| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ | ||
| ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν |
| ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
| ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
| παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ . | ||
| παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ |
| καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
| τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
| οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
| κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
| ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ | ||
| τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν . |
| καὶ τῆς ἰδίου οὐσίας δηλωτικὸν ἢ καὶ τὸν αὐτὸν τῷ προσκειμένῳ : οὕτως γὰρ αὐτῷ ὑπάρξει ὁ μείζων ἄκρος . | ||
| δυνα - τόν . Ἀλλ ' ὅταν μὲν ἐν τῷ προσκειμένῳ τῶν ἀντικειμένων τι ἐνυπάρχῃ . τὸν κανόνα παραδίδωσιν λοιπὸν |
| ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
| ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
| , ἡ ἄρα ΓΜ τῆς ΜΖ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ . καί ἐστιν ὅλη ἡ ΓΜ σύμμετρος μήκει | ||
| ἐπεὶ οὖν ἡ ΑΗ τῆς ΗΔ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει , ἐὰν ἄρα τῷ τετάρτῳ μέρει τοῦ |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
| ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| , ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
| τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
| τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν | ||
| ' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας : |
| δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
| δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
| ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
| ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
| ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
| , τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
| προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ | ||
| ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων |
| αὐτοῦ . ἐπ ' ἐκείνων μὲν γὰρ διεβάλλετο , ἐπεὶ κειμένῳ τῷ ἐξ ἀναγκαίας τῆς μείζονος καὶ ὑπαρχούσης τῆς ἐλάττονος | ||
| ὠνομάζετο ὁ τὴν Σωφη - νὴν ἀπολαμβάνων ἐν αὐλῶνι μεταξὺ κειμένῳ αὐτοῦ τε καὶ τοῦ Ταύρου . πέραν δὲ τοῦ |
| λέγω , ὅτι ἴσον ἐστὶ τὸ ΓΜ στερεὸν τῷ ΓΝ στερεῷ . Ἐκβεβλήσθωσαν γὰρ αἱ ΝΚ , ΔΘ καὶ συμπιπτέτωσαν | ||
| εὐθεῖαν . αἰτιῶνται δὲ αὐτοῦ τινες ὡς οὐ δεόντως χρησαμένου στερεῷ προβλήματι . . . . . . . . |
| τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
| ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
| συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν παρὰ ῥητὴν παραβληθῇ , πλάτος ποιεῖ ῥητὴν καὶ σύμμετρον τῇ , παρ | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ , ἡ ἡμίσεια τῆς ἐλάσσονος μείζων |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
| παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
| τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ | ||
| ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου |
| ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς | ||
| ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ |
| τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
| Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
| οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ | ||
| μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ . |
| τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣ | ||
| ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ |
| κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
| τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
| τῇ ΑΓ μήκει , ἡ δὲ ὅλη ἡ ΑΗ τῆς προσαρμοζούσης τῆς ΔΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει | ||
| καὶ ἡ ὅλη μείζων διὰ ηʹ εʹ ιʹ δύναται τῆς προσαρμοζούσης τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει , καὶ ἡ ἄλλη |
| μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
| , ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
| ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν | ||
| ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν |
| δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
| , ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
| , τήν τε ἀριθμητικήν , ἣ τῷ ἰσαρίθμῳ ὑπερέχει καὶ ὑπερέχεται , οἷον ἐπὶ τοῦ ἓν καὶ δύο καὶ τρία | ||
| δὲ πάντες οἱ τὴν μείζονα μερικὴν ἔχοντες : ἐπεὶ γὰρ ὑπερέχεται τὸ Α ὑπὸ τοῦ Β , ὑπερεχέσθω τὸ Α |
| εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
| ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
| ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ | ||
| ٤٨ ١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ |
| τε ὅλῳ καὶ ἀλλήλοις : ὅπερ ἔδει δεῖξαι . Τῷ δοθέντι εὐθυγράμμῳ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον τὸ αὐτὸ | ||
| δὴ τὸ πλῆθος τῶν ΑΖ ΖΗ ΗΘ ΘΒ ἴσον τῷ δοθέντι , καὶ ἡ ἐκ πασῶν συγκειμένη εὐθεῖα ἴση τῇ |
| Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
| ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ |
| εἴρηκεν , ὡς τοῖς σωματικοῖς στοιχείοις ἕκαστα γνωρίζεται καὶ τῷ ὁμοίῳ τὸ ὅμοιον , καίπερ ἱκανῶς ἐληλεγμένου , τοῖς φθάσασιν | ||
| [ ἔλαβεν . ] ἐνταυθοῖ ] ἐνταῦθα , ἐν τῷ ὁμοίῳ βίῳ . ἔσθι ' ] ναὶ τρῶγε . , |
| χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
| γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
| ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
| μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
| ὑποτείνουσα κε . [ καὶ ] γίνεται ὁ ἐν τῷ ἐμβαδῷ μετὰ βας τῶν ὀρθῶν ΔΥ πδ ʂ ζ . | ||
| περιμέτρῳ αὐτοῦ ᾖ κύβος , προσλαβὼν δὲ τὸν ἐν τῷ ἐμβαδῷ αὐτοῦ , ποιῇ τετράγωνον . Πρότερον δεῖ ἐπισκέψασθαι : |
| ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
| ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
| οὖν τῷ ἀπὸ τῆς ΚΗ τετραγώνῳ ἴσον παρὰ τὴν ΒΚ παραβέβληται ὑπερβάλλον τῷ ἀπὸ τῆς ΚΛ τετραγώνῳ , τὸ ἄρα | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΜΖ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ , ΚΜ |
| ἡ ΕΓ ἄρα πρὸς ΓΒ μείζονα λόγον ἔχει ἤπερ ἡ ΔΓ πρὸς ΓΒ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΕΓ | ||
| καὶ τὸ ΕΖ . , ] ὅμοιον γάρ ἐστι τῷ ΔΓ δεδομένῳ . Καί ἐστιν ἴσον τοῖς ΑΓ , ΚΘ |
| πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ | ||
| ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ |
| δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν | ||
| καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν , |
| δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς | ||
| τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ , |
| πᾶσαν μῖξιν τῷ ἀνδρὶ οὐχ ὑπακούει , καθάπερ ἱέραξ : τριακοντάκις γὰρ τῆς ἡμέρας βασανιζομένη , ἐπειδὰν ἀναχωρήσῃ , φωνηθεῖσα | ||
| , κάθετος δὲ ἐπὶ τὴν ΒΓ ἡ ΔΕ , τὸ τριακοντάκις ὑπὸ ΒΓ , ΔΕ ἴσον ἐστὶ τῇ τοῦ εἰκοσαέδρου |
| εἰσίν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ὑπὸ ΒΑΔ , ΔΓΒ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν . Τῶν | ||
| δοθεῖσα γωνία ὀρθή , καὶ ἔστω αὐτῇ ἴση ἡ ὑπὸ ΒΑΔ , καὶ τετμήσθω ἡ ΑΒ δίχα κατὰ τὸ Ε |
| ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
| καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
| τῶν τεσσάρων , ΔΥ τοσούτων ὅσων ἐστὶ δπλ . τοῦ ἐμβαδοῦ , τὸν μὲν αον ΔΥ ͵δνϚ , τὸν δὲ | ||
| μεῖζον , τῶν δὲ μετ ' αὐτὴν ἡ περίμετρος τοῦ ἐμβαδοῦ ἐλάσσων . πρῶτος τετράγωνος καὶ ἐν ἀρτίοις πρώτη τετρακτύς |
| ἡμῶν χρόνῳ , ὅσῳ σχεδὸν ἐν τῷ πρὸς τὸν ἰσημερινὸν πλάτει δια - φέρουσιν αἱ δύο # μοῖραι τοῦ διὰ | ||
| ὁπόταν κατὰ τὰς τοῦ παραδείγματος συμμετρίας τις ἐν μήκει καὶ πλάτει καὶ βάθει , καὶ πρὸς τούτοις ἔτι χρώματα ἀποδιδοὺς |
| Ἐν τοῖσιν ὀξέσι νουσήμασι ψύξις ἀκρωτηρίων , κακόν . Ἐπὶ ὀστέῳ νοσέοντι σὰρξ πελιδνὴ , κακόν . Ἐπὶ ἐμέτῳ λὺγξ | ||
| λαβὼν ὀστέον οἱουδήποτε ζῴου ἀποθανόντος , ὀρύξας αὐτὴν τούτῳ τῷ ὀστέῳ καὶ λαβὼν τὴν ῥίζαν λέγε : ὁρκίζω σε κατὰ |
| ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
| : ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
| ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
| ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
| ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
| μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
| ٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١ | ||
| τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨ |
| ὁ βραχίων ἀσφαλιζέσθω πρὸς τὸν ἄξονα , καὶ τότε τῷ πήχει βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω , οὗ | ||
| βραχίων ἀσφαλιζέσθω βρόχῳ πρὸς τὴν ὑπερκειμένην φλιάν , τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , |
| Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
| οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
| περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
| , τίς σοι δέδωκεν ; οὐ θέλεις μελετᾶν ἀρκεῖσθαι τῷ δεδομένῳ ; Διὰ τοῦτο γὰρ Ἀγριππῖνος τί ἔλεγεν ; ὅτι | ||
| τρίγωνον δοθείς . Ἐὰν δύο τριγώνων αἵ τε βάσεις ἐν δεδομένῳ λόγῳ ὦσι καὶ αἱ ἐπ ' αὐτὰς ἠγμέναι ἀπὸ |
| ἰξυόθεν κατιόντων . τοῦ γὰρ νοτιωτέρου τῶν ἡγουμένων ἐν τῷ πλινθίῳ εἷς μόνος προηγεῖται λαμπρὸς ἀστήρ , ὁ νῦν ἐν | ||
| τὸ σχῆμα , Ἀφροδίτης ἐστὶν ἐν αὐτῇ ναὸς καλούμενος ἐν πλινθίῳ καὶ ἄγαλμα λίθου . στήλαις δὲ ἐπειργασμένοι τῇ μὲν |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς | ||
| διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν |
| ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
| ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
| ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
| ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
| τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
| καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
| τρόπον γένοιτο ἂν τετραγωνισμός . ἀπεδίδου δὲ τοῦτο περὶ τρίγωνον ὀρθογώνιόν τε καὶ ἰσοσκελὲς ἡμικύκλιον περιγράψας καὶ περὶ τὴν βάσιν | ||
| θ : ὥστε τὸ δὶς ὑπὸ τῶν ΓΒ , ΒΔ ὀρθογώνιόν ἐστιν ρμ : πεντάκις γὰρ ιδ ο , καὶ |
| ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
| κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
| τὸ ΝΗ . Ἐπεὶ γὰρ ὅμοιόν ἐστι τὸ ΚΑ στερεὸν παραλληλεπίπεδον τῷ ΛΓ , τὸ ΚΑ ἄρα πρὸς τὸ ΛΓ | ||
| δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου . Στερεὸν γὰρ παραλληλεπίπεδον τὸ ΑΒ ἐπιπέδῳ τῷ ΓΔΕΖ τετμήσθω κατὰ τὰς διαγωνίους |
| , καὶ τοῦ Κήτους ὁ νοτιώτερος τῶν ἡγουμένων ἐν τῷ τετραπλεύρῳ . Ἀνατέλλει δὲ ὁ Προκύων ἐν τρίτῳ μέρει ὥρας | ||
| ἀριστερὸς πούς , ἔσχατος δὲ τοῦ Κήτους τῶν ἐν τῷ τετραπλεύρῳ ὁ βορειότερος τῶν ἡγουμένων . Ἀνατέλλει δὲ ὁ Λαγωὸς |
| τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
| παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
| δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
| ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
| τὸ δὲ ἀπὸ τῆς ἐκ δύο μέσων πρώτης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων δευτέραν . τὸ | ||
| ἐκάλουν οἱ παλαιοὶ πᾶν τὸ ἐπὶ σημείῳ τινὶ καὶ τεκμηρίῳ παραβαλλόμενον : ἐκ μεταφορᾶς τῆς οἰωνοσκοπητικῆς . μὰ τὴν Δήμητραν |
| τὸ σκέλος τοῖς διακόπτειν τεταγμένοις παραδίδωσιν , ὡς ἂν τῷ λοιπῷ σώματι ὑγιὴς ὁ ἄνθρωπος ᾖ . Σὺ δὲ τὸν | ||
| ἀπὸ τῆς ΗΚ : λοιπὸν ἄρα τὸ ἀπὸ τῆς ΘΛ λοιπῷ τῷ ἀπὸ τῆς ΚΝ ἴσον ἐστίν : ἴση ἄρα |
| τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
| τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
| : τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
| . ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
| διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς | ||
| ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ |
| καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
| τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
| ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ | ||
| ٢٢ ١٠ ٢٠ τὸ ὑπὸ ῥητῆς καὶ τῆς ΑΔ ١ ٤٥ ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ταύτης ἡμίσεια |
| ١٣ ٤٣ ἡ ΑΗ ٥ ١٣ ١١ ἡ ΓΚ ٢ ٤٨ ٤٠ ٥٧ ἡ ΚΜ ١ ١٤ ٣٠ ٢ ١٢ | ||
| ١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠ ٤ ٤٥ Ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΖ |
| , τοιούτων ἐστὶ τὸ γδ τεσσάρων , οἵων δὲ τὸ γδ τεσσάρων , τοιούτων τὸ εζ τριῶν , καὶ οἵων | ||
| τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ τὸ αη ἄρα τοῦ εζ ἐστι τριπλάσιον |
| ΓΖ : ἴσον ἄρα καὶ τὸ ὑπὸ ΒΜΑ τῷ ὑπὸ ΒΚΓ : ὡς ἄρα ἡ ΜΒ πρὸς ΒΚ , ἡ | ||
| ΚΔ . οὐκοῦν μείζων ἡ ὑπὸ ΔΚΓ γωνία τῆς ὑπὸ ΒΚΓ γωνίας . τὰ δὲ ὑπὸ μείζονος γωνίας ὁρώμενα ἔγγιον |
| ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
| παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
| : τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
| τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
| ἡ ἀπὸ δεδομένου σημείου πρὸς θέσει εὐθείᾳ ἀγομένη εὐθεῖα ἐν δεδομένῃ γωνίᾳ . ιεʹ . Παρὰ θέσει ἐστὶν ἡ διὰ | ||
| τοῦ βίου , καὶ ὅσα δὲ ἄλλα . πετεινὰ τῇ δεδομένῃ αὐτοῖς φωνῇ κελαδεῖ , καὶ οὐδέν ἐστιν ἄφωνον ἐν |
| ⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας | ||
| τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν |
| παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν | ||
| πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα |
| ٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ | ||
| ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ |
| ἐπειδὴ ὁ τῆς ἀνωμαλίας ἀριθμὸς ἐν τοῖς ὑποκάτω τῆς μεγίστης προσθαφαιρέσεως στίχοις , ποιήσει τὰ προκείμενα ἑξηκοστὰ λγ ζ , | ||
| με , ἡ δὲ ὑπὸ ΒΑΛ γωνία τῆς κατὰ μῆκος προσθαφαιρέσεως , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ , |
| : τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
| κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
| ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης ὡς ἀπὸ | ||
| τὸν δῆμον ἐς δίκην ἀπαγάγοι : Ἀντώνιός τε τῆς ἄρτι συγκειμένης πρὸς τὸν Καίσαρα φιλίας ὑπεριδών , εἴτε ἐς χάριν |
| καὶ αὗται ἐκ τῶν πρὸ ἑαυτῶν , ἡ μὲν ἐν πολλαπλασιεπιμορίῳ λόγῳ ἐκ τῆς ἐν ἐπιμορίῳ , ἀφ ' ἧς | ||
| . ἐν ἄλλ . τ . σχ . μικτῇ οἷον πολλαπλασιεπιμορίῳ . ἐπίσημον λέγει τὸν [ νϚʹ ] . ἐπιπ |
| , τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
| ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
| συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ , ΕΒ τετραγώνων τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ , ΖΔ , τὸ | ||
| ἀπὸ τῶν ΑΒ , ΒΓ καὶ σύμμετρον τῷ ἐξ αὐτῶν συγκειμένῳ , ἀνάγκη καὶ τὸ ἐκ τῶν ἀπ ' αὐτῶν |
| καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
| ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |