τὰς ἀντιλήψεις τῶν σωμάτων : τὰ μὲν γὰρ αὐτῶν εἶναι σκαληνά , τὰ δὲ ἀγκιστρώδη , τὰ δὲ κοῖλα , | ||
τοῦ δὲ ὀκταέδρου ἐξ ὀκτὼ ὁμοίως διαιρουμένου ἑκάστου εἰς ἓξ σκαληνά , τὰ δὲ εἰκοσαέδρου ἐξ εἴκοσι . Τὸ δὲ |
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
οἱ ἐν τῷ λογιστικῷ . τρίγωνα μὲν γὰρ καὶ τετράγωνα διαστατά , ἀνθρώπου δὲ λόγος καὶ ζώου ἀμερῆ . καὶ | ||
ὀνομαζόμενα : σώματα δὲ τὰ αἰσθήσει ὑποπίπτοντα , τὰ τριχῇ διαστατά : πράγματα δὲ τὰ διανοίᾳ ληπτά : κοινὸν δὲ |
ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
τοῦθ ' ἡμῶν βλάψει τὸν λόγον ; Ὅτι προσαγορεύεις αὐτὰ ἀνόμοια ὄντα ἑτέρῳ , φήσομεν , ὀνόματι : λέγεις γὰρ | ||
διαφορῆσαι . καὶ τοιαύτη μὲν ἡ τῶν ἀλειμμάτων χρεία . ἀνόμοια τούτοις κατὰ τὴν δύναμιν τὰ ἐντὸς προσάγεται , ὅπως |
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
πάντες οἵ τε μιμηταί , πολλοὶ μὲν οἱ περὶ τὰ σχήματά τε καὶ χρώματα , πολλοὶ δὲ οἱ περὶ μουσικήν | ||
τῇ εὑρέσει τῶν τριῶν σχημάτων καὶ τῷ κατανοῆσαι ὅτι τρία σχήματά ἐστιν καὶ οὔτε πλέον οὔτε ἧττον , ὑφ ' |
Ὅτι μὲν οὖν τῶν εʹ σχημάτων τούτων ἃ δὴ καὶ πολύεδρα καλεῖται τὸ πολυεδρότερον αἰεὶ μεῖζόν ἐστιν φανερὸν ἐκ τῶν | ||
πολὺ πλέον τούς τε κώνους καὶ κυλίνδρους καὶ τὰ καλούμενα πολύεδρα ] . ταῦτα δ ' ἐστὶν οὐ μόνον τὰ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος | ||
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ |
πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ | ||
κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
γινώσκειν ὅτι αὐτὸς ἐπεξηγεῖται τί ἐστιν ἄκνηστις διὰ τοῦ εἰπεῖν μέσα νῶτα , ἤτοι ἡ ῥάχις , ἢ τὰ μέσα | ||
ἡ ΓΔ : δεικτέον , ὅτι καὶ ἡ ΓΔ δύο μέσα δυναμένη ἐστίν . Ἐπεὶ γὰρ δύο μέσα δυναμένη ἐστὶν |
μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
αἰτήματα αἰτήσασα καὶ συγχωρηθῆναι αὐτῇ ἀξιώσασα οὐδὲ συστῆναι δυνάμενασημεῖά τινα ἀμερῆ καὶ γραμμὰς ἀπλατεῖς καὶ τὰ τοιαῦτα , ἐπὶ σαθροῖς | ||
στοιχεῖα : ἀεὶ γὰρ ἀπὸ ψεύδους ἀρχόμενον τοῦ οὐκ ἔστιν ἀμερῆ τῶν ὄντων στοιχεῖα εἰς ἀληθὲς καταλήξει κατ ' αὐτὸν |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων . ὁ μὲν γὰρ ἐφεξῆς | ||
τούτων ἀδύνατόν ἐστιν εὑρεῖν ἄλλα σχήματα ἴσοις καὶ ὁμοίοις ἰσοπλεύροις πολυγώνοις περιεχόμενα μάθοι τις ἂν καὶ οὕτως . Πᾶσαν στερεὰν |
ε τετράγωνα γ πεντάγωνα . ἔχουσι τὰ ιγ τετράγωνα ε ἑξάγωνα . ἔχουσι τὰ μγ τετράγωνα ιβ ἑπτάγωνα . ἔχουσι | ||
Μάλιστα δ ' ἅπερ κακοποιῶν ἀστέρων , Τὰ δ ' ἑξάγωνα σὺν τριγώνοις ἰστέον Ἀγαθὰ μᾶλλον ἐξ ἀγαθῶν ἀστέρων : |
σχηματιζέσθω ἡ γυνὴ ἐπὶ δίφρου ὑπτία πρὸς αὐγὴν λαμπρὰν , συνημμένα ἔχουσα τὰ σκέλη πρὸς ἐπιγάστριον , καὶ μηροὺς ἀπ | ||
καὶ χιτῶσι περιεχόμενα πλείοσι , τὰ δὲ καὶ ἀλλήλοις πως συνημμένα καὶ κοινὴν περιοχὴν ἔχοντα καθάπερ καὶ τὰ τῶν ἀπίων |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
λόγον , ἐνταῦθα δὲ ἀνάπαλιν : φησὶ γάρ : εἰσὶν ὁμόλογα τὰ Α , Β καὶ Γ , Δ , | ||
τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις , καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον |
τῶν ἀδιαιρέτων στερεῶν ἕκαστον , ὁ δὲ ὡρισμένοις , ἐπεὶ ἀδιαίρετά γε ἀμφότεροι λέγουσι καὶ ὡρισμένα σχήμασιν . ἐκ δὴ | ||
, ὅσα καὶ κατὰ τὰς ὑποθέσεις καὶ κατὰ τὰ συμπεράσματα ἀδιαίρετά ἐστιν ἓν ἔχοντα τὸ δεδομένον καὶ τὸ ζητούμενον , |
καὶ παρθενών καὶ τὰ τοιαῦτα : ἔστι δὲ καὶ ἄλλα περιέχοντά τινα , οὐκ ἐξ αὐτῶν δὲ καλούμενα , ὡς | ||
, οἰκεῖται δ ' ἐν ὁμαλῷ , κύκλῳ δὲ ὄρη περιέχοντά ἐστιν οὐ μεγάλα . Κλειτορίοις δὲ ἱερὰ τὰ ἐπιφανέστατα |
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
καὶ πολυτελεστάτης πορφύρας καὶ πόλου ἀστέρας ἔχοντος καὶ τὰ δώδεκα ζῴδια . μίτραν δὲ χρυσόπαστον καυσίας ἁλουργῆ οὖσαν ἔσφιγγε ἐπὶ | ||
ἡ Παρθένος γεώδης ὑπάρχουσα τοῖς Ἰχθύσι : καὶ τὰ λοιπὰ ζῴδια τὴν αὐτὴν δύναμιν ἐφέξει πρὸς τὰ διάμετρα . Οὕτως |
οἱ δὲ εἰς μίαν φύσιν τιθέντες τὰ εἴδη καὶ τὰ μαθηματικά , οἱ δὲ τὰ μαθηματικὰ μόνον τούτων . , | ||
μὴ δέονται . ὅτι δὲ οὐκ ἔστιν ἐν τόπῳ τὰ μαθηματικά , φησὶν Ἀριστοτέλης ἐν τῷ ἐχομένῳ συγγράμματι : δηλοῖ |
ἐπὶ τὰ δυτικά : δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντι - στροφῇ | ||
ἐπὶ τὰ δυτικά . δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντιστρόφῳ δὲ , |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
: καὶ πικρία στόματος : αὐτοί τε τοὺς ὀφθαλμοὺς ταυρηδὸν σχηματίζοντες , πᾶσά τε ἀπειλὴ περὶ τὸ πρόσωπον , τάς | ||
Καὶ τοῖς σχήμασι δὲ προσχρῶνται δυνάμεις ἔχουσι , καὶ αὑτοὺς σχηματίζοντες ὡδὶ ἐπάγουσιν ἐπ ' αὐτοὺς ἀψοφητὶ δυνάμεις ἐν ἑνὶ |
πρὸς τὸν λεγόμενον καθ ' ὑπεραιώρησιν καταρτισμόν . τὰ δὲ διαπήγματα , ὥσπερ καὶ αὐτὸ δηλοῖ τοὔνομα , γέγονε πρὸς | ||
ἐστιν αὕτη : γενόμενος δέ τις Ἡρόδοτος ἀνὴρ ὀργανικὸς τὰ διαπήγματα κατὰ τὰ ἐμπρόσθια μέρη κατὰ μεσότητας ἐκοίλανε σιγμοειδῶς , |
οὕτω φωτίζει , ὥστε καὶ τὰ τῶν ἄλλων χρώματα ποιεῖν ὁρατά , τὸν πόρρω δὲ οὕτως , ὥστε ἑαυτὸ μόνον | ||
ὅπῃ τύχοι φέρεται , καὶ ὀφθαλμοὶ πρὸς πάντα ἀναπεπταμένοι τὰ ὁρατά , καὶ ἃ μὴ θέμις ὁρᾶν , ἐξώκειλαν , |
τὰ ἐσχάτως ἐκεῖθεν ἀποτελούμενα . ταῦτα δὲ τὰ ἐν σώμασι θεωρούμενα , ἅ ἐστιν αἰσθητὰ καὶ καθ ' ἕκαστα , | ||
ὅτι οὐκ ἔστι : τὰ γὰρ συμβεβηκότα μὴ ἐν ὑποκειμένῳ θεωρούμενα οὐκ εἰσί . ταῦτα μὲν οὗτοι . Ἔστι δὲ |
δέ , τῶν κλιμάτων ἐν παραλληλογράμμῳ σχήματι διαστελλομένων , τὰ ἐγγραφόμενα τρίγωνα καὶ μάλιστα ὅσα σκαληνὰ καὶ ὧν οὐδεμία πλευρὰ | ||
καὶ τῆς περιφερείας τετραπλάσιόν ἐστιν τοῦ κύκλου . τὰ γὰρ ἐγγραφόμενα τοῖς κύκλοις ἢ περιγραφόμενα ὅμοια πολύγωνα τὰς περιμέτρους ἔχει |
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ | ||
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
ἐπεὶ ὡς εἴρηται εὑρεθήσεται τὸ αὐτό : τὰ γὰρ δύο ἡμίση ἓν ποιοῦσι καὶ τὰ δύο ἕκτα τρίτον , ὥστε | ||
τῆς ΗΚ καὶ τῆς περιμέτρου τοῦ ΑΒΓ . καὶ τὰ ἡμίση πολύγωνα ἄνισα , ὥστε μεῖζον τὸ ΔΕΖ τοῦ ΑΒΓ |
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται , | ||
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ |
, καὶ τούτων λάμβανε τὸ λϚʹʹ , καὶ ἕξεις πήχεις ἐπιπέδους . Ἐὰν δὲ ᾖ τὸ μῆκος διὰ πήχεων , | ||
μήκη καὶ πρὸς ἑτέρων σύστασιν λαμβανόμενοι , ὁτὲ δὲ εἰς ἐπιπέδους , ὅταν ἐκ πολλαπλασιασμοῦ δύο ἀριθμῶν γεννηθῶσιν , ὁτὲ |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
, ὅτι ἀπὸ τοῦ ἐγκεφάλου φέρονται δύο νεῦρα τὰ ὀπτικὰ προσαγορευόμενα : διαφέρει δὲ ταῦτα τῶν ἄλλων νεύρων , ὅτι | ||
πόσον τῆς ὁδοῦ διήνυσαν καὶ τί λείπεται , τὰ νῦν προσαγορευόμενα μίλια πρὸς Ῥωμαίων , τότε σημεῖα καλούμενα , οἱ |
ἰσάκις γείνεσθαι [ , ἀλλ ] ' ἢ πλείων ? ἐλαττονάκις [ ] ? ? ? ἢ ἐλάττων ? [ | ||
τρίς , τὰ τοιαῦτα στερεὰ σχήματα πλινθίδες λέγονται ἰσάκις ἶσοι ἐλαττονάκις : ἐὰν δὲ καὶ μείζονα τὰ ὕψη τῷ τετραγώνῳ |
ἑξήκοντα ψήφοις . πόπανα : πλακούντια πλατέα καὶ λεπτὰ καὶ περιφερῆ . πρεσβύτερος Κόδρου : παροιμία ἐπὶ τῶν πάνυ παλαιῶν | ||
αὐτοῦ ἱστορεῖ οὕτως : πόα θαμνοειδής , ὀλίγα φύλλα ἔχουσα περιφερῆ , μείζονα ἡδυόσμου , μέλανα , λιπαρά , ἐγγίζοντα |
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον | ||
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον |
κρείττονος φωτός ; τοῦτο δὲ ἄστρα ὑποχωροῦντα ἡλίῳ καὶ μηδὲν ἡγούμενα πάσχειν μηδὲ ἀπόλλυσθαι διὰ τὴν ἐκείνου [ τοῦ θεοῦ | ||
. καὶ τὴν αἰτίαν αὐτὸς ἀποδέδωκεν ὅτι τὰ μερικὰ καὶ ἡγούμενα ἀεὶ προτάττονται τῶν ἑπομένων καὶ καθολικωτέρων . δευτέραν δέ |
ζῳδιακός , ἰσημερινά , τὰ δὲ τεταρτημόριον αὐτῶν ἑκατέρωθεν ἀπέχοντα τροπικά , καὶ τούτων τὸ μὲν πρὸς ἄρκτους ἐγκεκλιμένον σημεῖον | ||
σημεῖα , τουτέστι τά τε δύο ἰσημερινὰ καὶ τὰ δύο τροπικά . ἐνταῦθα μέντοι τις ἀπορήσειεν ἂν ἤδη , τίνι |
, οὐδὲν αἰσθητὸν διάφορον ποιούσῃ παρὰ τὰ ἐκ τῶν γραμμῶν συναγόμενα , ἵνα μὴ πλείοσι σελιδίοις χρήσηται . Εἰ γάρ | ||
ἐκ τοῦ αὐτοῦ χωριζόμενα δύο ἐστί , τὰ εἰς ταὐτὸ συναγόμενα καὶ ἀλλήλοις παρατεθειμένα οὐκ ἂν εἴη δύο . ἔχει |
ἐν ψυχῇ ὄντα συνέχεται ὑπ ' αὐτῆς μᾶλλον ἢ τὰ αἰσθητά . Ἄνεισι μὲν ἐπὶ τὸ ἐξ ἀρχῆς , ἐν | ||
αἰσθητὰ ἐφ ' ἑκατέρων ; τὰ μέν κτλ . τὰ αἰσθητά . τὰ δέ κτλ . τὰ ἐν τῇ διανοίᾳ |
ἀεὶ ὑπὸ μειζόνων καὶ ἐλασσόνων ? [ ] περιεχομένους πλευρῶν ἀπεικάσαντες τοῖς προμήκεσι σχήμασι προμήκεις ἀριθμοὺς ἐκαλέσαμεν . Ὅσαι μὲν | ||
τὸν μὲν δυνάμενον ἴσον ἰσάκις γίγνεσθαι τῷ τετραγώνῳ τὸ σχῆμα ἀπεικάσαντες τετράγωνόν τε καὶ ἰσόπλευρον προσείπομεν . Καὶ εὖ γε |
οὐχὶ δὲ καὶ ταῦτα μέν , οὐχὶ δὲ καὶ τὰ τέσσαρα καὶ οὕτω μέχρι τῶν δέκα : τὰ δὲ δύο | ||
τί ἐστι καὶ διὰ τί ἐστι . καὶ εἰκότως τὰ τέσσαρα ταῦτα ζητοῦμεν : τῶν γὰρ πραγμάτων τὰ μὲν ἀνύπαρκτά |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
παραλλήλους : καὶ τὰ μὲν καλεῖται τραπέζια , τὰ δὲ τραπεζοειδῆ . τῶν δὲ τραπεζίων τὰ μὲν ἴσας ἔχει τὰς | ||
δὲ λίθῳ κίονι τῇ περιφερείᾳ ἐκ τῶν ἐπιπέδων . Ἀναξιμένης τραπεζοειδῆ . Λεύκιππος τυμπανοειδῆ τῷ πλάτει , κοίλην δὲ τῷ |
♊ ♌ ♎ ♐ ♒ : ταῦτα καὶ ἑξάγωνα καὶ ἡμερινὰ καὶ ἀρσενικὰ καλοῦνται : ὁ δὲ ♉ καὶ ♋ | ||
τοῦ μεσημβρινοῦ γένωνται . καὶ τούτου δὲ δύο μέν ἐστιν ἡμερινὰ καὶ μὴ φαινόμενα , ὅταν τοῦ ἡλίου μεσουρανοῦντος ὑπὲρ |
ὀξεῖα . Διὰ τί μὴ καὶ τὸ τρίπλευρον καὶ τετράπλευρον πολύπλευρα ὠνόμασε ; πολλὰ γὰρ τὰ τρία καὶ τέτταρα . | ||
καὶ τοιαῦτα , οἷα ἐπίπεδα ἡ γεωμετρία θεωρεῖ , μήτε πολύπλευρα οὕτω ποικίλα οἷα ἡ στερεομετρία ἐπισκέπτεται , ἢ γωνιῶν |
τοσούτους γε ἂν ἀποτέμοι ὥστε μή τινας ἀπολείπεσθαι ὑψηλοτέρους τῶν ἀτμήτων ἀεὶ μενόντων . τοῦτο γὰρ δὴ τὸ σχετλιώτατον τῆς | ||
ταῖς χρείαις διαφέροντας : ὁ μὲν γὰρ ἐκ λίθων λογάδων ἀτμήτων συνῳκοδόμηται καὶ ἐν ὑπαίθρῳ παρὰ ταῖς τοῦ νεὼ προσβάσεσιν |
βʹ τὰ δʹ διπλάσια , τῶν δὲ δʹ τὰ Ϛʹ ἡμιόλια . ἵνα δὲ ἀναλόγως μέσον ᾖ , δεῖ αὐτὸ | ||
ἠέ καὶ τὸ ὀά ἰδίως τίθει ἐκτὸς τῶν κώλων ἰωνικὰ ἡμιόλια βʹ : τὸ δὲ γʹ χοριαμβικόν ἑφθημιμερῆ βʹ προσοδιακὸν |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
διάμετρον τμημάτων τοῦ ἐλάσσονος κύκλου κατὰ τῆς ἑτέρας τῶν πλευρῶν πρισμάτια μικρὰ ἴσα νεύοντα πρὸς ἄλληλά τε καὶ τὸ κέντρον | ||
αὐτόθεν καὶ προχείρως δύναται λαμβάνεσθαι . παραφέροντες οὖν τὸν τὰ πρισμάτια ἔχοντα κανόνα πρὸς τὴν σελήνην κατ ' αὐτὰς τὰς |
' ἄπειρον ἐκτεινομένων εὐθειῶν ὁδῷ , καθάπερ δηλοῖ τὰ ὑποκείμενα διαγράμματα . ὥστε δύο κατὰ συμβεβηκὸς γράφουσιν ἕλικας , τὴν | ||
Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι λαμβανόμενά ἐστιν εἰς |
ὑπὸ γῆν κέντρῳ πρὸς μεσημβρίαν . δηλοῦσι δὲ καὶ τὰ κέντρα τὴν ἔξοδον δι ' ἧς ἀναχωρήσουσι πύλης οἱ φεύγοντες | ||
δὲ Ὑδροχόος παραποταμίους καὶ ἑλώδεις . Τινὲς δὲ καὶ τὰ κέντρα ἐμέρισαν οὕτως : τὸ μὲν δῦνον τῷ φεύγοντι , |
εἰς ἀδύνατον ἀπαγωγῆς : διὰ ταύτης γὰρ φιλεῖ δείκνυσθαι τὰ ἀντίστροφα τῶν θεωρημάτων καὶ οὕτω φέρεσθαι . ἐν δέ γε | ||
τοῦ πρώτου ἐπὶ τὸ ἔσχατον ἔρχῃ , ἵνα τὰ ἀλλήλοις ἀντίστροφα ᾖ μετ ' ἀλλήλων . ταύτῃ γὰρ κελεύει τὸ |
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
κατὰ τοὺς τῶν ἡρμοσμένων καὶ συμφώ - νων φθόγγων λόγους διεστῶτα τὰ οὐράνια τῇ ῥύμῃ καὶ τῷ τάχει τῆς φορᾶς | ||
μετέχον τῆς ἰδέας , σημαινόμενον ἐκτίθενται καὶ κατὰ πολὺ ἀλλήλων διεστῶτα καὶ μηδεμίαν ἔχοντα κοινωνίαν , οἶόν τι καὶ ἐπὶ |
ἀκρατοῦς . ἔστι δὲ τὸ ἀληθές , ὅτι κατὰ τὰ ὑποκείμενα οὐ διαφέρουσι . καὶ ὁ ἐγκρατὴς γὰρ καὶ ὁ | ||
τὰ κινοῦντα τῶν κινουμένων . διότι φησὶ τὸ δὲ τὰ ὑποκείμενα μὴ εἶναι , ἃ ποιεῖ τὴν αἴσθησιν , καὶ |
τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
. ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
ἡ τοῦ παντὸς κίνησις ἡ ἀπὸ τῶν ἀνατολικῶν ἐπὶ τὰ δυτικά : δεξιὰ γὰρ καλεῖ ὁ Ὅμηρος τὰ ἀνατολικά , | ||
ἀεὶ φοιτῶσαι : λείπει χωρία . τὰ ποθέσπερα : τὰ δυτικά . ῥαγίζονται : λυμαίνονται , τρυγῶσι . τὰ Μίκωνος |
τῆς ἐλευθερίας ὥς φησι Δωρόθεος . ὁρατέον δὲ καὶ τὰ ἡμισφαίρια τό τε ὑπὲρ γῆν καὶ τὸ ὑπὸ γῆν : | ||
αὐτὸν καλοῦσιν . οἶδε δὲ Ἄρατος αὐτὸν διορίζοντα τὰ δύο ἡμισφαίρια : φησὶ γάρ : ἧιχί περΜίσγονται δύσιές τε καὶ |
# . ἀκολούθως δὲ τούτοις καὶ τὰ κατὰ μῆκος μέσα κινήματα , ἵνα μὴ καὶ τὸ τῶν περιδρομῶν πλῆθος ἀναλύοντες | ||
σπινθηρίζειν . Ξενοφάνης πάντα τὰ τοιαῦτα νεφῶν πεπυρωμένων συστήματα ἢ κινήματα . Ἀναξίμανδρος ἐκ τοῦ πνεύματος ταυτὶ πάντα συμβαίνειν : |
κατὰ φύσιν ἔχοντα καὶ ἐν τοῖς οἰκείοις τόποις ὄντα τὰ στοιχεῖα ἢ μένει ἢ κύκλῳ κινεῖται . . : κρατοῦντος | ||
φύσιν καὶ τὸν νοῦν , ὥστε πάντως φαίνεται τὰ σωματικὰ στοιχεῖα παραπλησίως ποιῶν Ἀναξιμάνδρῳ . Καὶ Ἀρχέλαος ὁ Ἀθηναῖος , |
τῇ αἰτίᾳ προσχρήσεται ὡς αὐτὰ καθ ' αὑτὰ περαινόμενος . ἔνυλα οὖν καὶ αὐτῷ τὰ εἴδη καὶ ἄλλως ἀχώριστα ἢ | ||
ἐὰν καὶ ἐπὶ τῶν ἀύλων οὕτω τοὺς ὅρους ληψόμεθα , ἔνυλα ἔσται τὰ ἄυλα . ἀλλὰ τοῦτο ἀδύνατον . οὐκ |
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ | ||
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν |
, ξυμμέτρως δὲ ἐκτετάσθω πρὸς τὰ ὕπερα , ὡς , ὀρθὰ ἑστεῶτα , τὸ μὲν παρὰ τὸν οὐδὸν ἐρείδηται , | ||
τοὺς πολεμίους περιθέοντας , ἀναπηδᾶν καὶ τὰ δόρατα ἐσπηδῶντας ἀνίσχειν ὀρθὰ ἐς τὰ πρόσωπα τῶν ἀνδρῶν : οὐ γὰρ οἴσειν |
, ἐπεὶ τῶν τινῶν τὰ μέν ἐστι σώματα τὰ δὲ ἀσώματα , δεήσει τὰ διδασκόμενα τινὰ ὄντα ἤτοι σώματα εἶναι | ||
φησιν ὁ ἡμέτερος φιλόσοφος Ἀμμώνιος . τὰ γὰρ εἴδη ὡς ἀσώματα οὐκ ἔχουσιν ἐν ἑαυτοῖς συμβεβηκότα : ὁ γὰρ λόγος |
: δεῖ δὲ τρίψαντα ἐν θυίᾳ παραχεῖν τοῦ ὕδατος τὰ μέτρα τὰ γεγραμμένα καὶ διέντα καὶ ἠθήσαντα ἐν τῷ ὕδατι | ||
τε διὰ τί ποσόν ; Μέτρα γάρ : τὰ δὲ μέτρα διὰ τί ποσὰ ἢ ποσότης ; Ἢ ὅτι ἐν |
ταὐτά , τῷ λόγῳ δὲ διαφέροντα ὡς ζητούμενά τε καὶ γινωσκόμενα . Διαφοραῖς χρησάμενος τῇ συνθέσει καὶ τῇ ἁπλότητι τέτταρα | ||
παραληφθήσεται αὐτοῖς τοῖς ὀνόμασιν , καθὼς ἔφαμεν , οὐ μὴν γινωσκόμενα παραγωγὴν ἀναδέξεται ἐξ ὀνόματος τοῦ ἀναιροῦντος τὰς θέσεις τῶν |
αἰτήματα καλοῦνται ὡς αἰτούμενα καὶ χρῄζοντα ἀποδείξεως . Τὰ αὐτὰ ἀξιώματα καλοῦνται καὶ κοιναὶ ἔννοιαι , κοιναὶ μὲν ἔννοιαι , | ||
γεωμετρῶν καὶ τὰ τῶν ἀριθμητικῶν καὶ τὰ τῶν ἄλλων ἐπιστημῶν ἀξιώματα , περὶ ὧν ἁπάντων οὐχ ἕτερός τις , ἀλλ |
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
καὶ Ἀριστοτέλης τέσσαρα εἶναι ζῴων γένη λέγουσι χερσαῖα ἔνυδρα πτηνὰ οὐράνια : καὶ γὰρ τὰ ἄστρα ζῷα εἶναι : καὶ | ||
ἡ τεκμηριώδης ἡ ἐκ τῶν ὑστέρων , ὡς σφαιροειδῆ τὰ οὐράνια , ὅτι καὶ ἡ σελήνη , ἡ δέ , |
παρακειμένων νησιδίων . Ἐν τῷ ἑβδόμῳ λέγει τῆς Εὐρώπης τὰ λειπόμενα μέρη : ἔστι δὲ τὰ πρὸς ἕω πέραν τοῦ | ||
καὶ τῶν ἑξῆς μέχρι τῶν ἐσχάτων τῆς κινναμωμοφόρου : τὰ λειπόμενα καὶ συνεχῆ τοῖς ἔθνεσι τούτοις , ταῦτα δ ' |
καὶ τετάρτης : καμφθέντος γὰρ τοῦ ἀγκῶνος , ἐπὶ πλεῖστον ἀσύμπτωτα μένει τὰ χείλη . Εἰ μὲν διὰ σφίγξιν βιαιοτέραν | ||
οἱ υΗΩΧ , ΦΘΨ ἐφαπτόμενοι τοῦ τυΦ κύκλου , ὥστε ἀσύμπτωτα εἶναι τὰ ἀπὸ τῶν υ , Φ ἡμικύκλια ὡς |
γωνία τῇ πρὸς τῷ Δ . Ἐν ἄρα τοῖς ἴσοις κύκλοις αἱ ἐπὶ ἴσων περιφερειῶν βεβηκυῖαι γωνίαι ἴσαι ἀλλήλαις εἰσίν | ||
ὦ παῖ : δεῖ γὰρ κλέπτεσθαι τοὺς ὀφθαλμοὺς τοῖς ἐπιτηδείοις κύκλοις συναπιόντας . οὐδὲ αἱ Θῆβαι ἀμάντευτοι : λόγιον γάρ |
συνώνυμον ἐπ ' αὐτῶν ἐφαρμόζει κατηγορίαν : τὰ μὲν γὰρ ἄτομα κατ ' οὐδενὸς ὑποκειμένου λέγεται , τὰ δὲ εἴδη | ||
μὴ πεπερασμένα δὲ τῇ φύσει καὶ τῇ γνώσει φαμὲν τὰ ἄτομα : ταῦτα γὰρ οὔτε τῇ φύσει πεπέρανται οὔτε τῇ |