παντὶ τῷ Α ὑπάρχειν : οὐκ ἀντιστρεφούσης δὲ τῆς μερικῆς ἀποφατικῆς ὑπαρχούσης οὐ δυνατὸν ἀντιστρέψαι τὸ συμπέρασμα . ἀντιστρεφομένου γὰρ | ||
ἐπὶ τοῦ οὐδενί : τῆς δ ' ἐλάττονος ὑπαρχούσης καθόλου ἀποφατικῆς οὔσης δέδεικται ὅτι οὐ γίνεται συλλογισμός . Ὅροι τοῦ |
κατὰ τοῦ ὑπάρχοντος κατηγορεῖσθαι . δέδεικται δὲ καὶ ὅτι τῆς καταφατικῆς ἀναγκαίας λαμβανομένης οὐ γίνεται συλλογιστικὴ ἡ συζυγία . ἀλλ | ||
ἕκαστα καὶ τὴν μάχην τῆς μερικῆς πρὸς τὴν καθόλου εἴτε καταφατικῆς εἴτε ἀποφατικῆς εἰπὼν ἀντιφατικῶς μάχεσθαι , ταῦτα οὖν πάντα |
ἐλάττονα μερικὴν καταφατικὴν ἀναγκαίαν : αὕτη γὰρ τῆς μερικῆς καταφατικῆς ἀντιστραφείσης , τῆς ἐλάττονος λέγω ἀναγκαίας , ἀνάγεται εἰς τὸν | ||
δὲ μείζων καθόλου καταφατικὴ ἐνδεχομένη , ὁ αὐτὸς ἔσται συλλογισμὸς ἀντιστραφείσης τῆς ἀποφατικῆς ὑπαρχούσης . καὶ τέως δεικτέον τὴν ἐκ |
τοῖς πρότερον . Ἐὰν δὲ ἀμφότεραι μὲν ὦσιν ἀποφατικαί , μεταληφθείσης μὲν τῆς ἐνδεχομένης εἰς καταφατικὴν γίνεται συλλογισμός , ὅτι | ||
, ἐκ μὲν τῶν κειμένων οὐδὲν ἔσται συλλογιστικῶς δεικνύμενον , μεταληφθείσης δὲ τῆς ἐλάττονος εἰς τὴν καταφατικὴν ἐνδεχομένην καὶ ἀντιστραφείσης |
ἱμάτιον , δυνατὸν μὴ τέμνεσθαι , ἀμφότεραι ἀληθεῖς ἐπὶ τῆς ἐνδεχομένης ὕλης . εἰ δὲ εἴπω ὅτι δυνατὸν τέμνεσθαι τὸ | ||
Ἐὰν δὲ ἀμφότεραι μὲν ὦσιν ἀποφατικαί , μεταληφθείσης μὲν τῆς ἐνδεχομένης εἰς καταφατικὴν γίνεται συλλογισμός , ὅτι τὸ Β οὐδενὶ |
ἀσυλλόγιστον γίνεται τὸ σχῆμα ἐν πρώτῳ ἢ δευτέρῳ τῆς μείζονος μερικῆς οὔσης . καὶ δηλονότι , εἰ ἀποφατικὸν εἴη τὸ | ||
καὶ τὸ ψεῦδος , τήν τε καθόλου κατάφασιν μετὰ τῆς μερικῆς ἀποφάσεως καὶ τὴν καθόλου ἀπόφασιν μετὰ τῆς μερικῆς καταφάσεως |
κατὰ τοῦ ὑπάρχοντος . Πάλιν ἔστω ἡ μείζων πρότασις ἐνδεχομένη ἀποφατική , ἡ δὲ ἐλάττων ἀναγκαία καταφατική : φημὶ οὖν | ||
γὰρ δι ' ἀντιστροφῆς δείκνυνται , ὅτε ἡ ἐλάττων ἐνδεχομένη ἀποφατική ἐστιν , ἢ δι ' ἀδυνάτου , ὅτε ἡ |
τὸ ἀγαθὸν τινὶ τῶν ἡδονῶν ὑπάρχει : ἡ γὰρ καθόλου καταφατικὴ πρὸς τὴν μερικὴν ἀντιστρέφει : δεῖ γάρ . ἐπεὶ | ||
λαμβάνονται . ἐάν τε γὰρ ἡ μὲν μείζων ληφθῇ καθόλου καταφατικὴ ἐνδεχομένη ἡ δὲ ἐλάττων ἐπὶ μέρους καὶ αὐτὴ κατα |
ἑτέρα ἀποφατικὴ καθόλου , ὁποτέρα ἂν αὐτῶν ᾖ ὑπάρχουσα , συλλογιστικὴ ἔσται συζυγία : τῆς γὰρ καταφατικῆς ἐπὶ μέρους , | ||
μέρους καταφατικὴ ἐνδεχομένη ἡ δὲ ἐλάττων καθόλου καταφατικὴ ἐνδεχομένη , συλλογιστικὴ καὶ οὕτως ἡ συζυγία : ἀντιστραφείσης γὰρ τῆς μείζονος |
ἡ μὲν καθόλου καταφατικὴ ὑπάρχουσα , ἡ δὲ ἐν μέρει στερητικὴ ἀναγκαία , οὐκ ἔσται τὸ συμπέρασμα ἀναγκαῖον ἀλλ ' | ||
τὸ δὲ ἄδικον ἀοριστία καὶ στέρησις τοῦ εἴδους , διὸ στερητικὴ πρότασις ἡ λέγουσα Σωκράτης ἄδικός ἐστι : λέγω γὰρ |
ἄνωθεν πάντως διὰ τὴν ἐλάττονα . εἰ δὲ τὸ συμπέρασμα ἀποφατικόν , δεῖ πάντως τὴν προστιθεμένην καταφατικὴν εἶναι καὶ κάτωθεν | ||
, τὸν μὲν τὶς καταφατικόν , τὸν δὲ οὐ πᾶς ἀποφατικόν . μεμαθήκαμεν τοίνυν τί ἐστιν προσδιορισμὸς καὶ πόσοι εἰσὶν |
ὅταν δὲ ἡ στερητικὴ πρότασις ἀναγκαία ᾖ ἡ δὲ καταφατικὴ ἐνδεχομένη , δηλονότι ἐναντίως τῇ πρὸ αὐτῆς συζυγίᾳ τὸ συμπέρασμα | ||
καταφατικαῖς . ὅταν δὲ ἡ μὲν ὑπάρχουσά ἐστιν ἡ δὲ ἐνδεχομένη , ὅταν ἡ καταφατικὴ πρότασις ὑπάρχουσά ἐστιν , οὐδέποτε |
καὶ τῆς τετράδος ἀποτελουμένῃ πεντάδι διὰ τὸ μὴ προϋποκεῖσθαι τῆς προσθέσεως τὴν πεντάδα καὶ ἀεί ποτε ὀφείλειν τὸ προστιθέμενον προϋποκειμένῳ | ||
καθ ' αὑτὸ ὑπαρχόντων συμβεβηκότων εἶναι ὁρισμούς , ἐπειδὴ ἐκ προσθέσεως ὑπάρχουσιν , ἅτε δὴ συμπαραλαμβανόντων αὐτοῖς καὶ τὰ ὑποκείμενα |
” . ἢ δεῖ μεταλαμβάνειν τὸ ἐνδεχόμενον καθόλου ἀποφατικὸν εἰς καταφατικὸν καὶ ἐπὶ τοῦ ἐνδέχεσθαι . οὐκέτι δὲ ὡς ἐπὶ | ||
ἀποφατικῶν γένοιτ ' ἄν ποτε προτάσεων . οὐ κατὰ τὸ καταφατικὸν δὲ καὶ ἀποφατικὸν μόνον δεῖ ἢ ἀμφοτέρας τὰς προτάσεις |
ἀποφατικὴ ἐνδεχομένη κατὰ τὸν ἐνδεχομένου προσδιορισμὸν δύναται μεταληφθῆναι εἰς τὴν καταφατικήν . Ἐὰν δὲ ἡ μὲν μείζων τῶν προτάσεων καθόλου | ||
τὰ διαστήματα στερητικὰ τεθῇ , μεταληφθείσης τῆς ἐνδεχομένης ἀποφατικῆς εἰς καταφατικήν πάλιν τὰ αὐτὰ συνάγεται συμπεράσματα , οἷα καὶ αὐτόθεν |
τῶν ὅρων ὄντων καὶ τῆς μὲν ὑπάρχειν τῆς δὲ ἐνδέχεσθαι λαμβανομένης τῶν προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον | ||
δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς μείζονος κἂν τῆς ἐλάττονος , |
: τὸ δὲ λογικὸν αὐτὸν εἶναι καὶ μὴ ἄλογον χωρὶς δείξεως αἰτεῖταί τε καὶ τίθησιν . εἰ δέ ἐστιν ἀσθενὴς | ||
τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' εὐθείας δείξεως : διὸ καὶ τέλειος ὁ συλλογισμός . ἐπειδὴ γὰρ |
τοὺς δὲ προβλήματα , ἀποβλέποντας εἰς τὸ σχῆμα μόνον τῆς προτάσεως . τὴν δὲ διαφορὰν τῶν τριῶν τούτων ὅτι βέλτιον | ||
ὁ δὲ γος Μο μ , καὶ ποιοῦσι τὰ τῆς προτάσεως . Ἄλλως . Ζητῶ πρότερον τρεῖς ἀριθμοὺς ἴσους εἶναι |
τοῦ πρώτου σχήματος οὕτως : εἰ τὸ Α τῷ Β ὑπαρχόντως , τὸ δὲ Β παντὶ τῷ Γ ἐξ ἀνάγκης | ||
οὐ παντὶ τῷ Β ὑπαρχόντως : ὑπέκειτο δὲ καὶ παντὶ ὑπαρχόντως : τὸ αὐτὸ ἄρα τῷ αὐτῷ καὶ παντὶ καὶ |
τὸ Β οὐδενὶ τῷ Γ . οὕτω μὲν οὖν γίνονται συλλογιστικαὶ αἱ ἀσυλλόγιστοι διὰ τῆς μεταλήψεως , ὥσπερ εἴπομεν : | ||
δὲ ὁμοιοσχήμονες ὦσιν αἱ προτάσεις , ἀμφοτέρων μὲν οὐσῶν ἀποφατικῶν συλλογιστικαὶ γίνονται αἱ συζυγίαι , οὐ διὰ τῶν εἰλημμένων προτάσεων |
ὁμοίως ληφθῶσιν , ἔσονται συλλογιστικαί . ὁμοίως δὲ καὶ αἱ ἀσυλλόγιστοι ἐπὶ τῶν ἐνδεχομένων ἕξουσι ταῖς ἐπὶ τῶν ὑπαρχουσῶν : | ||
ἀναγκαία καταφατικὴ εἴη , δηλονότι ἀποφατικῆς οὔσης τῆς ἐνδεχομένης , ἀσυλλόγιστοι πᾶσαι αἱ τοιαῦται συζυγίαι . ἡ δὲ αἰτία τὸ |
Μο λ . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ μὲν ἐλάσσων Μο λ , ὁ δὲ μείζων Μο ο , | ||
τὸ φανερὸν ἡμισφαίριον . ἀλλ ' ἔστω ἡ ΕΖ περιφέρεια ἐλάσσων τεταρτημορίου : καὶ ἡ ΕΚ ἄρα ἐλάσσων ἐστὶ τεταρτημορίου |
ἢ τὸ γελαστικὸν ἢ τὸ θνητὸν περιέχει . καθόλου δὲ καταφάσεως ἀνῃρημένης ἴσμεν ὅτι κινδυνεύουσι καὶ συλλογισμοὶ πάντες ἀνῃρῆσθαι , | ||
ἀλλήλων διεστάναι φαμὲν τὰς ἐναντίας καταφάσεις ἤπερ τὴν ἀπόφασιν τῆς καταφάσεως . εἴρηται δὲ ἡμῖν ἐξ ἀρχῆς ὅτι ἔοικεν ὁ |
. ταῦτα οὖν διορίζεσθαι καὶ πειρᾶσθαι κατὰ τὸ ποσὸν τῆς ἁπλῆς διαθέσεως ἐξευρίσκειν τὸ ποσὸν τῆς τοῦ φαρμάκου δυνάμεως , | ||
, καὶ τῇ μὲν ἐκ μεταθέσεως ἀποφάσει ἐπὶ πλέον τῆς ἁπλῆς , καὶ τῇ καταφάσει αὐτῆς κατὰ τὸ ἀκόλουθον ἐπ |
μόνη , ἀτελεῖς δέ εἰσιν αἱ διὰ τῆς τοῦ ἐνδεχομένου ἀντιστροφῆς , καὶ ὅτι δεῖ τοῦτο τὸ ἐνδεχόμενον λαμβάνειν ἐν | ||
καὶ διϊάμβου διὰ τὴν ἀδιάφορον : ἐν δὲ τῷ τῆς ἀντιστροφῆς κώλῳ χοριάμβους εὑρήσεις , καὶ ἀμφότερον . τὸ ζʹ |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
ἀνάγεται μὲν γὰρ εἰς τὸ πρῶτον σχῆμα τῆς μείζονος πάλιν ἀντιστρεφομένης πρὸς ἑαυτήν : εἰ γὰρ τὸ Α ἐνδέχεται τινὶ | ||
οὐδενὶ τῷ δὲ Γ τινί : δῆλον γὰρ ὅτι ἑκατέρας ἀντιστρεφομένης τό τε Β οὐδενὶ τῷ Α καὶ τὸ Γ |
, ΒΖ , τὸ δὲ διὰ τῆς ΑΕ καὶ τῆς διπλῆς τῆς ΕΗ ἰσοσκελὲς ἴσον ἐστὶ τῷ ὑπὸ ΑΕ , | ||
εἴποις . . τοῦθ ' ἕτερον αὖ : ἔκθεσις τῆς διπλῆς ἤτοι ἀπόθεσις κώλων ἰαμβικῶν ὀκτώ , ὧν πρῶτον “ |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
, ὅπερ ἐστὶν ἄτοπον : οὐδέποτε γὰρ ἡ παραλήγουσα τῆς περιττοσυλλάβου γενικῆς μείζονα χρόνον ἔχει τῆς ληγούσης τῆς ἰδίας εὐθείας | ||
Κανὼν γάρ ἐστιν ὁ λέγων , ὅτι ἡ παραλήγουσα τῆς περιττοσυλλάβου γενικῆς οὐδέποτε εὑρίσκεται μείζων τῆς ληγούσης τῆς ἰδίας εὐθείας |
χυμῷ τινι ζέσαντι ἢ σαπέντι , ἢ μωρίου φλεγμονῆς καὶ στεγνώσεως . Τῶν δὲ συνόχων πυρετῶν γένος διττόν : οἱ | ||
Δία ἔπεμψέ τις καὶ πρὸς ἰατρὸν , ὡς ὑπὸ ἀμέτρου στεγνώσεως ἢ ἀραιώσεως ἐνοχλούμενος . εἰ δὲ μή ἐστι πάθη |
ἀριθμοῦ καὶ μο β ὑπάρξεως ἐπὶ Ϟ καὶ μο β λείψεως ποιεῖ δυ α ↑ μο δ . Πῶς ; | ||
μο λϚ , καὶ κοινῆς προσκειμένης τῆς τῶν κδ ἀριθμῶν λείψεως καὶ τῆς μιᾶς μονάδος , γενήσεται κζ ἀριθμοὶ ἴσοι |
ξύμβο . ] ἐπίτριτος δʹ - λον δίδωσι . ] διτρόχαιος διαρραγείης ] δι - - ρα - μόθων ] | ||
καὶ βραχείας καὶ μακρᾶς καὶ βραχείας , τροχαϊκὴ ταυτοποδία ἢ διτρόχαιος : ἐκ βραχείας καὶ μακρᾶς καὶ βραχείας καὶ μακρᾶς |
λεγομένων τὸ πιστὸν συνακολουθεῖν ἐννοούμενος εὐχαῖς ἡμᾶς ἀμείψασθαι τῆσδε τῆς ἐγχειρήσεως προθυμήθητι , τὸν κοινὸν δεσπότην ἐξιλεούμενος ἢ παρενεγκεῖν ἡμῖν | ||
εἰς ταυτὸν συνθῇ τις , οὐδ ' ἐγγὺς τῆς νῦν ἐγχειρήσεως . τὸ γὰρ Λακεδαιμονίους ἀνελεῖν ἐθέλοντας φανῆναι τίς ἂν |
τοὺς οἰκείους . Ἅμαξα τὸν βοῦν ἕλκει : ἐπὶ τῶν ἀντιστρόφως τι ποιούντων . Ἀναγυράσιος δαίμων : ὠμότατος γὰρ ὁ | ||
' ὅποι χρῄζεις : πολὺ γὰρ μᾶλλον ” ὅμοιον δίμετρον ἀντιστρόφως τῷ βʹ ἐξ ἀναπαίστου , σπονδείου , ἀναπαίστου καὶ |
φθέγγεσθαι . τῶν μὲν οὖν καταφάσεων τῶν προσδιωρισμένων ἀναμφισβητήτως ἡ μερικὴ τῆς καθόλου χείρων , διόπερ ἀνάγκη τὴν ἀπροσδιόριστον κατάφασιν | ||
καθόλου ἀληθεύῃ , τότε καὶ ἡ ὑπ ' αὐτὴν τεταγμένη μερικὴ πρότασις ἀληθεύσει , ὡς οἷον μέρος αὐτῆς οὖσα καὶ |
ἔχοντα τὴν μείζονα καθόλου ἀποφατικὴν τὴν δ ' ἐλάττονα μερικὴν ἀποφατικήν . Τούτῳ γὰρ οὔτε παντί . πᾶν γὰρ ἐνδεχόμενον | ||
καὶ ἓξ συλλογιστικοί , οἱ μὴ ἔχοντες τὴν ἐλάττονα ἀναγκαίαν ἀποφατικήν . καὶ τούτων δ ἀτελεῖς , οἱ ἔχοντες τὴν |
μερική , πάντως κάτωθεν . εἰ δὲ ἀποφατικὸν εἴη τὸ συμπέρασμα καθόλου , ἄνωθεν . εἰ δὲ μερικόν , οὐκέτι | ||
τὸ ἴσον ἑτερομήκει τετράγωνον κατασκευάσασθαι : καὶ οὗτος μὲν ὥσπερ συμπέρασμα , ὁ δὲ λέγων ὅτι ἐστὶ τετραγωνισμὸς μέσης εὕρεσις |
, τῆς τοῦ τρυπάνου ἀκμῆς πλαγίας [ ὑπὸ λοξοῦ ] προστιθεμένης , καὶ οὕτως ἡ ἐκκοπὴ γινέσθω . μετὰ δὲ | ||
ἴσα δυ μιᾷ ↑ Ϟῶν β μο μιᾶς . Κοινῆς προστιθεμένης τῆς λείψεως καὶ ἀπὸ ὁμοίων ὁμοίων , καταλείπονται Ϟ |
ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
ἀποδέδεικται : ἐνταῦθα δὲ κατηγοροῦντες τὴν ἀπόφανσιν κοινῶς καταφάσεως καὶ ἀποφάσεως , οὐ λέγομεν τὴν μὲν κατάφασιν πρώτην ἀπόφανσιν εἶναι | ||
τὰ φαιὰ καὶ τὰ ἄλλα χρώματα . καλῶς οὖν ἐξ ἀποφάσεως καὶ καταφάσεως παρέδωκε τὴν διαίρεσιν . ἢ ὅτι τὸ |
ὅπως οἱ δυνάμενοι μόνοι προσίοιεν αὐτῶι καὶ μὴ ἐκ τοῦ δημώδους εὐκαταφρόνητον ἦι . τοῦτον δὲ καὶ ὁ Τίμων [ | ||
τοῦτο τῆς παροιμίας ἐμνήσθη , ὅτι εἶπον ἂν οἱ τῆς δημώδους ῥητορικῆς προστάται πρὸς τὸ πλῆθος τῶν εἰρημένων λόγων : |
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
ἔτι ἐπιτεινομένης τῆς ψύξεως : τὸ δὲ πελιδνὸν ἔτι πλεῖον ἐπιτεινομένης : τὸ δὲ μέλαν ἐπὶ μεγίστῃ καὶ ἀκροτάτῃ ψύξει | ||
κατὰ φύσιν ἐν τοῖς ἀκμάζουσίν τε καὶ γυμναζομένοις ἀνθρώποις , ἐπιτεινομένης δὲ καὶ ταῦτ ' ἂν ἐπιταθείη , αἵ τε |
ρκ , καὶ αὐτῆς τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου ὑποκειμένης πρὸς ἀνατολὰς ἀπέχειν τοῦ μεσημβρινοῦ ὥρας ἰσημερινὰς δ . | ||
ἐνεπετάννυντο . μετὰ δὲ τοῦτο αἴθριον ἐξεδέχετο τὴν ἐπάνω τῆς ὑποκειμένης προστάδος τάξιν κατέχον : ᾧ κλῖμάξ τε ἑλικτὴ φέρουσα |
] πενθημιμεροῦς . τὸ ιʹ ἐξ ἀντισπάστου πεντασήμου καὶ τροχαϊκῆς κατακλεῖδος . τὸ ιαʹ ἰωνικὸν ἀπὸ μείζονος ἑφθημιμερές . τὸ | ||
τινὲς δὲ ταῦτα τὰ τρία ἀπὸ ἰαμβικῆς βάσεως καὶ τροχαϊκῆς κατακλεῖδος . τὸ πέμπτον . . . ἐπιτρίτου καὶ . |
πολλῶν . ὅθεν καὶ κανόνα τινὰ καὶ ἐπὶ ταύτης τῆς πλοκῆς παραδίδωσιν , πότε δυνατόν ἐστι τὰ ἅμα λεγόμενα καὶ | ||
ἐστὶν εἶδος . Θεόδωρος δ ' ἐν Ἀττικαῖς Γλώσσαις στεφάνων πλοκῆς γένος παρὰ Πλάτωνι ἐν Διὶ Κακουμένῳ . εὑρίσκω δὲ |
ὡς νομίμου ὄντος τοῦ βάθους , ταύτης ἄρτι τῆς ἀναλογίας φυλαττομένης . Ἐκ τοῦ περιποιουμένου ποιοῦ ἡ δευτέρα καθίσταται τάξις | ||
σαφήνειαν τῆς διδασκαλίας ἡ μετάληψις γίνεται , ἀλλ ' ὅτι φυλαττομένης τῆς ἀποφατικῆς τὸ ὅσον ἐπ ' αὐτῇ ἀσυλλόγιστός ἐστιν |
καθάπερ καὶ τῇ ἐνδείᾳ ἡ λύπη : γινομένης μὲν γὰρ ἀναπληρώσεως ἡδόμεθα , τεμνόμενοι δὲ λυπούμεθα . δοκεῖ δὲ γενέσθαι | ||
' οὐδὲ μετὰ γενέσεως πᾶσαι . αἱ μὲν γὰρ μετὰ ἀναπληρώσεως , εἰ καὶ μὴ γενέσεις , ἀλλὰ μετὰ γενέσεως |
ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
συζυγίας τροχαϊκῆς ἤτοι ἐπιτρίτου βʹ , τῆς δὲ βʹ Ἰωνικῆς καταληκτικῆς . Τὸ ιϚʹ , ὡς ἐμοὶ δοκεῖ , ἀναπαιστικόν | ||
τὸ γʹ περίοδος καταληκτική , ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς . τὸ δʹ χοριαμβικὸν καθαρὸν ἡμιόλιον . τὸ εʹ |
ἄρα πυρός : διπλῆ καὶ ἐν εἰσθέσει περίοδος τοῦ χοροῦ παιωνικὴ ἑπτάκωλος , ἔχουσα τρίρρυθμα πρῶτον , δεύτερον , τρίτον | ||
καὶ μέτριος , καὶ ὁποῖος συγκεκραμένος . ἡ μὲν δὴ παιωνικὴ ἐν τοῖς μεγαλοπρεπέσι σύνθεσις ὧδ ' ἄν πως λαμβάνοιτο |
μία ἀγκύλη . Ἐπεὶ πολλάκις ἐκ τῶν εὐτόνων σωμάτων σφοδρᾶς τάσεως γινομένης ἀπὸ μέρους αἱ τοῦ βρόχου ῥήγνυνται ἀρχαί , | ||
τοῦτο πάλιν οὐχ οἷόν τε καλῶς ἐργάσασθαι χωρὶς ἀντι - τάσεως . χρὴ τοίνυν ἢ διὰ τῶν χειρῶν , εἰ |
ἐπειδὴ ὁ τῆς ἀνωμαλίας ἀριθμὸς ἐν τοῖς ὑποκάτω τῆς μεγίστης προσθαφαιρέσεως στίχοις , ποιήσει τὰ προκείμενα ἑξηκοστὰ λγ ζ , | ||
με , ἡ δὲ ὑπὸ ΒΑΛ γωνία τῆς κατὰ μῆκος προσθαφαιρέσεως , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ , |
ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ ἴαμβος πενθημιμερής . δʹ ἀπὸ | ||
χοριαμβικὸν † δίμετρον . τὸ ιʹ χοριαμβικὸν ἑφθημιμερές . αʹ χορίαμβος δίμετρος ἀκατάληκτος . βʹ χορίαμβος δίμετρος καταληκτικός . γʹ |
εὐλόγως , φανερὸν δὲ μάλιστα ἐκ τῶν ἀμυγδαλῶν , εἴπερ ἀφαιρουμένης τῆς ὑγρότητος καὶ τῆς εὐτροφίας μεταβάλλουσι . Τὰ δ | ||
τελῶν δοκεῖ προσφέρεσθαι νῦν ἢ ὁ φόρος δύναται συντελεῖν , ἀφαιρουμένης τῆς εἰς τὸ στρατιωτικὸν δαπάνης τὸ φρουρῆσον καὶ φορολογῆσον |
: σύστημα ἕτερον κατὰ περικοπὴν κώλων ζʹ . τὸ αʹ περιοδικὸν δίμετρον ἀκατάληκτον ἐξ ἰαμβικῆς καὶ τροχαϊκῆς συζυγίας . τὸ | ||
δίμετρον ἀκατάληκτον ἐξ ἀντισπάστου πεντασυλλάβου καὶ διιάμβου : τὸ γʹ περιοδικὸν δίμετρον ὑπερκατάληκτοντοιοῦτο γάρ ἐστι τὸ τῆς ἀντιστροφῆς , ἐκ |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : ἴση ἄρα ἐστὶν ἡ ΒΕ τῇ ΕΚ . | ||
μείζονος ἐνόπτρου ὁρᾷ τὸ Κ , καὶ ἡ αὐτὴ ἡ ΒΕΚ ἀνακλωμένη ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ὁρᾷ τὸ αὐτὸ Κ |
, ἐξείπω . . Ἐμοί γε μὴν δοκεῖ τὰ τῆς ἐγκλίσεως ἐπιτεταράχθαι , ἐπεὶ σχεδὸν ἐγκλίσεις δύο συνωθοῦσιν εἰς μίαν | ||
ὑποτακτικὸν ἄληται ὡς λάβηται . συστολῇ οὖν ἐγένετο ἢ μεταβολῇ ἐγκλίσεως , ὁμοίως τῷ ” ἐπεὶ ἄρ κεν ἀμείψεται ἕρκος |
καὶ λογικὸν μέρος διὰ τῆς κατὰ τὸν τοῦ Ἑρμοῦ ἀστέρα θεωρουμένης περιστάσεως , αἱ δὲ περὶ τὸ ἠθικὸν καὶ ἄλογον | ||
δὴ τὴν δεῖξιν τῆς πρώτης καὶ ὡς καθ ' αὑτὴν θεωρουμένης ἀνωμαλίας ἡ κατ ' ἐπίκυκλον ὑπόθεσις , ὡς ἔφαμεν |
ἀρχομένη μερῶν τοῦ δευτέρου σπονδύλου συνδεῖται τῇ κεφαλῇ διά τινος εὐρώστου τε ἅμα καὶ στρογγύλου συνδέσμου . καὶ δὴ καὶ | ||
Μακεδόνες , ἔτι γενναίως ἅπαξ . καὶ δὴ τῆς ἐμβολῆς εὐρώστου γενομένης ἐς φυγὴν ἐτράποντο οἱ βάρβαροι . παρὰ τοσοῦτον |
πρόβλημα , παραβάλλον λοιπὸν τὴν ἀντίφασιν πρὸς τὴν τῶν ἐναντίων καταφάσεων ἀντίθεσιν . πρόεισι δὲ τοῦτον τὸν τρόπον . ἐπειδὴ | ||
δύο ταῦτα θεωρήματα ζητῶν , πρῶτον μὲν πῶς ἀπὸ τῶν καταφάσεων γίνονται αἱ ἀποφάσεις , δεύτερον δὲ τίς ἡ ἀκολουθία |
ἐς Ὀλυμπίαν τοῦ λόγου δηλώσω . τῷ δὲ Ἰφίτῳ , φθειρομένης τότε δὴ μάλιστα τῆς Ἑλλάδος ὑπὸ ἐμφυλίων στάσεων καὶ | ||
φθορά : εἰ δὲ εἰς ἄπειρον προΐοιεν , ἀεὶ τῆς φθειρομένης ἀρχῆς ἐκείνη εἰς ἣν φθείρεται ἔσται ἀρχή . οὐ |
κατὰ μὲν τὴν ἔννοιαν θεωρίαν ἔλαβον , ἀπὸ δ ' ὀργανικῆς ἕξεως προκόψαντες . οὗτοι γὰρ τὴν μὲν αἴσθησιν ὡς | ||
δεχόμενοι μαλακαῖς τισι καὶ συνενδιδούσαις κατασκευαῖς ἐπράυνον τὴν ἐκ τῆς ὀργανικῆς βίας δύναμιν . ὁ δὲ βασιλεὺς ἅμα τῇ κατὰ |
ταῖς θέσεσιν . πρῶτον μὲν ὡς ὡροσκοποῦντος τοῦ ἀφέτου , μεσουρανούσης δὲ τῆς ἀρχῆς τοῦ Αἰγοκέρωτος ὡς ἀπέχειν τὴν ἀρχὴν | ||
” . ταύτης γὰρ „ ὕψι μάλα „ φερομένης καὶ μεσουρανούσης , οὐχ ὁ Τοξότης ἀνατέλλει , ἀλλ ' ὁ |
' Ἀχαιῶν μῦθον ἀγασσαμένοι Διομήδεος ἱπποδάμοιο . διαφέρει δὲ τῆς ἀναστροφῆς , ὅτι ἡ μὲν τὰ τελευταῖα τοῖς πρώτοις συνάπτει | ||
ἔσται μεῖζον ἑαυτοῦ . ὁ δὲ αὐτὸς καὶ ἐπὶ τῆς ἀναστροφῆς ἐστι λόγος : εἰ γὰρ μὴ δύναται τὸ ὅλον |
ἐν τρίτῳ τῆς μὲν Β τουτέστι τῆς μείζονος τῆς αὐτῆς ληφθείσης , ἥτις ἦν καὶ ἐν τῷ πρώτῳ , τῆς | ||
ὠμῶν γινομένης τῆς ἀναδόσεως . καὶ ἐν τῶι στόματι δὲ ληφθείσης τῆς τροφῆς παρὰ ταῦτα ἀνάδοσις γίνεται ἀπ ' αὐτῆς |
καὶ ἡμέρας ο καὶ ὥρας κβ , μοίρας δὲ τῆς φαινομένης τοῦ ἀστέρος παρόδου ξη κζ , ἡ δ ' | ||
καὶ κατὰ τύχην : ἢ ὡς τῆς ἀληθείας ἐν ὑστέρῳ φαινομένης : ὡς καὶ Ἡσίοδός φησι [ . ] : |
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
ἰσότητος . Ἐλέγομεν γὰρ οὖν . Καὶ μὴν καὶ ὅτι ἀνομοιότητός τε καὶ ἀνισότητος οὐ μετέχει , καὶ τοῦτο ἐλέγομεν | ||
νῦν δὲ οὐκ ἔστιν ὁ διαλεκτικὸς περὶ γένος οὐ τῆς ἀνομοιότητός ἐστιν , ἀλλὰ μᾶλλον τῆς ὁμοιότητος : ἀόριστος γὰρ |
στοιχειώσει πορίσματα συναναφαίνονται μὲν ταῖς ἄλλων ἀποδείξεσιν , αὐτὰ δὲ προηγουμένης οὐ τυγχάνει ζητήσεως , οἷον δὴ καὶ τὸ νῦν | ||
, ἕως ἂν μεγίστην περιφέρειαν κινηθῇ , εἶτα ἐλάττονα τῆς προηγουμένης , ἕως ἂν ἐπὶ τὴν ἐξ ἀρχῆς ἐλαχίστην περιφέρειαν |
κεχυμένος , οὐδενὸς ἐν αὐτῷ πυκνοῦ λειφθέντος , ἀλλὰ πάσης ἐπικρατούσης μανότητος , ὅτε κάλλιστος γίγνεται , τὴν καθαρωτάτην λαβὼν | ||
ποιότητα πολλῷ γε τοῦ συμμέτρου ἐξαλλάττοιντο , θερμῆς μὲν τῆς ἐπικρατούσης οὔσης ποιότητος , δηγμοὶ κατά τε τὴν γαστέρα καὶ |
δὲ τὴν κίνησιν , ἢ εὐθέως ἐξ ἀρχῆς τῆς θερμασίας ἀναδιδομένης , ἢ εἰς ὕστερον καὶ κατὰ μέρος . Καὶ | ||
ἀνευρυσμὸς ἢ πνευματικοῖς ὕλης παρασπορὰ ὑπὸ τῆς σαρκὸς κατὰ διαπήδησιν ἀναδιδομένης . τοθʹ . Ὑπόσφαγμά ἐστιν ἔξωθεν τῆς ἐπιφανείας ὠμόλυτι |
τιμωρήσεται . ” Ὡς δὲ ἀπηλλάγη ποτέ , κἀγὼ ἐξελθὼν ἐκάθηρα τὸ πρόσωπον . τοῦ δὲ δείπνου καιρὸς ἦν , | ||
φησιν . μαρτυρήσων ] μαρτυρήσων ὅτι οὐκ ἔστιν ἐναγής : ἐκάθηρα γὰρ αὐτόν . ξυνδικήσων ] σύνδικοι λέγονται οἷς ἴσον |
δ ' ἐκείνου προσδεξαμένου τὸν λόγον , λέγεται φοβηθεῖσαν αὐτὴν ἀντιστρέψαι τὴν αἰτίαν , καὶ πρὸς Θησέα διαβάλλειν ὡς Ἱππολύτου | ||
βʹ , οὕτως τὸ γʹ πρὸς τὸ δʹ , δυνάμεθα ἀντιστρέψαι [ ] καὶ εἰπεῖν , ὅτι καὶ τὸ μὲν |
διέχει δὲ τῆς * Ἀριανῆς δι ' Ἀραχωτῶν καὶ τῆς λεχθείσης ὀρεινῆς σταδίους μυρίους * ἐνακισχιλίους . ταύτην δὲ τὴν | ||
μέχρι Βυζαντίου . λοιπὰ δέ ἐστι τὰ νότια μέρη τῆς λεχθείσης ὀρεινῆς καὶ ἑξῆς τὰ ὑποπίπτοντα χωρία , ἐν οἷς |
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
πρὸς τὸ ἐν πυρὸς αὐγῇ , τὸ ἀπὸ τοῦ πυρὸς φωτιζόμενον . . . . ψ ἐν πυρὸς αὐγῇ : | ||
ἄπειρον ἐκπίπτουσα . οἷον ἔστω φωτίζον μὲν τὸ αβ , φωτιζόμενον δὲ τὸ γδ , ἴσα δὲ ἀλλήλοις καὶ σφαιρικά |
ἀσυλλογίστων , λέγω δὲ τῶν ἐξ ἀμφοτέρων μερικῶν ἢ ἀπροσδιορίστων καταφατικῶν καὶ ἀποφατικῶν ὡς ὄντων φανερῶν . Ὅτι μὲν οὖν | ||
ἰδεῖν εἴτε ἐκ δύο μερικῶν συνήχθη , εἴτε ἐκ δύο καταφατικῶν ἐν δευτέρῳ σχήματι ἢ ἄλλως πως , καὶ οὕτω |
ἰσημερινοῦ μοίρας ξα καὶ γράφεται διὰ τῶν βορείων τῆς μικρᾶς Βρεττανίας . κηʹ . ὅπου δὲ ἡ μεγίστη ἡμέρα ὡρῶν | ||
οὗτος τοῦ ἰσημερινοῦ μοίρας νζ καὶ γράφεται διὰ Κατουρακτονίου τῆς Βρεττανίας . ἔστι δὲ ἐνταῦθα , οἵων ὁ γνώμων ξ |
διερρίφησαν , ὡς ἑκάστην ὁ χειμὼν ἐξήνεγκεν . αὐτὸς δὲ ῥηγνυμένης τῆς στρατηγίδος ἐς λῃστῶν σκάφος , ἀπαγορευόντων τῶν φίλων | ||
κεχρημένον τῷ διὰ κανθαρίδων φαρμάκῳ καὶ ηὐχαρίστει τὰ μέγιστα : ῥηγνυμένης γὰρ τῆς γινομένης ὑπὸ τοῦ φαρμάκου φλυκταίνης ὑγρὸν ἐξεκρίνετο |
. εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
. Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
ὑπὲρ αὐτὴν ἑτεροειδοῦς καὶ τῆς τῶν εἰς ἐπίπεδον ἕνα βαθμὸν ὑποβεβηκυίας , ὡς καὶ ἐπὶ τῶν πολυγώνων συνέβαινεν : οἷον | ||
ἁπλᾶ τῶν σωμάτων θέντα μίξαντα αὐτὰ ἀπ ' ἄλλης ἀρχῆς ὑποβεβηκυίας διαφορὰν συνθέτων ἢ τόποις ἢ μορφαῖς ποιεῖσθαι , οἷον |
περιεχόμενον ὑπὸ δύο φθόγγων ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις | ||
οἱ τοῦ διὰ τεσσάρων ὅροι σύμφωνοι : ἀπὸ δὲ τοῦ ὀξυτέρου αὐτῶν λαμβάνεται φθόγγος σύμφωνος ἐπὶ τὸ ὀξὺ διὰ τεσσάρων |
θάτερα τοῦ ἰσημερινοῦ καὶ πρὸς μεσημβρίαν ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί | ||
, ὅπως ἂν ληφθῶσιν , ἀνομοιοσχήμονας εἶναι ἀεὶ τῆς ἀποφατικῆς μεταλαμβανομένης εἰς τὴν καταφατικήν . ὑποκείσθω γὰρ συζυγία ἐκ τῆς |
διὰ δʹ οὐκ ἀποκαθίσταται οὐδενί . ἑξῆς ἐπὶ τὸν τῆς ἐννεάδος κλιμακτῆρα : κυριεύσουσι δὲ τῆς ἐννεάδος Ἥλιος Ἄρης Ἑρμῆς | ||
δεκάδος ἀξιοῦν ἀφαιρεῖσθαι μονάδα . καὶ μὴν ἀπὸ τῆς περιλειπομένης ἐννεάδος οὐκ ἂν εἴποιμεν ταύτην ἀφαιρεῖσθαι . εἰ γὰρ ἀπὸ |
μου : ψεῦδος οὐκ ἀνῆλθε διὰ τῶν χειλέων μου . Παντὶ ἀνθρώπῳ ὀδυνομένῳ συνεστέναξα , καὶ πτωχῷ μετέδωκα τὸν ἄρτον | ||
μηδὲν ὁρίζειν , ἀλλ ' ἀπροσθετεῖν . “ ἡ δὲ Παντὶ λόγῳ φωνὴ καὶ αὐτὴ συνάγει τὴν ἐποχήν : τῶν |
καθόλου ἀποφαίνεται ὅτι παντὸς τριγώνου αἱ δύο πλευραὶ μείζονες τῆς λοιπῆς εἰσιν : ἀλλ ' ἐνταῦθα μὲν ἐπὶ τῶν τριγώνων | ||
. Κοινὴ ἀφῃρήσθω ἡ ΝΑ : λοιπὴ ἄρα ἡ ΒΝ λοιπῆς τῆς ΑΛ μείζων ἐστίν . Ἐν πλείονι ἄρα χρόνῳ |
οὐδενὶ ἐξ ἀνάγκης τὸ ἀναιροῦν τὸν τρόπον , ὃ καὶ συνάγεται παρὰ τὸ ἐξ ἀνάγκης οὐδενί . Οὕτω γὰρ συνέπιπτεν | ||
ὑπαρχόντως , καίπερ τῆς ἐλάττονος πρὸς τῷ ἀναγκαίῳ οὔσης ὑπάρχον συνάγεται : κἂν κίνησις πάσῃ βαδίσει ἀναγκαίως , βάδισις παντὶ |
ὢν πολλαπλάσιός ἐστιν ἁπλῶς , ὁ δὲ ι τοῦ δ διπλασιεφήμισυς ὢν ἐπιδιμερής ἐστιν αὐτοῦ , τὸ δὲ ἐπιδιμερὲς τοῦ | ||
τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς ἡ γεννωμένη , ἐπεὶ δὲ ἐπίτριτος διπλασιεπίτριτος , καὶ |
♂ καὶ ἕτερός τις σχηματισθῇ ἐπὶ τὸ βόριον αὐτῆς φερομένης ἀπαραβάτως ἐπὶ τὴν τῆς ☍ ἐλθούσης , λύσις ἔσται τῆς | ||
ζῳδίῳ ἑνὸς ἀστέρος ὅριον ἔχωσιν ἐάν τε ἐν ἄλλῳ , ἀπαραβάτως ἐκεῖνος οἰκοδεσποτήσει . ἐὰν δέ πως ἐν τῷ ἰδίῳ |
ἐν αἷς εὑρίσκεται , καὶ τελευταῖον ἐπάγειν τὸν περὶ τῆς μεταλήψεως λόγον : δευτέραν δὲ τήνδε , ὅτι αἱ μὲν | ||
, ἤδη δὲ καὶ τῆς τῶν ἀθύτων καὶ ἀνιέρων σαρκῶν μεταλήψεως . δίκαιον γὰρ τῶν συμβολικῶν νουθετήσεων καὶ τὸ προφαινόμενον |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει , ἥτις οἰκειότητα πρὸς τροχαϊκόν | ||
τὸν δεύτερον ἔχων πόδα πεντασύλλαβον . τὸ τρίτον περίοδος ἐξ ἰαμβικῆς καὶ τροχαϊκῆς βάσεως . τὸ δʹ ἀσυνάρτητον ἐξ ἀναπαιστικῆς |
[ . ] . Δημάδου . α . ὑπὲρ τῆς δωδεκαετίας . β . πρὸς τὴν εἰς Ὄλυνθον βοήθειαν . | ||
οὔσης ἐάν τις προσέχῃ οὐ διαμαρτήσει . ἐπεὶ γὰρ δὴ δωδεκαετίας αἱ αὐταὶ παραδόσεις σημαίνονται , οὐ τὴν αὐτὴν ἐνέργειαν |
α καὶ ἑξηκοστῶν ζ . Ὥστε κατὰ τὸν ὑποκείμενον τῆς τηρήσεως χρόνον ἡ σελήνη παρήλλασ - σεν μὲν κατὰ πλάτος | ||
τὸ εἴσω νοούμενον . ἐκ γὰρ τῆς συνεχοῦς τοῦ φαινομένου τηρήσεως ἡ τῶν μειζόνων μελετᾶται κατόρθωσις . οὕτως οὖν καὶ |
ἀκατάληκτος . τὸ δʹ περίοδος καταληκτικὴ ἐξ ἰαμβικῆς συζυγίας καὶ τροχαϊκῆς καταληκτικῆς : εἰ δὲ βούλει , χοριαμβικὸν δίμετρον καταληκτικὸν | ||
Σαπφικοῦ ἑνδεκασύλλαβον , ἤτοι τρίμετρον καταληκτικόν . σύγκειται δὲ ἐκ τροχαϊκῆς συζυγίας , χοριάμβου καὶ Ἰωνικῆς καταληκτικῆς , ἤτοι ἀναπαίστου |
κδ ἕξομεν τῆς παραλλάξεως τῆς σελήνης ἐπὶ τοῦ ζῳδιακοῦ , ἀφαιρεθείσης τῆς ἡλίου παραλλάξεως , συμφώνως προχείροις . ὥστε τὴν | ||
α , ἡ ΓΕΑ περιφέρεια γίνεται ἑξηκοστῶν νβ κ , ἀφαιρεθείσης δηλονότι τῆς ἡλίου παραλλάξεως : κἄντε τὸν ἥλιον κατὰ |
καὶ ἡμιόλιον . Τὸ θʹ ἰαμβικὸν ἑφθημιμερές . Τὸ ιʹ ἐπιωνικὸν τρίμετρον βραχυκατάληκτον : τῆς γὰρ αʹ συζυγίας οὔσης ἰαμβικῆς | ||
καὶ κατ ' ἀντιπάθειαν μέτρα δύο : ὧν τὸ μὲν ἐπιωνικὸν καλεῖται , ὅτε διποδίας ἰαμβικῆς προκειμένης ἰωνικὴν ἐπιφέρεσθαι συμβαίνει |
πόλεως ἀνὴρ καὶ γυνή . . . . οὗτος ] ἀναφορική ἐστιν ἡ ἐπιδεικτικὴ ὡς τοῦ Ἡγησάνδρου συνηγοροῦντος νῦν τῷ | ||
μὲν γὰρ αὕτη δεικτική ἐστιν ἀντωνυμία , τὸ δὲ αὐτὴ ἀναφορική . ἄλλος ἐπὶ τῶν ὁμοφυῶν , οἷον ἄλλος ὁ |