥσπερ καὶ αὐτὸ δηλοῖ τοὔνομα , γέγονε πρὸς | ||
| ἐστιν αὕτη : γενόμενος δέ τις Ἡρόδοτος ἀνὴρ ὀργανικὸς τὰ διαπήγματα κατὰ τὰ ἐμπρόσθια μέρη κατὰ μεσότητας ἐκοίλανε σιγμοειδῶς , |
| συνάπτεται ; διὸ καὶ ἐπάγει τὸ ὁμοίως ἅπαντας , ὡς συναιρῶν ἅπαντας ἐν ταὐτῷ τῷ τῆς φιλίας ὀνόματι . καί | ||
| σημεῖα συνάγων ἓν σημεῖον ποιεῖς , οὕτως ἄπειρα ἕνα ὁμοῦ συναιρῶν , ἓν ποιεῖς τὸ πάντων περιληπτικώτατον . Πρὸς δὲ |
| μήδω Μήδεια , θέρω θέρεια , σαφῶ σάφεια . Τὰ ἀμφιβαλλόμενα κατὰ τὴν πρώτην συλλαβὴν ἔχοντα ἐν τῇ δευτέρᾳ συλλαβῇ | ||
| οὕτως ἔχοντος ὁ Πορφύριος λογικῇ μεθόδῳ χρησάμενος οὐχ ὁρίζει τὰ ἀμφιβαλλόμενα ἐξ ἀμφιβαλλομένων : τὸ γένος γὰρ ὁρίζων οὐκ ἠδύνατο |
| , καὶ τὰ κτήματα τοῦ ἀποθανόντος πάντα ἀποδόμενος ἀποδώσω τὰ ἡμίσεα τῷ ἀποκτείναντι , καὶ οὐκ ἀποστερήσω οὐδέν . Ἐὰν | ||
| δὲ τῶν γεωργουμένων τροφῶν σφισιν ἀπέφερον ἐς Σπάρτην πάντων τὰ ἡμίσεα . προείρητο δὲ καὶ ἐπὶ τὰς ἐκφορὰς τῶν βασιλέων |
| οὖσαν ταῖς συμπλοκαῖς , μέχριπερ ἂν πᾶσι τοῖς ἀγνοουμένοις τὰ δοξαζόμενα ἀληθῶς παρατιθέμενα δειχθῇ , δειχθέντα δέ , παραδείγματα οὕτω | ||
| ἀγαθὴν καὶ πράξεις ἐπαινετὰς τὴν εὐδαιμονίαν ὑπάρχειν . Ἐπιζητούμενα καὶ δοξαζόμενα καλῶς τὰ περὶ εὐδαιμονίαν ζητούμενα . οὕτω δὲ ταῦτα |
| ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
| ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
| φοβερά , μὴ ὡς οἱ εὐέλπιδες : ἐκεῖνοι μὲν γὰρ φαινόμενα μὲν φοβερὰ ὑπομένουσιν , ὄντα δὲ φεύγουσιν . ἀνδρειότερον | ||
| τά τε γὰρ διανοήματα σαφῆ καὶ ἁπλᾶ καὶ παντὶ ῥᾴδια φαινόμενα , τό τε εἶδος τῆς ἀπαγγελίας προσηνὲς καὶ κεχαρισμένον |
| καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
| ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
| τροχαιϊκόν . Ῥέει , ζέει , πλέει : Ἰακὰ ταῦτα διαιρούμενα . λέγε οὖν ῥεῖ , ζεῖ , πλεῖ . | ||
| ἅμα πάντα τὰ μέρη . διὰ τοῦτο δὲ τὰ ἄτομα διαιρούμενα οὐ σώζει τὸ οἰκεῖον εἶδος , ἐπειδὴ ὡς ὅλον |
| φέρεται ἐπὶ τὰ ὁριστικὰ τῶν ῥημάτων , ὥστε τὰ συντασσόμενα πτωτικὰ ἢ ἄλλα τινὰ ἐν ὑπερβατῷ λαμβάνεσθαι . ὅτι καλῶς | ||
| τῶν ἄρθρων ἀποφήνασθαι , καθὸ αἱ προθέσεις μόνον ἐπὶ τὰ πτωτικὰ ἐφέροντο , οὐ μὴν ἠδύναντο παρακεῖσθαι τοῖς ἐπιρρήμασιν : |
| τοῦ τριγώνου . διὰ τὸ ἰσογώνιον γίνεσθαι . , ] ἰσογώνια γίνονται τὰ τρίγωνα διὰ τὸ Ϛʹ τοῦ Ϛʹ . | ||
| : ἴση ἄρα : ὅπερ ἔδει δεῖξαι . ] Τὰ ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν |
| σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων | ||
| ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ |
| εἶναι , μόνας ἔχει ἐξ ἀρχῆς τὰς κοινὰς ἐννοίας οἰκεῖα ἐνεργήματα καὶ νοήματα ἀπηχήματά τινα ἐν ἑαυτῷ τοῦ ἁπλῶς ὑπάρχοντος | ||
| ἀλλὰ μετὰ δικαίων καὶ ταπεινῶν ἀναστραφήσῃ . Τὰ συμβαίνοντά σοι ἐνεργήματα ὡς ἀγαθὰ προσδέξῃ , εἰδὼς ὅτι ἄτερ θεοῦ οὐδὲν |
| αἰτίων ἢ τῶν ἀποβαινόντων . ἔστι δ ' ὡρισμένα καὶ τεταγμένα τἀγαθὰ τῶν κακῶν μᾶλλον , ὥσπερ ἄνθρωπος ἐπιεικὴς ἀνθρώπου | ||
| τούτοις Σάκαι : μετὰ δὲ τοὺς ἱππέας ἅρματα ἐπὶ τεττάρων τεταγμένα , ἡγεῖτο δ ' αὐτῶν Ἀρταβάτας Πέρσης . Πορευομένου |
| ἐζήτηται εἰ ὑπόκειται , τὰ δὲ ζητούμενα οὐκ αὐτόθεν ἐστὶ λήμματα , ἀλλὰ ὀφείλει διά τινος βεβαιωθῆναι . τὸ οὖν | ||
| μὲν ἄδηλόν ἐστι τὸ συμπέρασμα , ἄδηλα ἔσται καὶ τὰ λήμματα , εἰ δὲ πρόδηλά ἐστι τὰ λήμματα , πρόδηλον |
| Ζ Η σημεῖα τρίγωνον συνεστάτω τὸ ΛΜΝ : ἔσται ἄρα ἐκκείμενα τὰ ΘΚΛ ΚΛΜ ΛΜΝ τρίγωνα ἀντὶ τῶν ΓΔΕ ΔΕΖ | ||
| ἐπ ' αὐτῆς τίκτουσαι καὶ ἄλλαι σπαργάνοις κοσμοῦσαι , παιδία ἐκκείμενα , ποίμνια τρέφοντα , ποιμένες ἀναιρούμενοι , νέοι συντιθέμενοι |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| . τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν | ||
| ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί |
| τοῦ λέγεσθαι τὸν οἰκοδόμον ποιητικὸν αἴτιον . ὁμοίως δὲ καὶ συμπλεκόμενα καὶ ἁπλᾶ ὄντα τὰ αἴτια , οἷον Πολύκλειτος καὶ | ||
| . καὶ εἰ μὲν εἴποι τις ὅτι ταῦτα μόνα ἀλλήλοις συμπλεκόμενα τὸν λόγον αὐτοτελῆ ποιοῦσι , τὰ δὲ ἄλλα οὔ |
| οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
| καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
| ὁ ΛΜΝ γνώμων καὶ ] τὰ ΓΚ , ΘΗ τετράγωνα τριπλάσιά ἐστι τοῦ ΘΗ τετραγώνου . καί ἐστιν ὁ [ | ||
| ἡ ΝΟ : τὰ ἄρα ἀπὸ τῶν ΝΣ , ΣΟ τριπλάσιά ἐστι τοῦ ἀπὸ τῆς ΝΟ . ἴση δὲ ἡ |
| : πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
| τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
| τείχη τῶν πόλεων εἶναι σφαλερὰ πρὸς τὸν ἔσω προδότην , ἀσάλευτα δὲ τὰ τῆς ψυχῆς τείχη καὶ ἀρραγῆ . . | ||
| ἐν τροπικοῖς πάντων τῶν κακῶν : ἐν μὲν τοῖς στερεοῖς ἀσάλευτα μένει τὰ γενόμενα , μεταβάλλει δὲ ἐν τροπικοῖς , |
| καὶ τὸν Ἥλιον τῆς ἐξόδου καὶ τὰ τούτου τετράγωνα καὶ διάμετρα , καὶ εἰ μὲν ἀγαθοποιοὶ εἶεν ἐν τούτοις ἡ | ||
| δὲ καὶ καθ ' ἕκαστον ἔτος τὰ τετράγωνα καὶ τὰ διάμετρα σχήματα τῶν κακοποιῶν πρὸς τὸ λαχὸν ζῴδιον τὸν ἐνιαυτόν |
| κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
| αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
| τὰ ἐσχάτως ἐκεῖθεν ἀποτελούμενα . ταῦτα δὲ τὰ ἐν σώμασι θεωρούμενα , ἅ ἐστιν αἰσθητὰ καὶ καθ ' ἕκαστα , | ||
| ὅτι οὐκ ἔστι : τὰ γὰρ συμβεβηκότα μὴ ἐν ὑποκειμένῳ θεωρούμενα οὐκ εἰσί . ταῦτα μὲν οὗτοι . Ἔστι δὲ |
| , ὡς ἐν τοῖς προλαβοῦσιν εἰρήκαμεν , τὰ μέν ἐστι προκαταρκτικὰ , τὰ δὲ προηγούμενα , τὰ δὲ συνεκτικά . | ||
| πολλάκις ἡ ἀγρυπνία καὶ ἡ ἐκτάραξις τῆς γαστρὸς οὐχ ὡς προκαταρκτικὰ αἴτια ὑπάρχοντα νεκρῶδες ποιοῦσι τὸ πρόσωπον , ἀλλ ' |