ἀναγκαῖον . ὥσπερ γὰρ ἐπὶ τῶν καθόλου συζυγιῶν οἱ τὴν ἐλάττονα ἔχοντες ἀναγκαίαν οὐ συνῆγον ἀναγκαῖον , οὕτως καὶ ἐπὶ | ||
συμπέρασμα , καὶ πάλιν ἡ ἀντίφασις ἀκολουθήσει , εἴτε τὴν ἐλάττονα εἰς ὑπάρχουσαν μεταλάβωμεν , γίνεται ὁ συλλογισμὸς ἐκ δύο |
τὸν ἐλάσσονα λόγον ἔχῃ δεδομένον . Ἐπιτετάχθω δὴ τὸν μὲν μείζονα τοῦ ἐλάσσονος εἶναι γπλ . , τὸν δὲ ἀπὸ | ||
α Μο ξ μερίζοντα παρὰ ʂ β τὴν παραβολὴν ποιεῖν μείζονα μὲν Μο ια , ἐλάσσονα δὲ Μο ιβ ] |
μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
ἡμικυκλίου τμήματι . Λέγω , ὅτι καὶ ἡ μὲν τοῦ μείζονος τμήματος γωνία ἡ περιεχομένη ὑπό [ τε ] τῆς | ||
ἰαμβικὸν δίμετρον ἀκατάληκτον . Τὸ δʹ προσοδιακὸν ἐξ Ἰωνικοῦ ἀπὸ μείζονος καὶ χοριάμβου καὶ συλλαβῆς , ἤτοι δίμετρον ὑπερκατάληκτον . |
τούτων , ἐπάγει τί παθὼν πεποίηκεν , πολλῷ τῆς προσηκούσης ἐλάττω δίκην εἴληχα , νῦν τὸ συλληπτικὸν εἰς ἐπίτασιν ὁμολογούμενον | ||
τῆς δὲ παρ ' ἀμφοτέρων σπουδῆς τε καὶ τιμῆς οὐκ ἐλάττω σημεῖα τὰ δεύτερα : ἡ μὲν γὰρ σοφίᾳ νικᾶν |
ἄκρου . ὅτι ἐν τοῖς Σαμίοις ἐφάνη λευκὴ χελιδὼν οὐκ ἐλάττων πέρδικος . Φερεκύδης ὁ Σύριος ὑπὸ φθειρῶν καταβρωθεὶς ἐν | ||
ἔσται . εἰ γὰρ μή , ἔσται ἢ ἴσος ἢ ἐλάττων . ἔστω πρῶτον ἴσος . καὶ ἐπεὶ ὑπόκειται ἡ |
, θάλατταν ἐξ οὐρίων διαδραμεῖν , διὰ πολλῶν δὲ ἐμποριῶν μείζω καταστῆσαι τὰ ὄντα οὐκ εὐτυχές ; καὶ τί ἂν | ||
ἠρμένον τινὰ κακῶς τε πλούτῳ καὶ τύχῃ γαυρούμενον ὀφρύν τε μείζω τῆς τύχης ἐπηρκότα , τούτου ταχεῖαν νέμεσιν εὐθὺς προσδόκα |
ἀποφατικὴ ἐνδεχομένη κατὰ τὸν ἐνδεχομένου προσδιορισμὸν δύναται μεταληφθῆναι εἰς τὴν καταφατικήν . Ἐὰν δὲ ἡ μὲν μείζων τῶν προτάσεων καθόλου | ||
τὰ διαστήματα στερητικὰ τεθῇ , μεταληφθείσης τῆς ἐνδεχομένης ἀποφατικῆς εἰς καταφατικήν πάλιν τὰ αὐτὰ συνάγεται συμπεράσματα , οἷα καὶ αὐτόθεν |
[ καὶ καθ ' ὃ πίπτει σημεῖον ] καὶ τὴν ἐλαχίστην ἀποτεμνομένην ἀπὸ τῆς καθέτου μεταξὺ τῶν δύο σημείων τοῦ | ||
. τροφὴν δὲ τῷ σώματι παρέχουσιν αἱ μὲν ῥοιαὶ παντάπασιν ἐλαχίστην , αἱ δ ' ἄπιοι , καὶ μάλιστα αἱ |
ἔχοντα τὴν μείζονα καθόλου ἀποφατικὴν τὴν δ ' ἐλάττονα μερικὴν ἀποφατικήν . Τούτῳ γὰρ οὔτε παντί . πᾶν γὰρ ἐνδεχόμενον | ||
καὶ ἓξ συλλογιστικοί , οἱ μὴ ἔχοντες τὴν ἐλάττονα ἀναγκαίαν ἀποφατικήν . καὶ τούτων δ ἀτελεῖς , οἱ ἔχοντες τὴν |
δηλούμενα ὑπὸ τῆς φωνῆς . ἐὰν δὲ προσθῶμεν τὸ λογικὸν ἥττονα γίνεται , τὸ θνητὸν ἔτι ἥττονα , γραμματικὸν πολλῷ | ||
τὰ ἀγαθὰ τελειότερα προαγορεύει τὸ τοιοῦτον ὄναρ καὶ τὰ κακὰ ἥττονα . οἷος δέ ἐστι καὶ οἷος βλέπεται ἐν οὐρανῷ |
περὶ ψυχὴν τὸ αὐτὸν ἑαυτῷ εἶναι σπουδαῖον καὶ εὐδαίμονα . ἀνάπαλιν δὲ καὶ τῶν κακῶν τὰ μὲν περὶ ψυχὴν εἶναι | ||
καὶ τὰ ἶσα ἀπὸ ὡροσκόπου , τοῖς δὲ νυκτὸς τὸ ἀνάπαλιν . Ἕκτος κλῆρος τῆς Νίκης , ὃν ἀριθμήσεις τοῖς |
ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς | ||
διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν |
διπλάσιος , ὁ δὲ δεκαὲξ τοῦ δ τετραπλάσιος . Τὸ διπλασίονα λόγον ἔχει , ὡς πολλάκις πρόσθεν εἴρηται , ἴσον | ||
δή , ὅτι ὁ Η κύκλος πρὸς τὸν Θ κύκλον διπλασίονα λόγον ἔχει ἤπερ ὁ ΑΗΓΔ κῶνος πρὸς τὸν ΒΘΕΖ |
παρέχοντεϲ . ἐπὶ δὲ τῶν κλονωδῶν οὐδὲν τοιοῦτον , ἀλλὰ μείζων μὲν ἐπὶ τούτων ἐϲτὶν ἡ διαϲτολή , ὥϲτε τῶν | ||
κυλίνδρῳ , εἰ δὲ μείζων ὁ ἄξων τοῦ ἄξονος , μείζων καὶ ὁ κύλινδρος τοῦ κυλίνδρου , καὶ εἰ ἐλάσσων |
ἑνὶ ἑκάστῳ , τὴν τοῦ μείζονος ὁμοιότητα ἐν τῇ τοῦ ἐλάττονος ἰδέᾳ ἐπισκοποῦντες . Ἀλλά μοι δοκεῖς , ἔφη , | ||
ἥ τε ἐκ τῆς μείζονος μερικῆς ἀποφατικῆς ὑπαρχούσης καὶ τῆς ἐλάττονος καθόλου καταφατικῆς ἀναγκαίας καὶ ἡ ἐκ τῆς μείζονος καθόλου |
οὖν ἐστι ποσὸν ὃ ἀντεξεταζόμενον τῷ συζύγῳ οὔτε πλέον οὔτε ἔλαττόν τι ἔχει , ἄνισον δὲ ὃ καὶ αὐτὸ ἀντεξεταζόμενον | ||
γένους εἴδη ὄντα . ἰστέον ὅτι τὰ εἴδη ἐπ ' ἔλαττόν ἐστι τῶν γενῶν : οὐκοῦν εἰ τὰ γένη ἄπειρα |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
τὴν τῶν Ε Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι | ||
τὸν ἠδικημένον , καὶ προστεθὲν τῷ ἠδικημένῳ , ἰσότητα καὶ μεσότητα ἐποίησε . καὶ διὰ τοῦτο καὶ δίκαιον καλεῖται , |
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
συζυγίᾳ , εἰ ἀδύνατον εἴη , οὐ παρὰ τὸ τὴν ἐνδεχομένην εἰς ὑπάρχουσαν μετειλῆφθαι γίνεται ἀλλὰ παρὰ τὸ τὸ ἀντικείμενον | ||
, ἢ μᾶλλον , ὅτι μὴ δεῖ τὴν προστιθεμένην αὐτῇ ἐνδεχομένην τοιαύτην εἶναι ὡς ὁρίζειν τῆς ὑπαρχούσης τῆς πρὸ αὐτῆς |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
τοῦτον ἂν ζῆν τὸν βίον ἢ τὴν Σελεύκου τοῦ βασιλέως ὑπεροχήν . ῥοφεῖν φακῆν ἐσθ ' ἡδὺ μὴ δεδοικότα , | ||
Μο ε . καί εἰσιν ὧν τὸ ὑπὸ ποιεῖ τὴν ὑπεροχήν , ὃς μὲν ʂ α Μο α , ὃς |
. γίνεται δὲ ἐν ὀστρείῳ τινὶ παραπλησίῳ ταῖς πίνναις πλὴν ἐλάττονι : μέγεθος δὲ ἡλίκον ἰχθύος ὀφθαλμὸς εὐμεγέθης , φέρει | ||
τῷ ΚΟΛ [ ] τμήματι γωνία : ἡ γὰρ ἐν ἐλάττονι τμήματι γωνία . . μείζων : ἡ δὲ πρὸς |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
, τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς αβ , οὕτω καὶ ἐπὶ τῆς ἀνισότητος τῆς | ||
ΑΒΓ ἄλλο τρίγωνον συστήσασθαι τὴν ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἴσην ἑκατέρᾳ τῷ ΔΕ , ΔΑ καὶ |
ἐστι ψυχῆς : ἄψυχα δὲ αὐτὰ λέγομεν ὡς πρὸς τὴν μερικὴν ψυχὴν ἀφορῶντες : ἐπειδὴ γὰρ οὐχ ὁρῶμεν ἔχοντα αὐτὰ | ||
τῇ ἡμετέρᾳ τῇ μερικῇ : ψυχὴν γὰρ εἴωθε πολλάκις τὴν μερικὴν καλεῖν : πόνον δὲ αὐτὴν πονεῖν διὰ τὴν μαρμαρυγὴν |
ὅταν δὲ ἡ στερητικὴ πρότασις ἀναγκαία ᾖ ἡ δὲ καταφατικὴ ἐνδεχομένη , δηλονότι ἐναντίως τῇ πρὸ αὐτῆς συζυγίᾳ τὸ συμπέρασμα | ||
καταφατικαῖς . ὅταν δὲ ἡ μὲν ὑπάρχουσά ἐστιν ἡ δὲ ἐνδεχομένη , ὅταν ἡ καταφατικὴ πρότασις ὑπάρχουσά ἐστιν , οὐδέποτε |
ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα | ||
ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς |
Μο λ . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ μὲν ἐλάσσων Μο λ , ὁ δὲ μείζων Μο ο , | ||
τὸ φανερὸν ἡμισφαίριον . ἀλλ ' ἔστω ἡ ΕΖ περιφέρεια ἐλάσσων τεταρτημορίου : καὶ ἡ ΕΚ ἄρα ἐλάσσων ἐστὶ τεταρτημορίου |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
δὲ μιᾷ ἀδύνατον . πῶς οὖν διὰ τῶν προειρημένων τοῦτο συνάγεσθαι φήσομεν ; ἢ ὅτι τῇ καθόλου ὡς καθόλου καταφάσει | ||
ἡ ΖΓ εὐθεῖα , ὥστε καὶ τὴν μὲν ΕΓ ὅλην συνάγεσθαι λ κε μϚ , τὸ δὲ ὑπὸ τῶν ΕΓ |
' ἂν αὐτοῦ . δανειστῇ δὲ καὶ τραπεζίτῃ καὶ ἐρανάρχῃ πλείονα τὴν τῶν χρημάτων συλλογὴν μαντεύεται . καὶ γὰρ τὰ | ||
τῶν ἀνθρώπων ἡγεμονεύσαντας καὶ διοικητὰς τῶν κοινῶν πραγμάτων γενομένους , πλείονα δύναμιν αὑτοῖς περιθέντας καὶ τιμὴν πρὸς τὸ ὑπακούειν τὰ |
οὐκ ἂν εἴη αὐτῶι παράλογον ἀντιποιουμένωι τῶν πρωτείων , οὐκ ἐλαττόνων μὲν ἢ δισμυρίων ἐπῶν τοὺς ἐπιδεικτικοὺς τῶν λόγων συγγραψαμένωι | ||
προσφερομένων . τὸ δὲ ῥᾴδιον συνίσταται ἐκ τούτων , τοῦ ἐλαττόνων πόνων ἢ δαπάνης ἢ κινδύνων ἤ τινος ἄλλου τῶν |
αὐτῆς εἴδει ὁμοίῳ τῷ ΒΗ τῷ παραβληθέντι παρὰ τὴν ἑτέραν ἡμίσειαν τῆς ΑΒ , καὶ ἑξῆς τὸ θεώρημα . τὸ | ||
κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς δυτικῆς μοίρας : ὅπου δ ' |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
ΓΔ , ἐλαχίστη δὲ ἡ ΑΒ , ἀεὶ δὲ ἡ ἔγγιον τῆς ἐλαχίστης ἐλάσσων τῆς ἀπώτερον , δύο δὲ μόνον | ||
ΜΞ μεγίστη , ἡ δὲ ΜΑ ἐλαχίστη , ἡ δὲ ἔγγιον τοῦ κέντρου τῆς ἀπώτερον μείζων : μείζων ἄρα ἐστὶν |
συμπαραλάβοι δ ' ἄν τις ἐνταῦθα καὶ τὴν τῶν αἰσθήσεων παραλλαγήν : ἄλλοι γὰρ ἄλλων εἰσὶν ὀξυωπέστεροι , καὶ ὃν | ||
γὰρ τὰ μεταξὺ ἀρετῆς καὶ κακίας ἀδιάφορα μὴ ἔχειν μηδεμίαν παραλλαγήν , μηδὲ τινὰ μὲν εἶναι φύσει προηγμένα , τινὰ |
ἐκεῖσε ἀναλισκομένου , οὐδέν τι ἐπιφαίνεται . τοῦ δὲ χρόνου προσθήκην τε αὐτῇ καὶ ὄγκον τῇ γαστρὶ ἐπάγοντος , πλάνη | ||
. νῦν δ ' ἔνιοι πλεονάσαντες ἐν τοῖς ῥητορικοῖς λόγοις προσθήκην ἐποιήσαντο τὴν ὅλην ἱστορίαν τῆς δημηγορίας . λυπεῖ δ |
κατὰ τοῦ ὑπάρχοντος . Πάλιν ἔστω ἡ μείζων πρότασις ἐνδεχομένη ἀποφατική , ἡ δὲ ἐλάττων ἀναγκαία καταφατική : φημὶ οὖν | ||
γὰρ δι ' ἀντιστροφῆς δείκνυνται , ὅτε ἡ ἐλάττων ἐνδεχομένη ἀποφατική ἐστιν , ἢ δι ' ἀδυνάτου , ὅτε ἡ |
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
ἐς βάθος τῷ ἀριθμῷ ἐνδέον : ὥστε ἤδη τινὲς καὶ τριπλασίονα τὸν ἀριθμὸν τῶν ἐν τῷ μήκει ταττομένων ἐποίησαν πρὸς | ||
στερεὸν πολύεδρον πρὸς τὸ ἐν τῇ ἑτέρᾳ σφαίρᾳ στερεὸν πολύεδρον τριπλασίονα λόγον ἔχει , ἤπερ ἡ τῆς ΒΓΔΕ σφαίρας διάμετρος |
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
, ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς | ||
, ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ |
ἀλλὰ πολὺν καὶ ὀλίγον . ἔτι τὸ μὲν πλεῖον καὶ τοὔλαττον ἀριθμῷ κρίνεσθαι , χρόνῳ δὲ τὴν πλείω καὶ ἐλάττω | ||
' ἐπιμήνια μὴ ἴῃ , ἢ φλαύρως , ἢ ἐπὶ τοὔλαττον , πρὸς πλείονα κάθαρσιν τρέπεσθαι πρὸς τοῖσιν ἄλλοισιν ἅπασι |
τετράκις ὀκτάκις ἢ τρὶς πεντάκις δωδεκάκις ἢ κατά τινα ἄλλην ἀνισότητα τοιαύτην . τὰ δὲ τοιαῦτα στερεὰ σχήματα λέγεται σκαληνὰ | ||
, καὶ ταύτην τὴν διὰ τὴν βλάβην ἢ τὴν ἀδικίαν ἀνισότητα [ λέγει ] γινομένην ἐπανορθοῦν πειρᾶται καὶ ἐς τὸ |
τοῦ ἀλλά . κατὰ πρόσληψιν δὲ καλεῖ ὁ Ἀριστοτέλης τὴν πρότασιν τὴν ἰσοδυναμοῦσαν συλλογισμῷ τὴν δύο ὅρους ἐνεργείᾳ ἔχουσαν καὶ | ||
πάντων αὕτη κατασκευάζεται : διὰ τοῦτο οὖν αὐτὴν ἐκάλεσάν τινες πρότασιν κεφαλαίου ἤτοι ἀφορμὴν ἀποδείξεων : εὐθὺς δὲ μετὰ τὴν |
τὸ ἀγαθὸν τινὶ τῶν ἡδονῶν ὑπάρχει : ἡ γὰρ καθόλου καταφατικὴ πρὸς τὴν μερικὴν ἀντιστρέφει : δεῖ γάρ . ἐπεὶ | ||
λαμβάνονται . ἐάν τε γὰρ ἡ μὲν μείζων ληφθῇ καθόλου καταφατικὴ ἐνδεχομένη ἡ δὲ ἐλάττων ἐπὶ μέρους καὶ αὐτὴ κατα |
τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
συγγενῆ τῶν θνητῶν πλάνην , ἀπατῷτο ἂν ἴσως περὶ τὴν ποσότητα τῆς ὕλης , ὅποτε τεχνιτεύοι : τότε μὲν ὡς | ||
περιεχούσης . ἓξ δὲ σημαινόμενα τοῦ ἔχειν : λεγόμεθα γὰρ ποσότητα ἔχειν , ὡς δίπηχυ ἢ τρίπηχυ μέγεθος , λεγόμεθα |
τριγώνῳ καθέτου ἀχθείσης ἀφ ' οἵας τινὸς γωνίας ὑπὸ τὴν ὑποτείνουσαν αὐτὴν πλευράν , τὴν μὲν ἔχει ὀρθήν , τὴν | ||
διὰ Θαψάκου μεσημβρινῆς . τούτου δὲ τοῦ τριγώνου τὴν μὲν ὑποτείνουσαν τῇ ὀρθῇ τὴν ἀπὸ Θαψάκου εἰς Βαβυλῶνα τίθησιν , |
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
σελήνης πλούσιον ἅμα τῷ ἡλίῳ καταδυομένῳ ἀνατελλούσης . καὶ τὸν ἥμισυν ἀριθμὸν ἔχει τοῦ πλήθους , ἐν ᾧ τὸν κύκλον | ||
στρατιώτου πατήρ : ἐγὼ δὲ τὸν πολὺν Κυναίγειρον ἐκ Μαραθῶνος ἥμισυν ἐδεξάμην : ἑτέρωθι μὲν γὰρ ἡ δεξιά , ἑτέρωθι |
, ἐὰν λέγωσιν . . ὁμοφωνεῖ δὲ ἁπάντοτε κατὰ δευτέραν συζυγίαν τῶν περισπωμένων , ἐπί τε πρώτων προσώπων τῶν κατ | ||
διποδίαν ἰαμβικὴν καθαρὰν καὶ τὴν ἑπτάσημον , σπανίως δὲ καὶ συζυγίαν [ καὶ ] τὴν ἰσόχρονον αὐτῷ : ἄρχεται δ |
ὅτι καὶ ἐν τῷ μεταξὺ χρόνῳ τῶν προκειμένων ἐκλείψεων ἐπέλαβε μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας | ||
, τουτέστιν τῶν τοῦ Τοξότου μοιρῶν εʹ ∠ , προηγεῖται μέσως κινούμενος μοίρας ξγ κ , τοῦ δὲ ἀπογείου , |
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ ὅλην τὴν ΓΘ ἕξομεν τοιούτων ξα μθ , οἵων καὶ ἡ ΕΘ συνάγεται | ||
ἑκάστου τοῦ τε μήκους καὶ τοῦ πλάτους καὶ τῆς ἀνωμαλίας ἕξομεν τὰς ἐν τῷ χρόνῳ τῆς φαινομένης συνόδου ἀκριβεῖς παρόδους |
παντὶ τῷ Α ὑπάρχειν : οὐκ ἀντιστρεφούσης δὲ τῆς μερικῆς ἀποφατικῆς ὑπαρχούσης οὐ δυνατὸν ἀντιστρέψαι τὸ συμπέρασμα . ἀντιστρεφομένου γὰρ | ||
ἐπὶ τοῦ οὐδενί : τῆς δ ' ἐλάττονος ὑπαρχούσης καθόλου ἀποφατικῆς οὔσης δέδεικται ὅτι οὐ γίνεται συλλογισμός . Ὅροι τοῦ |
ἐκεῖνος τὸν διπλάσιον αὑτοῦ μετρεῖ , ἐκεῖνος δὲ τὸν ἐκείνου διπλάσιον , ἐκεῖνός τε τὸν ἐκείνου διπλάσιον , καὶ ἀεὶ | ||
ἄρα ὑπὸ ΖΒΝ μετὰ τοῦ ὑπὸ ΒΖΝ μεῖζόν ἐστιν ἢ διπλάσιον τοῦ ὑπὸ ΒΖΝ . ἀλλὰ τὸ μὲν ὑπὸ ΖΒΝ |
ἐν δὲ τῇ ἐλλείψει τὰ παρὰ τὴν αὐτὴν παρακείμενα καὶ ἐλλείποντα τῷ αὐτῷ εἴδει , καὶ διότι πάντα , ὅσα | ||
τὴν ἔλλειψιν τὸν δειλόν , ὑπερβάλλοντα μὲν τῷ φοβεῖσθαι , ἐλλείποντα δὲ τῷ θαρρεῖν . καίτοι εἰ καὶ ἴσως δυνατὸν |
εἰς κύκλον κατακάμψας τῇ δυνάμει καὶ συνάψας τὴν ὑπερβολαίαν τῷ προσλαμβανομένῳ τοὺς δύο φθόγγους ἑνώσῃ , διαμετρήσει μὲν ἡ τοιαύτη | ||
, δώριος ἔσται διὰ τὸ τὸν πρῶτον ἀκουστὸν φθόγγον δωρίου προσλαμβανομένῳ ὡρίσθαι : εἰ δὲ ἐξακούοιτο , θεω - ρῆσαι |
ΕΖΔ δύο ὀρθῶν ἐλάσσονές εἰσιν : αἱ δὲ ἀπ ' ἐλασσόνων ἢ δύο ὀρθῶν ἐκβαλλόμεναι συμπίπτουσιν : αἱ ἄρα ΕΒ | ||
Ἀντωνίου , ἀπάξειν αὐτὸν εἰπόντος ὡς ἀνδράποδον πολεμοποιόν , εἴτε ἐλασσόνων ἀξιοῦσθαι νομίζων παρ ' ἃ προσεδόκησεν , εἴτε τῶν |
‖ ‖ Ἠθικώτατον τὸ τὴν ἡμέτεραν τοῦ σώματος οὐσίαν γεώδη ὑπάρχουσαν μὴ εἰσάπαν περιοραθῆναι ‖ : [ χρὴ πνευματικῆς καὶ | ||
τὸ γὰρ ἀνάγκη οὐδενὶ πᾶσαν κατάφασιν ἀναιρεῖ , ἀναγκαίαν , ὑπάρχουσαν , ἐνδεχομένην . Εἰλήφθω γὰρ τὸ Α τῷ Β |
χάριν αἰτοῦσα . μόνος γὰρ οὗτος ὁ θησαυρὸς δαπανώμενος οὐκ ἐλαττοῦται οὐδὲ δεῖσθε πρὸς αὐτὸν εἰσφορᾶς , ἀλλ ' ὅσῳπερ | ||
μηδὲν ἐλαττοῦσθαι τῶν δημιουργῶν ; Εἰ μὲν ἐλαττοῦται ἢ μὴ ἐλαττοῦται ὁ ῥήτωρ τῶν ἄλλων διὰ τὸ οὕτως ἔχειν , |
πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε : | ||
τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν |
ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην | ||
τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον | ||
ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός |
, ταῖς δὲ μείζοσι τῆς βαρύτητος διὰ τὴν παρὰ τὸ ἀπώτερον ἔκλυσιν , ὥστε ἀντιπεπονθέναι ταῖς διαστάσεσι τοὺς ψόφους . | ||
ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον ἡ ἔγγιον τοῦ θερινοῦ τροπικοῦ τῆς ἀπώτερον . ὡσαύτως δὲ καὶ ἐπὶ τοῦ μετὰ τὸν Αἰγόκερων |
τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
οὖσαν ἐπιβολὴν περὶ τὰ γνωστά , ἤγουν ἄμεσόν τε καὶ ἀσυλλόγιστον , ὡς μὴ δεομένην ὅρου μέσου πρὸς τὴν τῶν | ||
: τῆς λογικῆς τὸ μέν ἐστιν συλλογιστικόν , τὸ δὲ ἀσυλλόγιστον : τοῦ συλλογιστικοῦ τὸ μὲν ἀποδεικτικόν , τὸ δὲ |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
χωρὶς ἀλλήλων οὐχ οἷόν τε . Ἀλλὰ μὴν ὅτι ἀδύνατον ὁποτερονοῦν εἶναι τὸν τούτων τόπον , οὐ χαλεπὸν ἰδεῖν : | ||
τουτέστιν ὥραις μηʹ , ἀεὶ μέντοι τρεῖς ὥρας ὁρίζοντος εἰς ὁποτερονοῦν , ἤτοι λῆψιν ἢ ἄνεσιν , τὸ δὲ λοιπὸν |
λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
τῶν ΑΔ , ΔΒ τῶν ἀπὸ τῶν ΑΓ , ΓΒ ὑπερέχει ῥητῷ τουτέστι τὴν ὑπεροχήν . Ἡ ΑΒ ٢ ٢٥ | ||
ὑπεροχὴ γινομένη : ὡσαύτως γὰρ ἡ τετρὰς τῆς τριάδος μονάδι ὑπερέχει , καὶ ὁ ε τοῦ δ , καὶ ἐφεξῆς |
ὀρθὴ ἔσται : ἐπειδὴ δὲ ἀπειράκις τεμνόμενον ὑπὸ εὐθειῶν οὐκ ἀναλυθήσεται εἰς αὐτάς , ἠρκέσθη τῇ τῶν εὐθειῶν ἀπειρίᾳ ἀντὶ | ||
πρὸς τούτοις τὸν Σφαῖρον , εἰς ὃν πάντα ταῦτ ' ἀναλυθήσεται , τὸ μονοειδές . καὶ θείας μὲν οἴεται τὰς |
: ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα . | ||
πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν |
ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β | ||
οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ |
ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
. καὶ ἐπειδὴ μὲν ὀνομάζεται , ἔχει ἐκ τοῦ ὀνόματος ὅρον τὸν λέγοντα φιλοσοφία ἐστὶ φιλία σοφίας , ἐπειδὴ δὲ | ||
μόνων ἄν τις παραδειγμάτων θηράσειεν : λύσεις οὖν οὕτως τὸν ὅρον , ὅτι τὸ νεῦσαι οὐκ ἐξειπεῖν ἐστι : τί |
ὑπεροχὴν ἐϲχηκότων τινὰ ἐπικρούϲματι : ἐπὶ τούτων γὰρ τὸν προϲήκοντα δεϲμὸν ϲὺν ἐπιθέϲει παραλαμβάνει φαρμάκου διὰ τὸ προϲτυπουμένην τὴν ῥῖνα | ||
γενέϲθαι . ϲυμβαίνει γὰρ τοὺϲ παραφρονοῦνταϲ πολλάκιϲ λαθόνταϲ λῦϲαι τὸν δεϲμὸν τῆϲ χειρόϲ : καὶ εἴγε τύχοι μεγάλην εἶναι τὴν |
ἰσάκις γείνεσθαι [ , ἀλλ ] ' ἢ πλείων ? ἐλαττονάκις [ ] ? ? ? ἢ ἐλάττων ? [ | ||
τρίς , τὰ τοιαῦτα στερεὰ σχήματα πλινθίδες λέγονται ἰσάκις ἶσοι ἐλαττονάκις : ἐὰν δὲ καὶ μείζονα τὰ ὕψη τῷ τετραγώνῳ |
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ | ||
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἐν ἴσῃ ὑπεροχῇ , ὁ σύμπας πολυπλασιασθεὶς ἐπὶ τὸν ὀκταπλασίονα τῆς ὑπεροχῆς αὐτῶν , καὶ προσλαβὼν | ||
α . Πῶς ; Ϟ α δὲ ἐπὶ Ϟ α πολυπλασιασθεὶς ποιεῖ δυ α . δυ ἄρα α ἑξαπλασίων ἐστὶν |
πρὸς τὸ φανῆναι . ἀτελῆ δέ , φησίν , λέγω συλλογισμὸν ἐκεῖνον τὸν προσδεόμενον ἢ ἑνὸς ἢ πλειόνων , τουτέστιν | ||
γὰρ συμπέρασμα ἀληθές . ὄπως ἢ διαιροῦντες λύωμεν τὸν ψευδῆ συλλογισμὸν ἢ ἀναλύοντες αὐτὸν εἰς τὰς προτάσεις , εἰ ἀσυλλόγιστός |
οὐ τὸ ἴσον καθολική ἐστιν . ἐπιφέρει δὲ πάλιν ἑτέραν διαφορὰν λέγων ὅτι διαφέρει τὸ γένος τῆς διαφορᾶς , καθὸ | ||
οὗ παραδέδωκεν ἂν καὶ τὴν κατὰ τὸ ἁπλοῦν καὶ σύνθετον διαφορὰν τῶν ἀποφαντικῶν λόγων , ἀλλὰ τοῦτο εἰς ἕτερον καιρὸν |
τῆς ἑτέρας ἀποφάσει συνάγει ὅτι ἐπὶ τῶν τοιούτων προτάσεων τὴν κατάφασιν συμβαίνει συντρέχειν τῇ ἑαυτῆς ἀποφάσει : τῇ γὰρ ἔστιν | ||
δὲ ψευδῆ ἀντίφασιν εἶναι . εἰ γὰρ μὴ μίαν ποιήσουσιν κατάφασιν οὐκ ἀντίκεινται ἀντιφατικῶς εἴπερ ἐν ταύτῃ μιᾶς καταφάσεως μία |
ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |