καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ | ||
ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ | ||
τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν . |
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , ἡ μεταξὺ τῆς συμπτώσεως καὶ τῆς τὰς ἁφὰς ἐπιζευγνυούσης δίχα τμηθήσεται ὑπὸ τῆς | ||
ἐπ ' εὐθείας τῆς παρὰ τὴν πλαγίαν ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῶν τομῶν τετράγωνα λόγον ἔχουσιν , |
τῆς ἁφῆς ἐπὶ τὴν διάμετρον καταχθῇ εὐθεῖα τεταγμένως , ἡ ἀπολαμβανομένη εὐθεῖα ὑπὸ τῆς κατηγμένης πρὸς τῷ κέντρῳ τῆς τομῆς | ||
καθόλου τε , ὅτι , ὃν ἂν ἔχῃ λόγον ἡ ἀπολαμβανομένη περιφέρεια πρὸς τὸν γραφέντα κύκλον , καθ ' ὃν |
ἐπειδὴ ὁ τῆς ἀνωμαλίας ἀριθμὸς ἐν τοῖς ὑποκάτω τῆς μεγίστης προσθαφαιρέσεως στίχοις , ποιήσει τὰ προκείμενα ἑξηκοστὰ λγ ζ , | ||
με , ἡ δὲ ὑπὸ ΒΑΛ γωνία τῆς κατὰ μῆκος προσθαφαιρέσεως , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ , |
καὶ τῆς τετράδος ἀποτελουμένῃ πεντάδι διὰ τὸ μὴ προϋποκεῖσθαι τῆς προσθέσεως τὴν πεντάδα καὶ ἀεί ποτε ὀφείλειν τὸ προστιθέμενον προϋποκειμένῳ | ||
καθ ' αὑτὸ ὑπαρχόντων συμβεβηκότων εἶναι ὁρισμούς , ἐπειδὴ ἐκ προσθέσεως ὑπάρχουσιν , ἅτε δὴ συμπαραλαμβανόντων αὐτοῖς καὶ τὰ ὑποκείμενα |
ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
κατὰ τοῦ ὑπάρχοντος κατηγορεῖσθαι . δέδεικται δὲ καὶ ὅτι τῆς καταφατικῆς ἀναγκαίας λαμβανομένης οὐ γίνεται συλλογιστικὴ ἡ συζυγία . ἀλλ | ||
ἕκαστα καὶ τὴν μάχην τῆς μερικῆς πρὸς τὴν καθόλου εἴτε καταφατικῆς εἴτε ἀποφατικῆς εἰπὼν ἀντιφατικῶς μάχεσθαι , ταῦτα οὖν πάντα |
τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς παρὰ τὴν πλαγίαν ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα | ||
' ἔρωτι οὐρανίῳ σεσοβημένης κἀκμεμηνυίας καὶ ὑπὸ τοῦ ὄντως ὄντος ἠγμένης καὶ ἄνω πρὸς αὐτὸ εἱλκυσμένης , προϊούσης ἀληθείας καὶ |
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον | ||
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ |
παραστάτες οἱ καὶ κρεμαστῆρες λεγόμενοι ἐκφύσεις εἰσὶ τοῦ νωτιαίου μυελοῦ μήνιγγος , σὺν φλεψὶν ἀρτηριώδεσιν ἐν τοῖς διδύμοις καθήκουσαι δι | ||
τὸν Ἐρασίστρατον ἠπάτησεν . ὡς οἰηθῆναι . διὰ τὴν τῆς μήνιγγος τρῶσιν ἀκίνητον αὐτίκα γίγνεσθαι τὸ ζῷον . ἑώρα γὰρ |
καὶ τὰ διιστάμενα ὀστᾶ συνάγειν πρὸς τὴν κατὰ φύσιν τῆς ῥαφῆς συναρμογήν , ἔπειτα ὅλην τὴν κεφα - λὴν ἀποξυρᾶν | ||
τῆς τε διαρθρώσεως αὐτῆς καὶ τοῦ κάτω πέρατος τῆς λαβδοειδοῦς ῥαφῆς . κάμπτουσιν οἱ μύες οὗτοι σὺν τῷ τραχήλῳ τὴν |
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
γὰρ δὴ ἰσχυρὸν οὐδὲ ἀγωνιστικὸν τὸ παραγραφικόν : ἐκ τῆς προβολῆς δὲ παραγράφεται λέγων , ὅτι οὐκ ἔξεστί σοι πολιτεύεσθαι | ||
τὰ γυμνὰ οὕτω γε παραδίδοται τοῖς πολεμίοις , εἰ ἄνευ προβολῆς ἐπιστρέψειαν . ὁμοῦ δὲ ἥ τε ἐπέλασις ἤδη ἀποπαύεται |
διὰ δʹ οὐκ ἀποκαθίσταται οὐδενί . ἑξῆς ἐπὶ τὸν τῆς ἐννεάδος κλιμακτῆρα : κυριεύσουσι δὲ τῆς ἐννεάδος Ἥλιος Ἄρης Ἑρμῆς | ||
δεκάδος ἀξιοῦν ἀφαιρεῖσθαι μονάδα . καὶ μὴν ἀπὸ τῆς περιλειπομένης ἐννεάδος οὐκ ἂν εἴποιμεν ταύτην ἀφαιρεῖσθαι . εἰ γὰρ ἀπὸ |
τῆς χερσονήσου εἰς τὴν ἐφεξῆς καὶ ἀρκτικωτάτην ἐξοχὴν τῆς αὐτῆς χερσονήσου στάδιοι ͵αυνʹ , στάδιοι ͵αρνʹ . Ἀπὸ δὲ τῆς | ||
, σταδίων ͵εϠοʹ . Κατοικεῖ δὲ τὸν μὲν αὐχένα τῆς χερσονήσου τὸ ἔθνος τῶν καλουμένων Ἀξόνων , αὐτὴν δὲ τὴν |
οἱ δεκαδάρχαι : ἐπὶ δὲ τούτοις ἐπιτετάχθων οἱ ἀπὸ τῆς εἴλης ἧιτινι Αὐριανοὶ ὄνομα . συντετάχθων δὲ αὐτοῖς οἱ τῆς | ||
' ἑαυτοῦ τὴν ἧτταν διορθώσασθαι τῶν ἰδίων μετὰ τῆς βασιλικῆς εἴλης καὶ τῶν ἄλλων τῶν ἐπιφανεστάτων ἱππέων ἐπ ' αὐτὸν |
ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ | ||
ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων |
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
ἀσυλλόγιστον γίνεται τὸ σχῆμα ἐν πρώτῳ ἢ δευτέρῳ τῆς μείζονος μερικῆς οὔσης . καὶ δηλονότι , εἰ ἀποφατικὸν εἴη τὸ | ||
καὶ τὸ ψεῦδος , τήν τε καθόλου κατάφασιν μετὰ τῆς μερικῆς ἀποφάσεως καὶ τὴν καθόλου ἀπόφασιν μετὰ τῆς μερικῆς καταφάσεως |
τῶν ὅρων ὄντων καὶ τῆς μὲν ὑπάρχειν τῆς δὲ ἐνδέχεσθαι λαμβανομένης τῶν προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον | ||
δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς μείζονος κἂν τῆς ἐλάττονος , |
ἑκάστου τῶν τμημάτων τῶν δα , αγ ἴσον τῷ ὑπὸ συναμφοτέρου τῆς δαγ καὶ τῆς αβ διὰ τὸ αʹ τοῦ | ||
, οἱ δὲ ἐξ ὑποκειμένου ἢ τέλους ἢ ἐκ τοῦ συναμφοτέρου , ἐξ ὑποκειμένου καὶ τέλους , ταῖς ἐπιστήμαις καὶ |
. εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
. Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
συγκείμενον λόγον ἐκ τοῦ τῆς ΒΓ πρὸς ΒΛ καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν | ||
τῶν ΚΘΗ : ἑκάτερος γὰρ ὁ αὐτός ἐστι τῷ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ δι ' ἴσου : |
συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
ἔστιν ἡ διπλῆ τῆς ΑΒ δοθεῖσα : τὸ ἄρα ὑπὸ δοθείσης καὶ τῆς ΖΔ ἴσον ἐστὶν τῷ ἀπὸ τῆς ΔΓ | ||
καὶ τῶν ἄλλων διαμέτρων παραλαμβανομένων τὰ αὐτὰ συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν |
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
, γλοιώδη , μυξώδη , ἰσχνότης τε τῆς τοῦ σώματος περιοχῆς γίνηται , μάλιστα τῆς γαστρὸς συμπιπτούσης , τοῦ τε | ||
κεῖται ἐν αὐτῷ οὔτε παρατάσεώς τινος κατὰ διάστασιν οὔτε τοπικῆς περιοχῆς οὔτε ἀποδιαλήψεως μεριστῆς οὔτε ἄλλης τοιαύτης ἐν τῇ παρουσίᾳ |
, οὐκ ἀγνοῶν μὲν αὐτοὺς πολεμησείοντας αὑτῷ καὶ τῆσδε τῆς ἐσβολῆς αἰτίους γεγονότας , ὑποκρινόμενος δὲ καὶ πλείονας ὁμοῦ καὶ | ||
ναυσὶν ἐς τὴν Μυτιλήνην καταπλεούσαις ἐπιβοηθήσωσιν . ἡγεῖτο δὲ τῆς ἐσβολῆς ταύτης Κλεομένης ὑπὲρ Παυσανίου τοῦ Πλειστοάνακτος υἱέος βασιλέως ὄντος |
ἐν τρίτῳ τῆς μὲν Β τουτέστι τῆς μείζονος τῆς αὐτῆς ληφθείσης , ἥτις ἦν καὶ ἐν τῷ πρώτῳ , τῆς | ||
ὠμῶν γινομένης τῆς ἀναδόσεως . καὶ ἐν τῶι στόματι δὲ ληφθείσης τῆς τροφῆς παρὰ ταῦτα ἀνάδοσις γίνεται ἀπ ' αὐτῆς |
. ἐσθίεται δὲ τὰ μὲν ἐν τῇ θαλάττῃ σηπόμενα ὑπὸ τερηδόνος , τὰ δ ' ἐν τῇ γῇ ὑπὸ σκωλήκων | ||
, μετὰ τῶν ἑκάστῳ πάθει συνεδρευόντων σημείων καὶ τὰ τῆς τερηδόνος συνεδρεύει . διὰ δὲ τῆς μηλώσεως γινώσκεται : λιπασμοῦ |
διὰ τὸν τρόπον τῆς συγγραφῆς ἐκθησόμεθα μετὰ τῆς φαινομένης ἡμῖν ἐπικρίσεως . φασὶν οὖν τινες , ὅτι δύναταί τι ἐν | ||
οὖν τοῦτό ἐστιν ; ἐκεῖναι δὲ ἐκ τῆς αὐτοῦ τινος ἐπικρίσεως , ὅταν λέγῃ , καὶ γὰρ οὕτως ἔχει , |
κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ , | ||
. ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος |
ἐκκειμένης σεληνιακῆς ἀνωμαλίας ἐπὶ τῆς κατ ' ἐπίκυκλον ὑποθέ - σεως , δι ' ἣν εἴπομεν αἰτίαν , τὸ μὲν | ||
σοφόν ; μηδένα γὰρ ἀπ ' ἀρχῆς ἀνθρώπων γενέ - σεως ἄχρι τοῦ παρόντος βίου κατὰ τὸ παντελὲς ἀνυπαίτιον νομισθῆναι |
οὐ τὰ λεγόμενα ὑπὸ τοῦ Ἐρατοσθένους προφέρεται περὶ τῆς τρίτης σφραγῖδος , ἀλλ ' ἑαυτῷ κεχαρισμένως πλάττει τὴν ἀπόφασιν πρὸς | ||
συμφύτου ⋖ δʹ . μαστίχης κιῤῥᾶς ⋖ δʹ . λημνίας σφραγῖδος ⋖ βʹ . βαλαυστίων ⋖ βʹ . κόψας καὶ |
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
' Ἀχαιῶν μῦθον ἀγασσαμένοι Διομήδεος ἱπποδάμοιο . διαφέρει δὲ τῆς ἀναστροφῆς , ὅτι ἡ μὲν τὰ τελευταῖα τοῖς πρώτοις συνάπτει | ||
ἔσται μεῖζον ἑαυτοῦ . ὁ δὲ αὐτὸς καὶ ἐπὶ τῆς ἀναστροφῆς ἐστι λόγος : εἰ γὰρ μὴ δύναται τὸ ὅλον |
ἄχρι ποδῶν κατειλείτω : παραβεβλημέναι γὰρ αἱ χεῖρες ἔνδοθεν τῆς περιειλήσεως εἰς ἔκτασιν ἐθίζονται . παχυντικαὶ γὰρ τῶν νεύρων αἱ | ||
τε τὴν ζώνην προσῆκεν αὐτῶν καὶ τὸ στῆθος πάσης ἐλευθεροῦν περιειλήσεως , οὐ κατὰ τὴν ἰδιωτικὴν πρόληψιν , καθ ' |
κυρτὸν εἶναι . νζʹ . Τετραγώνου ὑπάρχοντος ἐὰν ἀπὸ τῆς συναφῆς τῶν διαμέτρων πρὸς ὀρθάς τις ἀναχθῇ τῷ τοῦ τετραγώνου | ||
ΚΠ , καὶ ἴσον ἀπέχουσιν αἱ ΔΜ , ΚΠ τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ : ἐν ᾧ ἄρα χρόνῳ ἡ |
κατὰ μὲν τὴν ἔννοιαν θεωρίαν ἔλαβον , ἀπὸ δ ' ὀργανικῆς ἕξεως προκόψαντες . οὗτοι γὰρ τὴν μὲν αἴσθησιν ὡς | ||
δεχόμενοι μαλακαῖς τισι καὶ συνενδιδούσαις κατασκευαῖς ἐπράυνον τὴν ἐκ τῆς ὀργανικῆς βίας δύναμιν . ὁ δὲ βασιλεὺς ἅμα τῇ κατὰ |
ἐμβάλλει δὲ τῇ ἑαυτοῦ κεφαλῇ πλαγίως εἰς τὴν κοιλότητα τῆς ὠμοπλάτης . ἐπίκεινται δὲ αἱ ὠμοπλάται μυσὶν τοῖς ὑπεστρωμένοις ταῖς | ||
ἀπόφυσίς τις ὑπόκειται τῆς ὠμοπλάτης , ὀνομάζεται δ ' αὐχὴν ὠμοπλάτης , ᾧ κατὰ πέρας εἰς κοτύλην τινὰ τελευτῶντι τοῦ |
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
, κατὰ δὲ τοῦ ἀνθερεῶνος χρηστέον τῇ ἀνθηρᾷ ἢ τῷ σφαιρίῳ ἢ τῷ δι ' ὠῶν παρύγρῳ . Στοματικὴ διάχριστος | ||
τῆς κεφαλῆς . Κεφ . ναʹ . Μία μεσότης ὑπὸ σφαιρίῳ , αἱ δ ' ἀρχαὶ ἐπὶ τοὺς ἔξω κανθοὺς |
ταῦτα δὲ καὶ πεπονθότα διά τινα δυσκρασίαν ἢ ἔμφραξιν ἢ συνεχείας λύσιν , τοῦ μὴ ὁρᾷν ἢ κακῶς ἡμᾶς ὁρᾷν | ||
ἐν τῇ καταγματικῇ ἀγωγῇ πρώτως δύο , ἅτινα λύσεώς εἰσιν συνεχείας . ἢ γὰρ ἐγκαρσίως τέμνεται ἢ ἐπ ' εὐθείας |
. καʹ . Τὸ ἐπὶ τῆς ἕλικος τῆς ἐν ἐπιπέδῳ γραφομένης θεώρημα προὔτεινε μὲν Κόνων ὁ Σάμιος γεωμέτρης , ἀπέδειξεν | ||
. λδʹ . Δύναται δὲ καὶ διὰ τῆς ἐν ἐπιπέδῳ γραφομένης ἕλικος ἀναλύεσθαι τὸν ὅμοιον τρόπον . ἔστω γὰρ ὁ |
καὶ ἡμέρας ο καὶ ὥρας κβ , μοίρας δὲ τῆς φαινομένης τοῦ ἀστέρος παρόδου ξη κζ , ἡ δ ' | ||
καὶ κατὰ τύχην : ἢ ὡς τῆς ἀληθείας ἐν ὑστέρῳ φαινομένης : ὡς καὶ Ἡσίοδός φησι [ . ] : |
παντὶ τῷ Α ὑπάρχειν : οὐκ ἀντιστρεφούσης δὲ τῆς μερικῆς ἀποφατικῆς ὑπαρχούσης οὐ δυνατὸν ἀντιστρέψαι τὸ συμπέρασμα . ἀντιστρεφομένου γὰρ | ||
ἐπὶ τοῦ οὐδενί : τῆς δ ' ἐλάττονος ὑπαρχούσης καθόλου ἀποφατικῆς οὔσης δέδεικται ὅτι οὐ γίνεται συλλογισμός . Ὅροι τοῦ |
μία ἀγκύλη . Ἐπεὶ πολλάκις ἐκ τῶν εὐτόνων σωμάτων σφοδρᾶς τάσεως γινομένης ἀπὸ μέρους αἱ τοῦ βρόχου ῥήγνυνται ἀρχαί , | ||
τοῦτο πάλιν οὐχ οἷόν τε καλῶς ἐργάσασθαι χωρὶς ἀντι - τάσεως . χρὴ τοίνυν ἢ διὰ τῶν χειρῶν , εἰ |
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων | ||
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ |
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |
δέρχθητ ' ] ἴδετέ με , οἵῳ προσηλωμένος δεσμῷ τῆς ἐξοχῆς ταύτης τοῦ ὄρους κακὴν τήρησιν βαστάσω . . οἵῳ | ||
τυπώσεως , Κλεάνθους μὲν κυρίως ἀκούσαντος τὴν μετὰ εἰσοχῆς καὶ ἐξοχῆς νοουμένην , Χρυσίππου δὲ καταχρηστικώτερον ἀντὶ τῆς ἀλλοιώσεως . |
. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς | ||
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ |
ἡ ΧΦ τῇ ΣΟ , μείζων ἄρα ἡ ΚΒ τῆς ΣΟ . ἴση δὲ ἡ ΚΒ ἑκατέρᾳ τῶν ΚΣ , | ||
ἐστι διάμετρος ἡ ΞΗ τῇ ΒΤ , καὶ ὅτι ἡ ΣΟ παράλληλος οὖσα τῇ ΒΤ κατῆκται τεταγμένως ἐπὶ τὴν ΘΗΟ |
πλευρὰς καὶ βραχίονος ἐπεγκύκλιοι πάλιν ἐπὶ μασχάλην ἀπαθῆ : ἀπὸ μασχάλης λοξαὶ ἐπὶ ἀκρώμιον πεπονθός : ἀπὸ ἀκρωμίου ὄρθιοι παρὰ | ||
: εἶτα λοξὴ κατὰ στέρνου ὑπὸ μασχάλην ἀπαθῆ , ἀπὸ μασχάλης λοξὴ κατὰ νώτου ἐπὶ κλεῖδα , ὡς μέρη τινὰ |
ἡ γὰρ χρύσασπις ἐπὶ τῆς ἡρωίδος , ἣν Ἀσωποῦ καὶ Μετώπης τῆς Λάδωνός φασιν . ὁ δὲ νοῦς : ὦ | ||
φασι Κισσέως , ἢ ὡς ἕτεροι λέγουσι Σαγγαρίου ποταμοῦ καὶ Μετώπης . γεννᾶται δὲ αὐτῷ πρῶτος μὲν Ἕκτωρ : δευτέρου |
κρύπτεται . ὡρῶν ιδ ∠ ʹ : ὁ λαμπρὸς τῆς Λύρας ἑσπέριος ἀνατέλλει . Αἰγυπτίοις λὶψ ἢ νότος , ὑετία | ||
καὶ Κρόνου . πάλιν παρανατέλλει λαμπρὸς ἀστὴρ ὁ ἐπὶ τῆς Λύρας ὁ καλούμενος Λυρικὸς μοίρας καʹ , βόρειος , μεγέθους |
καθάπερ καὶ τῇ ἐνδείᾳ ἡ λύπη : γινομένης μὲν γὰρ ἀναπληρώσεως ἡδόμεθα , τεμνόμενοι δὲ λυπούμεθα . δοκεῖ δὲ γενέσθαι | ||
' οὐδὲ μετὰ γενέσεως πᾶσαι . αἱ μὲν γὰρ μετὰ ἀναπληρώσεως , εἰ καὶ μὴ γενέσεις , ἀλλὰ μετὰ γενέσεως |
ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης ὡς ἀπὸ | ||
τὸν δῆμον ἐς δίκην ἀπαγάγοι : Ἀντώνιός τε τῆς ἄρτι συγκειμένης πρὸς τὸν Καίσαρα φιλίας ὑπεριδών , εἴτε ἐς χάριν |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
δὲ τῆς θεοῦ πᾶσιν ὀφθείσης καὶ παρ ' αὐτὴν εὐθέως Ὀπώρας τε καὶ Θεωρίας ἀναφανεισῶν συμπαρὼν ὁ Ἑρμῆς ἀνιστορούσης τι | ||
αἰδοῖον λέγει : ἅμα δὲ καὶ πρὸς τὸ ὄνομα τῆς Ὀπώρας τὸ “ σῦκον ” λέγει . . ὑμὴν ὑμέναι |
δυσμενὴς ἐμοί . μή , πρός σε γονάτων τῆς τε νεογάμου κόρης . λόγους ἀναλοῖς : οὐ γὰρ ἂν πείσαις | ||
. ἡττηθεὶς οὖν τῷ πολέμῳ ἔφυγεν εἰς Ἔφεσον μετὰ τῆς νεογάμου . ἐν δὲ τῇ δευτέρᾳ ὁ αὐτὸς Πολύβιος ἱστορεῖ |
καὶ μέσον δυναμένη . Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης τῆς | ||
Ὅτι ἐπειδὴ ἀδύνατον ῥητὴν εἶναι τὴν διάμετρον τῆς πλευρᾶς οὔσης ῥητῆς , ἐπενόησαν οὕτω λέγειν οἱ Πυθαγόρειοι καὶ Πλάτων , |
τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
τὴν εὕρεσιν τὴν παρὰ τοῦ θεοῦ Ἑρμοῦ εἰς ἀνθρώπους διὰ μεσότητός τινος ἔρχεσθαι , ἡ δὲ δαιμονία φύσις ἐστὶν ἡ | ||
φανεῖεν χείρους καὶ ἦσαν οὐκ ἀδύνατοι : τὸ οὐκ ἀδύνατοι μεσότητός ἐστι ῥῆμα , οἷον οὔτε τελείως δυνατοὶ οὔτε ἀσθενεῖς |
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
γὰρ δείκνυται διὰ τοῦ αʹ τοῦ Ϛʹ στοιχείων , τετραγώνου ἀναγραφέντος ἀπὸ τῆς ΕΓ καὶ συμπληρωθέντος τοῦ ἐπὶ τῆς ΑΕ | ||
ἐπιπέδων . ἀπὸ γὰρ τῆς πλευρᾶς τοῦ τριγώνου τοῦ εἰκοσαέδρου ἀναγραφέντος πενταγώνου ἐπιζευχθείσης τῆς ὑπὸ δύο πλευρὰς ὑποτεινούσης τοῦ πενταγώνου |
καὶ τὴν ἐκ τῆς συνεμπτώσεως πλάνην προανελόντας τὸν προσήκοντα τῆς κλίσεως ἀποδιδόναι λόγον . Εἰλήφθω δὲ παραδείγματα τὸ πλεῖον , | ||
λῆγον , ὃ οὐ πάντως κλίσεως ἔτυχε . καὶ ἕνεκα κλίσεως καὶ συντάξεως τὸ μὲν πτύξ ὄνομά ἐστιν , ἐπεὶ |
ἐλάττονα μερικὴν καταφατικὴν ἀναγκαίαν : αὕτη γὰρ τῆς μερικῆς καταφατικῆς ἀντιστραφείσης , τῆς ἐλάττονος λέγω ἀναγκαίας , ἀνάγεται εἰς τὸν | ||
δὲ μείζων καθόλου καταφατικὴ ἐνδεχομένη , ὁ αὐτὸς ἔσται συλλογισμὸς ἀντιστραφείσης τῆς ἀποφατικῆς ὑπαρχούσης . καὶ τέως δεικτέον τὴν ἐκ |
ὑπεροχῆς αὐτῶν τετράγωνος ἐλάσσων τοῦ συναμφοτέρου τοῦ τε τριπλασίονος τῆς ὑπεροχῆς καὶ τῶν μο , καὶ ἔστω ἡ τῶν Ϟῶν | ||
γὰρ ὑπερέχει , ἴσμεν , ἄγνωστος δὲ ἡ ποσότης τῆς ὑπεροχῆς . καὶ ἐπὶ μὲν τῶν πλευρῶν τοῦ κ καὶ |
ἰσημερινοῦ μοίρας ξα καὶ γράφεται διὰ τῶν βορείων τῆς μικρᾶς Βρεττανίας . κηʹ . ὅπου δὲ ἡ μεγίστη ἡμέρα ὡρῶν | ||
οὗτος τοῦ ἰσημερινοῦ μοίρας νζ καὶ γράφεται διὰ Κατουρακτονίου τῆς Βρεττανίας . ἔστι δὲ ἐνταῦθα , οἵων ὁ γνώμων ξ |
ἀιδίοις ἀπολείπουσιν οἱ ἄνδρες , οἷον τὸ τῆς ὁμοιότητος ἢ ἰσότητος ἢ ταυτότητος εἶδος , οὗ μετέχει μὲν καὶ ὁ | ||
Τῷ δὴ ἑνὶ μὴ ὄντι , ὡς ἔοικε , καὶ ἰσότητος ἂν μετείη καὶ μεγέθους καὶ σμικρότητος . Ἔοικεν . |
τῆς ἰσότητος τῶν λόγων τὸ ἔσχατον εἶδος ἐμφαίνει καὶ ἡ καμπυλότης τῆς ἀνισότητος : εἰ μέντοι καμπυλότητά τις λαμβάνοι τὴν | ||
, καθὸ εὐμόρφους ἢ δυσμόρφους λέγομεν . εὐθύτης δὲ καὶ καμπυλότης περὶ τὰ θέσιν ἔχοντα τὸ ποιὸν ἀφορίζουσιν . ὡς |
μεριστῆς οὔτε ἄλλης τοιαύτης ἐν τῇ παρουσίᾳ τῶν θεῶν ἐμφυομένης παρισώσεως . Πρὸς μὲν γὰρ τὰ ὁμοφυῆ κατ ' οὐσίαν | ||
τὸ σχῆμα τῆς κατὰ κῶλον ἐπαναφορᾶς , ὅπερ ἐστὶ καὶ παρισώσεως εἶδος , μέχριμέχριμέχρι . καὶ πλεῖστα ἀντιλέγων τούτοις ] |
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
πολλῶν . ὅθεν καὶ κανόνα τινὰ καὶ ἐπὶ ταύτης τῆς πλοκῆς παραδίδωσιν , πότε δυνατόν ἐστι τὰ ἅμα λεγόμενα καὶ | ||
ἐστὶν εἶδος . Θεόδωρος δ ' ἐν Ἀττικαῖς Γλώσσαις στεφάνων πλοκῆς γένος παρὰ Πλάτωνι ἐν Διὶ Κακουμένῳ . εὑρίσκω δὲ |
χυμῷ τινι ζέσαντι ἢ σαπέντι , ἢ μωρίου φλεγμονῆς καὶ στεγνώσεως . Τῶν δὲ συνόχων πυρετῶν γένος διττόν : οἱ | ||
Δία ἔπεμψέ τις καὶ πρὸς ἰατρὸν , ὡς ὑπὸ ἀμέτρου στεγνώσεως ἢ ἀραιώσεως ἐνοχλούμενος . εἰ δὲ μή ἐστι πάθη |
, κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα | ||
, κωνικὴν ποιήσει ἐπιφάνειαν τῆι ΑΠ εὐθείαι , ἣ δὴ περιαγομένη συμβαλεῖ τῆι κυλινδρικῆι γραμμῆι κατά τι σημεῖον : ἅμα |
τῇ ΓΛ , ἡ δὲ ὑπὸ ΖΚΓ γωνία τῇ ὑπὸ ΖΛΓ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΚΓ τῇ ΓΛ | ||
ΖΓΛ ἴση . δύο δὴ τρίγωνά ἐστι τὰ ΖΚΓ , ΖΛΓ τὰς δύο γωνίας ταῖς δυσὶ γωνίαις ἴσας ἔχοντα καὶ |
ἄλλος μῦς ἐπιζεύγνυσιν ἀμφοτέρους , ἀπὸ τῆς τοῦ πρώτου σπονδύλου πλαγίας ἀποφύσεως ἐπὶ τὴν ὄπισθεν ἀφικνούμενος τοῦ δευτέρου . καταφύεται | ||
τὰ κάτω . οὗτος ὁ ἐπίδεσμος εὐθετεῖ ἐφ ' ὧν πλαγίας οὔσης κατὰ τὸ βρέγμα διαιρέσεως , πρόκειται τὰ χείλη |
οὖν . Καὶ συμπάσης γε ὡς ἔπος εἰπεῖν ἔοικεν τῆς οἰκοδομικῆς πέρι τήν γε δὴ νέαν καὶ ἀοίκητον ἐν τῷ | ||
τεχνῶν τῶν μὴ λογικῶν , οἷον τῆς τεκτονικῆς , τῆς οἰκοδομικῆς , τῆς λιθοξοϊκῆς καὶ τῶν τοιούτων : αὗται γὰρ |
ἀνατολῶν Σάκαις παρὰ τὴν ἐντεῦθεν τοῦ Ἰαξάρτου μέχρι τῶν πηγῶν ἐπιστροφῆς , αἵτινες ἐπέχουσι μοίρας . . . . . | ||
καὶ παραλελειμμένων ἀναγκαίων ὄντων τῇ ὑποθέσει . διὸ μετὰ πολλῆς ἐπιστροφῆς ὑπέρ τε ἐμαυτοῦ καὶ σοῦ ὡρμήθην ἐπὶ τὴν συγγραφὴν |
αἴσθησις ὡς τετράς , ἐπειδὴ τετραπλῆ κοινῆς πασῶν οὔσης τῆς ἁφῆς κατ ' ἐπαφὴν πᾶσαι ἐνεργοῦσιν αἱ αἰσθήσεις . ἐνάτη | ||
ἢ τὸ ἀγώνιον : προφανῆ δὲ καὶ τὰ περὶ τῆς ἁφῆς , ὡς διαφόρως περὶ τὰ διάφορα τῶν σωμάτων διατίθεται |
ὃ ἂν ἐπιβάληται ἐπιτυγχάνει . ὑπὸ δὲ κακοποιῶν θεωρουμένης ἢ δυτικῆς οὔσης καὶ ἑσπερίας μέτριοι οἱ χρόνοι καὶ ἄπρακτοι καὶ | ||
, ἡ πρόσνευσις ἔσται κατὰ τὸ Ζ , ἀπέχον τῆς δυτικῆς τομῆς ὡς πρὸς μεσημβρίαν τὴν ΒΖ περιφέρειαν , ἀντὶ |
μὲν ἐγχειρήσωσι ταῖς ἐπιβολαῖς : ὑπὸ γὰρ τῆς πεπρω - μένης αὐτοῖς κεκυρῶσθαι πατρίδα τὴν Ἔνναν , οὖσαν ἀκρόπολιν ὅλης | ||
, τῆς ΕΗ ἄρα ἄκρον καὶ μέσον λόγον τεμνο - μένης τὸ μεῖζον τμῆμά ἐστιν ἡ ΕΖ . ἔστι δὲ |
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
: τὸ δὲ λογικὸν αὐτὸν εἶναι καὶ μὴ ἄλογον χωρὶς δείξεως αἰτεῖταί τε καὶ τίθησιν . εἰ δέ ἐστιν ἀσθενὴς | ||
τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' εὐθείας δείξεως : διὸ καὶ τέλειος ὁ συλλογισμός . ἐπειδὴ γὰρ |
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
τῇ ΑΓ μήκει , ἡ δὲ ὅλη ἡ ΑΗ τῆς προσαρμοζούσης τῆς ΔΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει | ||
καὶ ἡ ὅλη μείζων διὰ ηʹ εʹ ιʹ δύναται τῆς προσαρμοζούσης τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει , καὶ ἡ ἄλλη |
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |