ὡς καὶ ἐν Τιμαίῳ διδάσκει λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , | ||
δὲ τῶν ΕΖ , ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ , ΝΘ : λέγω , ὅτι ἐστὶν |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν | ||
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ |
ΒΑΔ κοινὴ τομὴ ἡ ΓΔ . καὶ ἐπεὶ δύο ἐπίπεδα παράλληλα τὰ ΕΘΖ , ΓΚΔ ὑπὸ ἐπιπέδου τινὸς τέμνεται τοῦ | ||
κακῶς ἡμᾶς ὑπογράφων τὰ μηδὲν ἐοικότα πρὸς μίμησιν βιαζόμενος καὶ παράλληλα κρίνων τὰ πλεῖστον διεστηκότα . εἰ γάρ με χρὴ |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν | ||
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
τοῦθ ' ἡμῶν βλάψει τὸν λόγον ; Ὅτι προσαγορεύεις αὐτὰ ἀνόμοια ὄντα ἑτέρῳ , φήσομεν , ὀνόματι : λέγεις γὰρ | ||
διαφορῆσαι . καὶ τοιαύτη μὲν ἡ τῶν ἀλειμμάτων χρεία . ἀνόμοια τούτοις κατὰ τὴν δύναμιν τὰ ἐντὸς προσάγεται , ὅπως |
μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων | ||
οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
πάντες οἵ τε μιμηταί , πολλοὶ μὲν οἱ περὶ τὰ σχήματά τε καὶ χρώματα , πολλοὶ δὲ οἱ περὶ μουσικήν | ||
τῇ εὑρέσει τῶν τριῶν σχημάτων καὶ τῷ κατανοῆσαι ὅτι τρία σχήματά ἐστιν καὶ οὔτε πλέον οὔτε ἧττον , ὑφ ' |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
τοῖς κάτω . ἔστι γὰρ τὰ ἄνω τοῦ μέσου ὑπεναντίως κείμενα τοῖς κάτω . τοῖς γὰρ κατωτάτω τὰ μέσα ἐστὶν | ||
: τὰ δὲ ξυμφέροντα , τὰ μὲν ὑπὸ τῶν νόμων κείμενα [ ] δεσμὰ [ ] τῆς φύσεως ἐστί [ |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
ἰσοϋψῆ : τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ παραλληλεπίπεδα πρὸς ἄλληλά ἐστιν ὡς αἱ βάσεις : καὶ τὸ | ||
αἱ βάσεις : ὅπερ ἔδει δεῖξαι . Τὰ ὅμοια στερεὰ παραλληλεπίπεδα πρὸς ἄλληλα ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν |
ἀκρατοῦς . ἔστι δὲ τὸ ἀληθές , ὅτι κατὰ τὰ ὑποκείμενα οὐ διαφέρουσι . καὶ ὁ ἐγκρατὴς γὰρ καὶ ὁ | ||
τὰ κινοῦντα τῶν κινουμένων . διότι φησὶ τὸ δὲ τὰ ὑποκείμενα μὴ εἶναι , ἃ ποιεῖ τὴν αἴσθησιν , καὶ |
ὀξεῖα . Διὰ τί μὴ καὶ τὸ τρίπλευρον καὶ τετράπλευρον πολύπλευρα ὠνόμασε ; πολλὰ γὰρ τὰ τρία καὶ τέτταρα . | ||
καὶ τοιαῦτα , οἷα ἐπίπεδα ἡ γεωμετρία θεωρεῖ , μήτε πολύπλευρα οὕτω ποικίλα οἷα ἡ στερεομετρία ἐπισκέπτεται , ἢ γωνιῶν |
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
καλεῖ ἐναντίας , διότι ποτὲ συναληθεύουσιν . εἶπεν δὲ τὰ δηλούμενα ἐκ τῶν τοιούτων προτάσεων ποτὲ ἐναντία εἶναι αἰνιττόμενος τὰ | ||
τῇ σάλπιγγι . καὶ σαφέστερα μὲν τυγχάνει ὄντα τὰ λέξει δηλούμενα , ὅτι καὶ παντὸς τοῦ νοῦ ἡ δήλωσις οὕτω |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
τοῦ φυτοῦ , ἔξωθέν τε τοῦ ϲώματοϲ ἐπιτιθέμενα καὶ εἴϲω λαμβανόμενα . Μῶλυ ἢ βήϲαϲα . Μῶλυ , ὅ τινεϲ | ||
ϲυνήθη τροφήν . τὰϲ μέντοι πρώταϲ ἡμέραϲ βραχύτερα ἔϲτω τὰ λαμβανόμενα καὶ ὑγρότερα καὶ μηδὲν γλίϲχρον ἔχοντα : ἔϲτω δὲ |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
ἔτη ἕως τοῦ ζητουμένου ἔτους , τουτέστιν ἔτη ͵αξη , παρακείμενα αὐτοῖς ἔν τε τῇ εἰκοσαπενταετηρίδι τῶν συνόδων καὶ τοῖς | ||
πυοποιήσεως , ἀτμῶν τινων δριμέων ἢ ποιότητος φερομένων ἐπὶ τὰ παρακείμενα μόρια , καὶ δάκνοντα καὶ ἀνιῶντα ταῦτα , γίνονται |
' εἰ μὲν πᾶσιν , καὶ ἀδυνάτοις ἐπιχειρήσομεν καὶ τὰ ἀντικείμενα παραδεξόμεθα : εἰ δὲ τισίν , εἰπάτωσαν ἡμῖν τίσι | ||
διό φησιν οὐ γάρ ἐστι μεταβολὴ εἰ μὴ εἰς τὰ ἀντικείμενα καὶ τὰ μεταξύ , ὥσπερ ἡνίκα ἐκ λευκοῦ γίνεται |
τε ὀστέα ἅπαντα τὰ ἐν τῷ πήχει , ὅτι ἰθυωρίην κατάλληλα εἶχε , τήν τε ὁμοχροίην , ὅτι αὐτὴ καθ | ||
. ἤδη δὲ τὰ μὲν νιτρώδη καὶ ἅλαϲ ἔχοντα κεφαλῇ κατάλληλα καὶ θώρακι ῥευματιζομένῳ καὶ ϲτομάχῳ καθύγρῳ καὶ ὑδρωπικοῖϲ οἰδήμαϲί |
τὰς ἀντιλήψεις τῶν σωμάτων : τὰ μὲν γὰρ αὐτῶν εἶναι σκαληνά , τὰ δὲ ἀγκιστρώδη , τὰ δὲ κοῖλα , | ||
τοῦ δὲ ὀκταέδρου ἐξ ὀκτὼ ὁμοίως διαιρουμένου ἑκάστου εἰς ἓξ σκαληνά , τὰ δὲ εἰκοσαέδρου ἐξ εἴκοσι . Τὸ δὲ |
οἱ δὲ εἰς μίαν φύσιν τιθέντες τὰ εἴδη καὶ τὰ μαθηματικά , οἱ δὲ τὰ μαθηματικὰ μόνον τούτων . , | ||
μὴ δέονται . ὅτι δὲ οὐκ ἔστιν ἐν τόπῳ τὰ μαθηματικά , φησὶν Ἀριστοτέλης ἐν τῷ ἐχομένῳ συγγράμματι : δηλοῖ |
τῆϲ κόρηϲ διήκοντα καὶ διὰ τοῦτο παραποδίζοντα τὸ ὁρᾶν , ἀφαιρούμενα ἐλευθεροῖ μὲν τὸν ὀφθαλμὸν τῶν ῥευματιϲμῶν . ἡ δὲ | ||
τὰ γὰρ ἀπὸ τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ |
φοβερά , μὴ ὡς οἱ εὐέλπιδες : ἐκεῖνοι μὲν γὰρ φαινόμενα μὲν φοβερὰ ὑπομένουσιν , ὄντα δὲ φεύγουσιν . ἀνδρειότερον | ||
τά τε γὰρ διανοήματα σαφῆ καὶ ἁπλᾶ καὶ παντὶ ῥᾴδια φαινόμενα , τό τε εἶδος τῆς ἀπαγγελίας προσηνὲς καὶ κεχαρισμένον |
αἰτήματα καλοῦνται ὡς αἰτούμενα καὶ χρῄζοντα ἀποδείξεως . Τὰ αὐτὰ ἀξιώματα καλοῦνται καὶ κοιναὶ ἔννοιαι , κοιναὶ μὲν ἔννοιαι , | ||
γεωμετρῶν καὶ τὰ τῶν ἀριθμητικῶν καὶ τὰ τῶν ἄλλων ἐπιστημῶν ἀξιώματα , περὶ ὧν ἁπάντων οὐχ ἕτερός τις , ἀλλ |
τὰ ἐσχάτως ἐκεῖθεν ἀποτελούμενα . ταῦτα δὲ τὰ ἐν σώμασι θεωρούμενα , ἅ ἐστιν αἰσθητὰ καὶ καθ ' ἕκαστα , | ||
ὅτι οὐκ ἔστι : τὰ γὰρ συμβεβηκότα μὴ ἐν ὑποκειμένῳ θεωρούμενα οὐκ εἰσί . ταῦτα μὲν οὗτοι . Ἔστι δὲ |
ταὐτά , τῷ λόγῳ δὲ διαφέροντα ὡς ζητούμενά τε καὶ γινωσκόμενα . Διαφοραῖς χρησάμενος τῇ συνθέσει καὶ τῇ ἁπλότητι τέτταρα | ||
παραληφθήσεται αὐτοῖς τοῖς ὀνόμασιν , καθὼς ἔφαμεν , οὐ μὴν γινωσκόμενα παραγωγὴν ἀναδέξεται ἐξ ὀνόματος τοῦ ἀναιροῦντος τὰς θέσεις τῶν |
καὶ παρθενών καὶ τὰ τοιαῦτα : ἔστι δὲ καὶ ἄλλα περιέχοντά τινα , οὐκ ἐξ αὐτῶν δὲ καλούμενα , ὡς | ||
, οἰκεῖται δ ' ἐν ὁμαλῷ , κύκλῳ δὲ ὄρη περιέχοντά ἐστιν οὐ μεγάλα . Κλειτορίοις δὲ ἱερὰ τὰ ἐπιφανέστατα |
ἐν τοῖς ἐπιπέδοις ἦν τὰ μὲν εὐθύγραμμα , τὰ δὲ κυκλικά , τὰ δὲ μικτὰ ὡς οἱ θυραῖοι καὶ αἱ | ||
τὰς δὲ δέκα σχέσεις , διαμετρικά τε καὶ σφαιρικὰ καὶ κυκλικά , μηδεμίαν δὲ ἰδιάζουσαν ἢ φυσικὴν ἄλλως παραλλαγὴν καθ |
τὸ αἴτιον φάσκοντες , οἷον τῆς χύσεως , οἱ δὲ κατηγορημάτων , οἷον τοῦ χεῖσθαι . διό , καθάπερ εἶπον | ||
συμβαινούσας διαθέσεις παρ ' αὐτοῖς συμβαμάτων προσαγορευομένων ἢ καὶ ἔτι κατηγορημάτων : καὶ τὸ μὲν ἀπαρτίζον τὴν διάνοιαν παρασύμβαμα , |
ξενοκτόνος καὶ ὁ ψευδόμαντις , οἶδα , ὅπως λυπεῖ σε ὁρώμενα ἐν τοῖς θεοῖς , καὶ μάλιστα ὁπόταν ἡ μὲν | ||
θερίζειν δὲ καὶ τρυγᾶν καὶ κλαδεύειν παρὰ μὲν τὸν καιρὸν ὁρώμενα τὰς πράξεις [ τὰς τοιαύτας ] καὶ τὰς ἐγχειρήσεις |
διαπέπρισται καὶ συνέχεται στροφώμασι καὶ περόναις , ἵνα ποτὲ μὲν ἡνωμένα , ποτὲ δὲ διὰ τῶν στροφωμάτων καμπτόμενα τὴν κατὰ | ||
ἀθρόα : ὁμοῦ πάντα , ὁμοῦ ὄντα , τάδε τὰ ἡνωμένα . κε : ἂν , ἐάν . τέκοιεν : |
ἢ καὶ ὕστερον : πάντα γὰρ ἐκ παραπλησίας αἰτίας ἐστὶ συνιστάμενα . Τῇ δ ' ἀμπέλῳ μάλιστα τοῦτο συμβαίνει δι | ||
γαστέρα , παύσεις τὸν στρόφον . Τὰ ἐν τῷ πνεύμονι συνιστάμενα πάθη ὄξος δριμὺ χλιανθὲν καὶ ἐγχυθὲν ἰᾶται : ἢ |
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
τῶν παραστατῶν καὶ μεσοστατῶν , γινόμεναι παρ ' αὐτὰ τὰ κενώματα τῶν κύκλων οὐ μικρὰν ἀσθένειαν παρέχουσι : πρὸς δὲ | ||
δὲ μιγνυμένου καλῶς ποιεῖ . Ἄλλη ποίησις : ῥοᾶς τὰ κενώματα ἑψεῖται σὺν τῇ φακῇ , καὶ λειοῦται ἰσχυρῶς ἄμφω |
δὲ ἐπ ' ἐδάφους ἔρεισις τοῦ ποδὸς ἄνθρακος λίθου πάντοθεν παλαιστιαία , κρηπῖδος ἔχουσα τάξιν κατὰ τὴν πρόσοψιν , ὀκτὼ | ||
προτεθείσῃ ῥητῇ εὐθείᾳ , εἴτε πηχυαία ἐστὶν εἴτε ποδιαία εἴτε παλαιστιαία ἢ δακτυλιαία , ἄπειροι σύμμετροι μήκει καὶ ῥηταὶ καὶ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
μέν ἐστι προκαταρκτικὰ , τὰ δὲ προηγούμενα , τὰ δὲ συνεκτικά . καὶ τῶν νοσημάτων , τὰ μέν ἐστιν ὁμοιομερῆ | ||
. ἀντὶ τοῦ εἰ μὴ ὅσον κατὰ τὰς τῆς ζωῆς συνεκτικά : ταῦτα γὰρ καὶ ἀναγκαῖα . συγγραφικῶς ἐρεῖν . |
, καὶ διὰ τούτου συνάγωμεν τὸ μὴ εἶναι πρόνοιαν : νοούμενα δὲ φαινομένοις , ὡς ὁ Ἀναξαγόρας τῷ κατασκευάζοντι λευκὴν | ||
πρῶτος νοῦς πρὸς τὴν ἐν τῇ ψυχῇ νόησιν καὶ τὰ νοούμενα : οὐ γὰρ ὢν ὅπερ ἐστὶν ἡ νόησις , |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
πρὸς τὸν λεγόμενον καθ ' ὑπεραιώρησιν καταρτισμόν . τὰ δὲ διαπήγματα , ὥσπερ καὶ αὐτὸ δηλοῖ τοὔνομα , γέγονε πρὸς | ||
ἐστιν αὕτη : γενόμενος δέ τις Ἡρόδοτος ἀνὴρ ὀργανικὸς τὰ διαπήγματα κατὰ τὰ ἐμπρόσθια μέρη κατὰ μεσότητας ἐκοίλανε σιγμοειδῶς , |
πᾶσι κοινὸν καὶ τὸ ὑγρὸν ἐνίοις , οὐ διὰ τοῦτο μικτὰ ἔσται τὰ αἰσθητήρια . οὐδὲ γὰρ ὁ ἔξω ἀὴρ | ||
μετρικὰ ἄτακτα , τὰ δὲ ἐξ ὁμοίων , τὰ δὲ μικτὰ συστηματικά , τὰ δὲ κοινὰ συστηματικά : περὶ ὧν |
μάθοις δ ' ἂν τὰ μὲν στοιχειώδη ὄντα διὰ ταύτης δεικνύμενα τοῖς Ἀρχιμήδους περὶ ἰσορροπιῶν ἐντυχὼν καὶ τοῖς Ἥρωνος μηχανικοῖς | ||
τῶν θείων τεκμηρίων κατὰ τὴν συγγένειαν τῶν πραγμάτων πρὸς τὰ δεικνύμενα σημεῖα συμβάλλει πως ἡ τέχνη καὶ στοχάζεται τὴν μαντείαν |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ | ||
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος |
πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ | ||
κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν |
' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
, ἀλλὰ ὁ ἐριστικός . ἔχει δὲ χώραν πρὸς τὰ γεωμετρικὰ διὰ τὸ μιμεῖσθαι τὴν διαλεκτικὴν περὶ παντὸς τοῦ προτεθέντος | ||
Θεόδωρε , φήσομεν ἀκηκοότες εἶναι τοῦ περὶ λογισμοὺς καὶ τὰ γεωμετρικὰ κρατίστου ; Πῶς , ὦ Σώκρατες ; Τῶν ἀνδρῶν |
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ | ||
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος |
ἀπείρου φύσιν καὶ τὸν νοῦν , ὥστε πάντως φαίνεται τὰ σωματικὰ στοιχεῖα παραπλησίως ποιῶν Ἀναξιμάνδρῳ . Εἰπόντος τοῦ Ἀναξαγόρου ὅτι | ||
παραδοὺς ἑκάστου αὐτῶν τὴν ἰδιότητα , μεταβαίνει λοιπὸν ἐπὶ τὰ σωματικὰ πάθη καὶ λέγει , πῶς χρὴ διαγινώσκειν ὑπὸ κόπου |
τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
ζῳδιακός , ἰσημερινά , τὰ δὲ τεταρτημόριον αὐτῶν ἑκατέρωθεν ἀπέχοντα τροπικά , καὶ τούτων τὸ μὲν πρὸς ἄρκτους ἐγκεκλιμένον σημεῖον | ||
σημεῖα , τουτέστι τά τε δύο ἰσημερινὰ καὶ τὰ δύο τροπικά . ἐνταῦθα μέντοι τις ἀπορήσειεν ἂν ἤδη , τίνι |
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
ὅμως ἄχρι τῆς προσηγορίας τὸ κοινὸν δίδωσι πρὸς τὰ ἰδίως καλούμενα ζῷα καὶ τῆς αὐτοκινήτου ψυχῆς μετεσχηκότα . δηλώσει δ | ||
καὶ εὐέκκριτα , οὐκ εὐστόμαχα δέ . τὰ δὲ Μορδιανὰ καλούμενα γίνεται μὲν κάλλιστα ἐν Ἀπολλωνίᾳ τῇ Μορδίῳ λεγομένῃ , |
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
, ἐπεὶ τῶν τινῶν τὰ μέν ἐστι σώματα τὰ δὲ ἀσώματα , δεήσει τὰ διδασκόμενα τινὰ ὄντα ἤτοι σώματα εἶναι | ||
φησιν ὁ ἡμέτερος φιλόσοφος Ἀμμώνιος . τὰ γὰρ εἴδη ὡς ἀσώματα οὐκ ἔχουσιν ἐν ἑαυτοῖς συμβεβηκότα : ὁ γὰρ λόγος |
χρωμάτων ἁπλᾶ καὶ διὰ τί τὰ μὲν σύνθετα τὰ δὲ ἀσύνθετα : πλείστη γὰρ ἀπορία περὶ τῶν ἀρχῶν . ἀλλὰ | ||
εἴπομεν . Τῶν γὰρ εἰς ηξ ὀνομάτων τὰ μὲν ἁπλᾶ ἀσύνθετα διὰ τοῦ Κ κλίνονται μύρμηκος , νάρθηκος , σκώληκος |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
ἐπὶ τρίτους καὶ ἐπὶ τετάρτους „ : ἐπὶ γὰρ τὰ ἀποτελέσματα καὶ ὡς ἂν ἔγγονα τῶν λογισμῶν στείχουσιν αἱ τιμωρίαι | ||
καὶ ἀσυνδέτου ὄντος τῷ ὡροσκόπῳ οὐχ ὁμοίως εὑρίσκομεν σύμφωνα τὰ ἀποτελέσματα . ὅταν οὖν μὴ εὕρωμεν καλῶς κείμενον τὸ τῆς |
οὕτω φωτίζει , ὥστε καὶ τὰ τῶν ἄλλων χρώματα ποιεῖν ὁρατά , τὸν πόρρω δὲ οὕτως , ὥστε ἑαυτὸ μόνον | ||
ὅπῃ τύχοι φέρεται , καὶ ὀφθαλμοὶ πρὸς πάντα ἀναπεπταμένοι τὰ ὁρατά , καὶ ἃ μὴ θέμις ὁρᾶν , ἐξώκειλαν , |
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
χαίρουσαν . εἰ δὴ τοιαύτη τίς ἐστιν , ἐχέτω τὰ δεδομένα , καὶ τὴν παιδείαν καὶ τὸν εἱρμὸν λόγου πρὸς | ||
ῥητὸν αὐτὸ εἶναι ἀπεφήναντο , ὥσπερ δοκεῖ ὁ Πτολεμαῖος , δεδομένα ἐκεῖνα προσαγορεύων , ὧν τὸ μέτρον ἐστὶ γνώρι - |
' ἐπεὶ ὁ μὲν τόδε , ὁ δὲ τόδε , ζητούμενά ἐστι διὰ τὸ πρὸς ἄλληλα διαφέρεσθαι . ὅμως καὶ | ||
τί τὸ μέσον ζητεῖται . καὶ τὰ διαλεκτικὰ δὲ προβλήματα ζητούμενά τινα ὄντα καὶ αὐτὰ τῇ τῶν ζητουμένων διαιρέσει τῇ |
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ | ||
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν |
ἐλέγχων ἀπαίτησις ἐν αὐτοῖς ἐκλείπει διὰ τὸ ἐξισάζεινπανταχοῦ δὲ τὰ ἰσάζοντα ἔφαμεν εἶναι ἀσύστατα , τῶν δὲ ἄλλων ἕκαστον ἀπὸ | ||
ἐξέτασιν τά τε ἀόριστα οἷον τὸ τίς , καὶ τὰ ἰσάζοντα δι ' ὅλου , οἷον δύο νέοι πλούσιοι εἰ |
, τὰ ὦτα τέτακται . τούτων δὲ τὰ μὲν ἀναπεπταμένα πτερυγώματα , τὰ δὲ ἀνακεκλασμένα εἰς τοὐπίσω ἐκ τῶν ἔμπροσθεν | ||
ὃν ὑμνεῖ ὁ οὐρανὸς τῶν οὐρανῶν , ὃν ὑμνοῦσι τὰ πτερυγώματα τοῦ χερουβίμ . ὁρκίζω σε τὸν περιθέντα ὄρη τῇ |
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , | ||
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , |
ἐζήτηται εἰ ὑπόκειται , τὰ δὲ ζητούμενα οὐκ αὐτόθεν ἐστὶ λήμματα , ἀλλὰ ὀφείλει διά τινος βεβαιωθῆναι . τὸ οὖν | ||
μὲν ἄδηλόν ἐστι τὸ συμπέρασμα , ἄδηλα ἔσται καὶ τὰ λήμματα , εἰ δὲ πρόδηλά ἐστι τὰ λήμματα , πρόδηλον |
ἐὰν δὲ μή , δίκαιον † . τὰ μὲν οὖν αἰτήματα ταῦτά ἐστι , διειλόμεθα δ ' αὐτῶν τὰς διαφοράς | ||
τοῖς λόγοις . καὶ εἰσὶν οὐχ ἁπλῶς ὑποθέσεις ταῦτα οὔτε αἰτήματα , ἀλλὰ πρὸς ἐκεῖνον μόνον τὸν διδόντα καὶ συγχωροῦντα |
τὴν γαστέρα λέγει . ἀρηρότα : συμπεπλεγμένα τὰ ὠὰ , ἡρμοσμένα τὰ ὠὰ , ὁμοῦ . Μόγις : μόλις : | ||
Τουτέστιν , ὅτι δι ' ὅλου οὐκ εἰσὶν τὰ ὀστᾶ ἡρμοσμένα ἀλλήλοις . κατὰ γὰρ τὸ μέσον ἐπικαμπῆ ὄντα οὐκ |
ἀλλήλοις ἑπόμενα ἐκ τοῦ ἐξ ἀλλήλων γίνεσθαι καὶ ἀλλήλων εἶναι αἰτιατά τε καὶ αἴτια . γῆς γὰρ βραχείσης ἐξ ὑετοῦ | ||
ἰδεῶν : τὰ μὲν γὰρ αἴτια ὑπάρχουσι , τὰ δὲ αἰτιατά . τὰ οὖν αἴτια [ τὰ ] ἐξῃρημένα ὑπάρχουσι |
λέγεται ] : Οὔκ , ὦ πάππε , ἀλλὰ πολὺ ἁπλουστέρα καὶ εὐθυτέρα παρ ' ἡμῖν ἡ ὁδός ἐστιν ἐπὶ | ||
ἄμφω τὰ πέρατα ἐφάπτηται τῆς περιφερείας . Ἐπεὶ παντὸς σχήματος ἁπλουστέρα ἐστὶν ἡ γραμμὴ διὰ τὸ ἐξ αὐτῆς ἢ αὐτῶν |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
, ἡ μορφὴ ἐπὶ τῶν φυσικῶν : εἰκόνες δὲ τὰ ἐπινοήματα τῶν φυσικῶν , καὶ διὰ τοῦτο * * ὑφειμέναι | ||
νοήματα τοῦ δράματος : ἢ αὐτὰ τὰ δράματα . Γ ἐπινοήματα τῶν δραμάτων . μετὰ τῶν μήλων : εἰώθασι γὰρ |
ἐρείδοντα βαστάζει ξύλα χελώνης τρόπῳ πάρορθα , ὅπως ἅπαντα τὰ ἐπιβαλλόμενα ὀλισθαίνῃ . Τρία δὲ ἢ τέσσαρα ἢ πέντε γενήσεται | ||
κνίσαι τὴν ἐπιφάνειαν παραλαμβανόμενα , καταπάσματα δὲ τὰ τοῖς ἕλκεσιν ἐπιβαλλόμενα , διαπάσματα δὲ τὰ ὑπὲρ εὐωδίας τοῦ χρωτός , |
ταῦτα παραλίπῃ τις , πῶς ἄρα καὶ γίνεσθαί φασι τὰ συγκρίματα ἐκ τῶν πρώτων στοιχείων , μήτε θίξεως καὶ ἁφῆς | ||
δ ' ἁπλᾶ † , τὰ δ ' ἐξ ἐκείνων συγκρίματα πάντα βάρος ἔχειν : κινεῖσθαι δὲ τὰ ἄτομα ποτὲ |
κρείττονος φωτός ; τοῦτο δὲ ἄστρα ὑποχωροῦντα ἡλίῳ καὶ μηδὲν ἡγούμενα πάσχειν μηδὲ ἀπόλλυσθαι διὰ τὴν ἐκείνου [ τοῦ θεοῦ | ||
. καὶ τὴν αἰτίαν αὐτὸς ἀποδέδωκεν ὅτι τὰ μερικὰ καὶ ἡγούμενα ἀεὶ προτάττονται τῶν ἑπομένων καὶ καθολικωτέρων . δευτέραν δέ |
τοῦ τριγώνου . διὰ τὸ ἰσογώνιον γίνεσθαι . , ] ἰσογώνια γίνονται τὰ τρίγωνα διὰ τὸ Ϛʹ τοῦ Ϛʹ . | ||
: ἴση ἄρα : ὅπερ ἔδει δεῖξαι . ] Τὰ ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν |
κριτήρια αὐτῶν διεστηκέναι ἀπ ' ἀλλήλων , ὡς τὰ μὲν διανοητὰ τῶν νοητῶν διαφέρειν , τὴν δὲ διάνοιαν τοῦ νοῦ | ||
καὶ συνεπαίρεται τῷ ἐνεργείᾳ νῷ , καταγίνεται δὲ περὶ τὰ διανοητὰ εἴτ ' οὖν τοὺς καθόλου τῶν πραγμάτων λόγους , |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
εἰ δὲ οὐδενός εἰσιν ἄξια , κλήρῳ τινὶ διανέμειν τὰ εὑρισκόμενα . Φιλοτιμεῖσθαι δὲ καὶ τοῖς σκουλκάτορσιν , τουτέστιν τοῖς | ||
ἐπιδέδωκεν ὑπὸ τῶν παραλαβόντων ὕστερον : τὰ δὲ ἐξ ἀρχῆς εὑρισκόμενα μικρὰν τὸ πρῶτον ἐπίδοσιν λαμβάνειν εἴωθεν , χρησιμωτέραν μέντοι |
βιβλίων εἰς ἐπίκρυψιν μεμηχανῆσθαι , οὐχ ἥκιστα δὲ καὶ τὰ προκείμενα , πρῶτον μὲν διὰ τὴν συνήθη βραχυλογίαν , ἔπειθ | ||
διὰ τούτων δείκνυσι . πάνυ δὲ ἀσαφῶς καὶ περινενοημένως τὰ προκείμενα ἀπαγγέλλει . ἔστι δ ' ὁ λόγος δι ' |
τοίνυν ἤτοι διὰ μὴ προσήκουσαν καὶ ἀναλόγως ἔχουσαν διάπλασιν καὶ στοιχειώδη χυμῶν δυσκρασίαν , καὶ ἔτι δι ' ἐπικρατήσασαν δυσκρασίαν | ||
τὸ δὲ μέλλον φοβούμεθα . Ἔστι δὲ πάθη ἁπλᾶ καὶ στοιχειώδη δύο , ἡδονή τε καὶ λύπη , τἆλλα δ |
εὐαζούσαις καὶ τιμώσαις τὸν θεόν : τὰς δὲ γυναῖκας κατὰ συστήματα θυσιάζειν τῷ θεῷ καὶ βακχεύειν καὶ καθόλου τὴν παρουσίαν | ||
καὶ ἐμμεταβόλου διοίσει , καθ ' ἣν διαφέρει τὰ ἁπλᾶ συστήματα τῶν μὴ ἁπλῶν . ἁπλᾶ μὲν οὖν ἐστι τὰ |
, Ἰσμάρῳ . Δύο δὲ πελάγη τὰ ἐκ τοῦ Ἀδρίου συναπτόμενά φασιν ὑποκεῖσθαι τῇ προειρημένῃ θαλάσσῃ , ὧν τὸ μὲν | ||
, Ἰσμάρῳ . Δύο δὲ πελάγη τὰ ἐκ τοῦ Ἀδρίου συναπτόμενά φασιν ὑποκεῖσθαι τῇ προειρημένῃ θαλάσσῃ , ὧν τὸ μὲν |
ἐκ πλειόνων συλλογισμῶν καὶ συμπερασμάτων συγκειμένοις συλλογισμοῖς οὐχ ἅπαντα τὰ συμπεράσματα κατὰ τοὺς συλλογισμοὺς ἀναγκαῖόν ἐστιν ἐν τῷ αὐτῷ γεγονέναι | ||
μέντοι τῶν Ἀποδεικτικῶν εἰπὼν ὡς ἐπὶ τῶν τὰ καθόλου καταφατικὰ συμπεράσματα συναγόντων συλλογισμῶν τό τε μεῖζον ἄκρον κατὰ τοῦ μέσου |
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
' ἄπειρον ἐκτεινομένων εὐθειῶν ὁδῷ , καθάπερ δηλοῖ τὰ ὑποκείμενα διαγράμματα . ὥστε δύο κατὰ συμβεβηκὸς γράφουσιν ἕλικας , τὴν | ||
Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι λαμβανόμενά ἐστιν εἰς |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
χωρὶς τοῦ μεγίστου τῶν παραλλήλων τοῦ ΕΖ , τῶν δὲ ἀπολαμβανομένων τμημάτων ἐν ἑνὶ τῶν ἡμισφαιρίων ἡμικυκλίων μὲν ἔσται μείζονα | ||
: ἑνὶ γὰρ στόματι πολλοὶ κλείονται λιμένες ἄκλυστοι , κόλπων ἀπολαμβανομένων ἐντός , ὥστ ' ἐοικέναι κέρασιν ἐλάφου τὸ σχῆμα |
δὲ καὶ τὰ διανοητά : ταῦτα δ ' ἐντὶ τὰ ἐπιστατὰ καὶ τὰ ἀποδεικτὰ καὶ τὰ καθόλω τὰ ὑπὸ τῶ | ||
δὲ καὶ τὰ διανοατά : ταῦτα δ ' ἐντὶ τὰ ἐπιστατὰ καὶ τὰ ἀποδεικτὰ καὶ τὰ καθόλω τὰ ὑπὸ τῶ |