συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν παρὰ ῥητὴν παραβληθῇ , πλάτος ποιεῖ ῥητὴν καὶ σύμμετρον τῇ , παρ
τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ , ἡ ἡμίσεια τῆς ἐλάσσονος μείζων
7477053 ἐλλειπον
παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ .
παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ
7129634 παραβεβληται
οὖν τῷ ἀπὸ τῆς ΚΗ τετραγώνῳ ἴσον παρὰ τὴν ΒΚ παραβέβληται ὑπερβάλλον τῷ ἀπὸ τῆς ΚΛ τετραγώνῳ , τὸ ἄρα
τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΜΖ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ , ΚΜ
7080662 ῥητην
ἐλευθεριωτέρων εἰς χρόνον καθ ' ὁμολογίαν μέντοι , οὐ μὴν ῥητήν , οἷον δέκα ἢ εἴκοσι ἤ τινα ἄλλον ἀριθμόν
μεγάλῃ ἀνέστρεψε . ταῦτα προειπόντες ἐν τῷ πλήθει , καὶ ῥητήν τινα ἀποδείξαντες ἡμέραν , ἐν ᾗ τέλος ἔφησαν ἐπιθήσειν
6445367 δοθεισαν
ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ
κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ
6443620 τμηθῃ
τῷ ἀπὸ τῆς ΓΔ τετραγώνῳ . Ἐὰν ἄρα εὐθεῖα γραμμὴ τμηθῇ δίχα , προστεθῇ δέ τις αὐτῇ εὐθεῖα ἐπ '
οὖν ἐνταῦθα τὸ πῶς δεῖ τέμνειν αὐτήν : ὅταν γὰρ τμηθῇ εὐθεῖα οὕτως , ὡς εἶναι τὸ ἀπὸ τῆς ὅλης
6420073 τετραγωνῳ
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ
6380374 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν
6200634 πλευραν
τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον
ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου
6193636 ἀπολαμβανομενην
τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα
ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ
6069571 ἀχθῃ
ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ
' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ ,
6052771 γωνιαν
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν
5973956 διαιρουμενην
διχῇ τέμνεσθαι . Πῇ ; Τὴν μὲν τῶν αὐτουργῶν αὐτοπωλικὴν διαιρουμένην , τὴν δὲ τὰ ἀλλότρια ἔργα μεταβαλλομένην μεταβλητικήν .
ὅτι τῶν μὲν ἐφεξῆς ἡ γένεσις περὶ μίαν εὐθεῖαν ἐγίνετο διαιρουμένην ὑφ ' ἑτέρας μόνον , τῶν δὲ κατὰ κορυφὴν
5956016 κατηγμενην
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ
5943363 τμηθεισαν
ἀπλανῆ σφαῖραν ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ
ὄρει τρεφόμενον , καὶ ὄψει λαιμότομον , ἤγουν τὸν λαιμὸν τμηθεῖσαν , ἀπὸ τῶν ἐνταῦθα πεμπομένην πρὸς τὸ σκότος τῆς
5938824 ἐπιζευγνυουσαν
τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης
διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα
5924470 ταὐτοτητα
τῶν διαφορῶν : λέγει γὰρ καὶ τὴν διαφορὰν καὶ τὴν ταὐτότητα γενικὰ θῶμεν . Ὅτι δὲ λέγεται πρὸς ταῦτα ἐν
τῆς φύσεως δημιουργεῖσθαι οὐκ ἀσκόπῳ ἔοικεν ἔργῳ οὐδὲ ἀναιτίως τὴν ταὐτότητα καὶ τὴν ὁμοιότητα διασώζοντι : ἐπεὶ καὶ ἐνταῦθα μὲν
5923949 ὑπερεχουσαν
δυάδι ἢ καὶ μείζονι ἀριθμῷ τὴν ἑτέραν πλευρὰν τῆς ἑτέρας ὑπερέχουσαν ἔχοντες , ὡς ὁ δὶς δʹ καὶ ὁ τετράκις
ἑκάστην τῶν τριῶν ἐφαρμόζουσαν ἐντάσσεσθαι : κατὰ μὲν ἀριθμητικὴν ἴσῳ ὑπερέχουσαν καὶ ὑπερεχομένην , κατὰ δὲ γεωμετρικὴν ὁμοίῳ λόγῳ διαφορουμένην
5870722 καθετον
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ
5852527 προσθεσιν
ποτὲ μὲν κατὰ μείωσιν ἢ ἀφαίρεσιν , ποτὲ δὲ κατὰ πρόσθεσιν ἢ αὔξησιν . οἱ οὖν τοιοῦτοι οἰκείως καλοῦνται μυουρίζοντες
, ταῖς τε προτάσεσι λέγω καὶ συμπεράσματι , τήν τε πρόσθεσιν καὶ τὴν ὑφαίρεσιν γίνεσθαι . οὐδὲν δὲ διαφέρει ,
5851316 ἀτμητος
δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ
τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν
5850482 κατηγμενη
τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον
Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ
5816028 ἀμβλειαν
καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ
πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω
5813381 παραλλαξιν
τὴν σελήνην ἐφ ' ἑκάτερα παραλλάσσειν μετὰ τὴν τοῦ ἡλίου παράλλαξιν ἀπὸ # κε μέχρι μοίρας α ἐπὶ τὰ βόρεια
διὸ τὴν ἀνακύκλησιν εἴληχεν , ὅτι σμικροτάτην τῆς αὑτοῦ κινήσεως παράλλαξιν . αὐτὸ δὲ ἑαυτὸ στρέφειν ἀεὶ σχεδὸν οὐδενὶ δυνατὸν
5809258 διαμετρον
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ ,
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης ,
5790020 παραβληθεν
οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ
μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ .
5775415 τμηθησεται
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου
5767695 ὁμοταγη
, καὶ τὸ ὂν σὺν τῷ ἑνί , καὶ ἢ ὁμοταγῆ , ἢ διεστήξεται ἀπ ' ἀλλήλων , καὶ ἔσονται
γὰρ ὡς ἐπὶ τῆς προκειμένης τὰ ΖΑΗ , ΘΑΚ τρίγωνα ὁμοταγῆ . λέγω , ὅτι ἴσα τε καὶ ὅμοιά ἐστιν
5719799 γραμμην
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει ,
5717413 ἐλασσονος
ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς
διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν
5715232 διελει
τὴν ΑΗ παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ , εἰς σύμμετρα αὐτὴν διελεῖ . τετμήσθω οὖν ἡ ΔΗ δίχα κατὰ τὸ Ε
τὴν ΑΗ παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ , εἰς ἀσύμμετρα αὐτὴν διελεῖ . τετμήσθω οὖν ἡ ΔΗ δίχα κατὰ τὸ Ε
5693737 διαστασιν
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς
5683461 προσθαφαιρεσιν
τῆς ἀνωμαλίας κανόνα τὴν παρακειμένην αὐτῷ ἐν τῷ τρίτῳ σελιδίῳ προσθαφαίρεσιν ἕως μὲν ρπ μοιρῶν ὄντος τοῦ εἰσενεχθέντος ἀριθμοῦ αὐτοῦ
μέντοι τῆς ἀκριβείας διαφέρουσιν , ὥστε καὶ τὴν ἐπιβάλλουσαν αὐταῖς προσθαφαίρεσιν οὖσαν μοιρῶν γ με ἔγγιστα διενεγκεῖν τινι ἀξιολόγῳ ,
5648085 ἀποτομην
ἀπὸ τοῦ ἑνὸς πρὸς τὸ πλῆθος σχέσιν δηλοῖ . Κατὰ ἀποτομήν φησι κατὰ προσηγορίαν : ἡ γὰρ προσηγορία δίκην ὁρισμοῦ
καὶ πρὸς ἣν ἥδε λόγον ἔχει δοθέντα λόγον ἔχει πρὸς ἀποτομήν . . ὅτι ἔστιν τι δοθὲν σημεῖον , ἀφ
5647471 Ναρβωνησιαν
ἐμπόριον καὶ πόλις Κελτική . Στράβων τετάρτῃ . Μαρκιανὸς δὲ Ναρβωνησίαν αὐτήν φησι . τὸ ἐθνικὸν Ναρβωνίτης ὡς Ἀσκαλωνίτης .
ἐμπόριον καὶ πόλις Κελτική : Στράβων δ . Μαρκιανὸς δὲ Ναρβωνησίαν αὐτήν φησι . τὸ ἐθνικὸν Ναρβωνίτης . . .
5622988 πυκνωσαι
τὸν σῖτον ἀντὶ κοπρίου τέταχεν . στενυγρῶσαι : ἀποστεγνῶσαι καὶ πυκνῶσαι τόπον τινά , ἐν ᾧ ἡ ὑγρασία ἐστί .
τρίτη μοῖρα τῶν λουτρῶν ψῦξαι μὲν τὸ σύμπαν σῶμα καὶ πυκνῶσαι τὸ δέρμα καὶ ῥῶσαι τὰς δυνάμεις : τὸ δὲ
5606813 ὁμαλοτητα
χρῶμα μήτε σύστασιν μήτε μὴν τόπον μήτε λειότητα τηροῦντα καὶ ὁμαλότητα , εἰκότως ἂν σημάνειεν ἐκφυγόντα τὸ κατὰ φύσιν τε
. συνεδρίαι ] κοινωνίαι καὶ συναγελασμοί . . λειότητα ] ὁμαλότητα . χροιὰν τίνα ] μαντείαν ποίαν . . δαίμοσιν
5595806 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
5591743 στερεαν
πέτρας καὶ ἔλαιον ἐκ στερεᾶς πέτρας ” , πέτραν τὴν στερεὰν καὶ ἀδιάκοπον ἐμφαίνων σοφίαν θεοῦ , τὴν τροφὸν καὶ
μὴν ὁμοίως γε τοῖς ἀκαύστοις συνάγειν τε καὶ πιλεῖν τὴν στερεὰν οὐσίαν ἔτι δύνανται . Ἀρμενιακὸν δύναμιν ἔχει ῥυπτικὴν ἅμα
5582563 τομην
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο
5574270 συνοικιζεται
Ὀδυσσείᾳ κήδετο οἰκήων οὓς κτήσατο δῖος Ὀδυσσεύς . οἰκίζεται καὶ συνοικίζεται διαφέρει . οἰκίζεται μὲν γὰρ πόλις ὑπὸ τῆς πρώτης
πόλις ὑπὸ τῆς πρώτης τῶν συνοικητόρων ἀθροίσεως καὶ καθιδρύσεως , συνοικίζεται δὲ ἡ ἐκ πολλῶν πόλεων εἰς μίαν συναγομένη ὑπὲρ
5551535 ὑποτομην
καὶ τὸ τρίτον ὡσαύτως , μετὰ δὲ ταῦτα διὰ τὴν ὑποτομὴν ἐκπίπτειν τὸ δένδρον ὑπὸ τῶν πνευμάτων σαπέν : τότε
δὲ φεύγουϲι τὴν ἀποδοράν , δι ' ὃ μετὰ τὴν ὑποτομὴν βλεφαροκατόχῳ μυδίῳ , τουτέϲτι πρὸϲ τὴν περιφέρειαν τοῦ βλεφάρου
5542678 ἀγομενῃ
πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ
Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω
5517610 μεσημβρινην
διηκούσας κορυφὰς ] τοῦ Καυκάσου ὑπερβάλλουσαν ] ὑπερβᾶσαν , διελθοῦσαν μεσημβρινὴν ] † ἤγουν πρὸς νότιον ὁδεύειν : οὕτω γὰρ
: τὴν δ ' ἐκ Βαβυλῶνος εἰς τὴν διὰ Θαψάκου μεσημβρινὴν γραμμὴν κάθετον μικρῷ πλειόνων ἢ χιλίων , ὅσων ἦν
5504329 ἀσυμμετρου
, ἡ ἄρα ΓΜ τῆς ΜΖ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ . καί ἐστιν ὅλη ἡ ΓΜ σύμμετρος μήκει
ἐπεὶ οὖν ἡ ΑΗ τῆς ΗΔ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει , ἐὰν ἄρα τῷ τετάρτῳ μέρει τοῦ
5500765 παραβαλλομενον
τὸ δὲ ἀπὸ τῆς ἐκ δύο μέσων πρώτης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων δευτέραν . τὸ
ἐκάλουν οἱ παλαιοὶ πᾶν τὸ ἐπὶ σημείῳ τινὶ καὶ τεκμηρίῳ παραβαλλόμενον : ἐκ μεταφορᾶς τῆς οἰωνοσκοπητικῆς . μὰ τὴν Δήμητραν
5496460 μεταβληθῃ
, ὡς καὶ τὸ ὕδωρ , ἡνίκα ἂν εἰς ἀέρα μεταβληθῇ . ἐνταῦθα ὁ μὲν ὄγκος αὔξεται , σῶμα δὲ
ἐστιν ὁ ὄγκος , ἀλλ ' εἰ μὴ ὅτε τελείως μεταβληθῇ εἰς πῦον . οὕτω δὴ μόνον τὸν ἀσκίτην χειρουργοῦμεν
5485205 ἐκκειμενη
ἢ διπλασίαν ἢ ἡμίσειαν λάβωμεν , οἷον εἴ ἐστιν ἡ ἐκκειμένη ῥητὴ ἑξάπους , καὶ ληψόμεθα τὴν δωδεκάποδα , σύμμετρος
δὲ τῷ κόλπῳ τῆς παραλίας τὸ μὲν Ταίναρον ἀκτή ἐστιν ἐκκειμένη τὸ ἱερὸν ἔχουσα τοῦ Ποσειδῶνος ἐν ἄλσει ἱδρυμένον :
5467964 ὁποτερασουν
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ .
5466071 σανιδος
ταῦτ ' ἐστίν , τὴν δὲ διὰ τῆς προκειμένης ὀργανικῆς σανίδος ἐμβολὴν ἐπὶ τοῦ εἰς τὸ ἔσω μέρος ὠλισθηκότος μηροῦ
| ἐπώκειλεν ? [ ] τὸ σκάφος ἢ τὸ τελευταῖον σανίδος | τινὸς ἢ ἀμφορέως ἐφρόντισεν , ᾧ προςαναπαυόμενος |
5465886 καταφατικην
ἀποφατικὴ ἐνδεχομένη κατὰ τὸν ἐνδεχομένου προσδιορισμὸν δύναται μεταληφθῆναι εἰς τὴν καταφατικήν . Ἐὰν δὲ ἡ μὲν μείζων τῶν προτάσεων καθόλου
τὰ διαστήματα στερητικὰ τεθῇ , μεταληφθείσης τῆς ἐνδεχομένης ἀποφατικῆς εἰς καταφατικήν πάλιν τὰ αὐτὰ συνάγεται συμπεράσματα , οἷα καὶ αὐτόθεν
5454053 ἠγμενης
τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς παρὰ τὴν πλαγίαν ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα
' ἔρωτι οὐρανίῳ σεσοβημένης κἀκμεμηνυίας καὶ ὑπὸ τοῦ ὄντως ὄντος ἠγμένης καὶ ἄνω πρὸς αὐτὸ εἱλκυσμένης , προϊούσης ἀληθείας καὶ
5431709 τριπλασιαν
Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ
οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ
5422880 ἀχθεισα
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ
5418633 πλατει
ἡμῶν χρόνῳ , ὅσῳ σχεδὸν ἐν τῷ πρὸς τὸν ἰσημερινὸν πλάτει δια - φέρουσιν αἱ δύο # μοῖραι τοῦ διὰ
ὁπόταν κατὰ τὰς τοῦ παραδείγματος συμμετρίας τις ἐν μήκει καὶ πλάτει καὶ βάθει , καὶ πρὸς τούτοις ἔτι χρώματα ἀποδιδοὺς
5409396 μυουρον
δεσμός . σχῆμα δὲ τοῦ ὑποθήματος κατὰ πύργον μάλιστα ἐς μύουρον ἀνιόντα ἀπὸ εὐρυτέρου τοῦ κάτω : ἑκάστη δὲ πλευρὰ
, καλυπτούσης τὰ ἄκρα τῶν ἠπείρων ἑκατέρωθεν καὶ συναγούσης εἰς μύουρον σχῆμα , καὶ τρίτου τοῦ μήκους καὶ πλάτους τοῦ
5408134 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
5397757 ἀναφανεισαν
καὶ τῷ ἑνὶ ὑπεστρωμένη ὡς ἑτέρα ἑτέρῳ κατὰ τὴν ἐκεῖ ἀναφανεῖσαν οὐσιώδη καὶ ἑνιαίαν ἑτερότητα . Πολλὰ μέντοι ἀντιλέγειν δοκοῦντες
: ἀντὶ τοῦ , ἀλλ ' εἰς τὸν λαμπρὸν αἰθέρα ἀναφανεῖσαν τὴν Ῥόδον αὐτῷ δοθῆναι τῷ Ἡλίῳ . φαενὸν κατὰ
5394530 ἀνισα
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων
5391281 πλαγιαν
σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ
μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ
5368251 μαργαριτιν
ἐμβύθιος πίννα , διαυγεστάτην ποιεῖ καὶ καθαρωτέραν καὶ μεγάλην γεννᾷ μαργαρῖτιν . ἡ δ ' ἐπιπολάζουσα καὶ ἀνωφέρης διὰ τὰ
ἂν πέτραις ἢ σπιλάσι προσφυῶσι , ῥιζοβολοῦσι κἀνταῦθα μένουσαι τὴν μαργαρῖτιν γεννῶσι . ζῳογονοῦνται δὲ καὶ τρέφονται διὰ τοῦ προσπεφυκότος
5365053 τετραγωνου
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν
5352341 βουβωνοϲ
ἁρμόϲαντεϲ ἐπὶ τὸν ὦμον ἀναγάγωμεν , ἔμπροϲθεν μὲν διὰ τοῦ βουβῶνοϲ καὶ τῆϲ κλειδόϲ , ὄπιϲθεν δὲ διὰ τοῦ νώτου
ὅϲον δακτύλων τὸ μῆκοϲ τριῶν ἐγκαρϲίαν κατὰ τὸ ἐξογκούμενον τοῦ βουβῶνοϲ τοὺϲ ὑμέναϲ τε καὶ τὴν πιμελὴν ἐκλαβεῖν κατὰ τὸ
5350673 Πολιν
ὀλίγον ἀποξύειν καὶ ὡσπερεὶ διαφθείρειν . Ἄπολις . Πλάτων δὲ Πόλιν ἄπολιν τὴν μηκέτ ' οὖσαν πόλιν . Ἀπόλογος ἀλκίνου
δὲ καὶ οἱ ἐν τῷ Γαλατᾷ , ὡς εἶδον τὴν Πόλιν ἐχομένην ἤδη καὶ διαρπαζομένην , εὐθὺς προσεχώρησαν ὁμολογίᾳ τῷ
5347535 τμηθωσι
δὲ ἡ ΕΔ . Ἐὰν αἱ κατὰ κορυφὴν ἐπιφάνειαι ἐπιπέδῳ τμηθῶσι μὴ διὰ τῆς κορυφῆς , ἔσται ἐν ἑκατέρᾳ τῶν
δεῖξαι . Ἐὰν κύβου τῶν ἀπεναντίον ἐπιπέδων αἱ πλευραὶ δίχα τμηθῶσι , διὰ δὲ τῶν τομῶν ἐπίπεδα ἐκβληθῇ , ἡ
5346914 μεταβασιν
ἐν μεταβάσει προσώπων νοεῖσθαι ἢ κατὰ τοῦ αὐτοῦ προσώπου τὴν μετάβασιν ποιεῖσθαι . τοῦ μὲν προτέρου Ἀριστοφάνης Ἀρίσταρχον ἐδίδαξεν ,
γίνεσθαι πλάτει , μετὰ τοῦτο δὲ τὴν εἰς τὸ ἑτερογενὲς μετάβασιν συμβαίνειν , τουτέστι τοῦ συναναιρουμένου τῷ πλάτει μήκους .
5343512 ἀναδοσιν
κατὰ τοῖν δυεῖν ἄρκτοιν : ὅς ἐστιν ἀφανὴς κατὰ τὴν ἀνάδοσιν τῶν δύο Ἄρκτων : ἡ μὲν γὰρ εἰς τὰ
θερμῆς ἀπλήστου πυρπνόου ζάλης . ζάλην δὲ πυρίπνοον λέγει τὴν ἀνάδοσιν καὶ τὴν ἀνακάχλασιν τοῦ Αἰτναίου πυρός . θερμὴν δὲ
5337972 δοθεντι
τε ὅλῳ καὶ ἀλλήλοις : ὅπερ ἔδει δεῖξαι . Τῷ δοθέντι εὐθυγράμμῳ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον τὸ αὐτὸ
δὴ τὸ πλῆθος τῶν ΑΖ ΖΗ ΗΘ ΘΒ ἴσον τῷ δοθέντι , καὶ ἡ ἐκ πασῶν συγκειμένη εὐθεῖα ἴση τῇ
5337943 νευουσαν
. Τῆς δ ' ὅλης Ἀραβίας τὴν μὲν ἐπὶ μεσημβρίαν νεύουσαν εὐδαίμονα προσαγορεύουσι , τὴν δ ' ἐνδοτέρω κειμένην νέμεται
ἐπικύκλου πάλιν ὁμαλῶς καὶ πρὸς τὴν ἐπὶ τὸ Δ κέντρον νεύουσαν πάντοτε διάμετρον ποιούμενον τὰς ἀποκαταστάσεις ἀκολούθως τῇ μέσῃ περιόδῳ
5323325 ποδοστραβην
οἶόν ] μόνον τῶν ἄλλων συνωμοτῶν . ξύλῳ ] ὃ ποδοστράβην λέγουσι καὶ ποδοκάκκην . διώξομαί σε δειλίας ] κατηγορήσω
τὸ θηρίον φερόμενόν θ ' ὥσπερ † ἀναστρέψαι τε τὴν ποδοστράβην καὶ ἐνσχεθῆναι στερεῷ βρόχῳ κατὰ τέχνην ἐπ ' αὐτὸ
5320722 μετοισομεν
ἐὰν ἀπὸ παραδειγματίου μικροῦ βουλώμεθα τέλειον ποιῆσαι , τίνι λόγῳ μετοίσομεν τὰ ἀνάλογα πάντα ἀκριβῶς : ὁμοίως δὲ καὶ ἐὰν
αὐτῇ μεθόδῳ καὶ τὰ ἀπὸ τῶν μειζόνων ἐπὶ τὰ ἐλάσσονα μετοίσομεν : τῇ δ ' αὐτῇ μεθόδῳ καὶ ἐπ '
5318032 ἀποδεδειγμενην
. . , ] ὥστε ἔχεις καὶ τὴν δευτέραν πρότασιν ἀποδεδειγμένην : διὸ γὰρ ὁ ζῳδιακὸς ἀπεδείχθη ὀρθὸς πρὸς τὸν
μεταβᾶσα . . , ] ἔχεις καὶ ταύτην τὴν πρότασιν ἀποδεδειγμένην τὴν ὅτι ἐν ἐλαχίστοις χρόνοις πρὸς τῷ ἰσημερινῷ :
5309600 βελονην
δὲ διὰ καταρραφὴν ἢ καῦϲιν ἄτεχνον ἐκτρέπεται τὸ βλέφαρον . βελόνην τοίνυν λαβόντεϲ λίνον διπλοῦν ἔχουϲαν διαπείρωμεν τὸ ϲάρκωμα ἀπὸ
' ὑπερβαίνονταϲ ἄμφω τὰ χείλη τοῦ περιτοναίου πάλιν ἀντιϲτρέφειν τὴν βελόνην ἔξωθεν ἔϲω δι ' ἀμφοτέρων τῶν χειλῶν τοῦ περιτοναίου
5302235 ἐπιβασιν
” δὲ ἔχει τινὰ ἔμφασιν τῆς πλημμυρίδος , ἐχούσης τὴν ἐπίβασιν πραεῖαν καὶ οὐ τελέως ῥοώδη . Ποσειδώνιος δὲ καὶ
ὦμον ἐντὸς ἐπιστρέφηται : οὕτω γὰρ τοῦ ξύλου τεθέντος καὶ ἐπίβασιν ἐπὶ τὴν ἐξοχὴν αὐτοῦ τῆς τοῦ ὤμου κεφαλῆς ποιησαμένης
5297640 κανονικην
τοὺς Πυθαγορικούς : ἣν γὰρ νῦν ἁρμονικὴν λέγομεν , ἐκεῖνοι κανονικὴν ὠνόμαζον . ἀπὸ τίνος κανονικὴν αὐτὴν λέγομεν ; οὐκ
θη λήγοντα ὑπὲρ δύο συλλαβὰς σπάνια πάνυ , καὶ πρὸς κανονικὴν συναρμογὴν ἀκατάλληλα : ἔστι γὰρ τὸ Ληκύθη ἡ πόλις
5292768 θρυψιν
τύπτουσαι τὸν ἀέρα , κἂν τῇ ταχυτῆτι προλαμβάνουσαι αὐτοῦ τὴν θρύψιν , ὥσπερ καὶ εἰ ἄμμου σωρὸν φερόμενον παίσοι τις
ψοφεῖ : δεῖ γὰρ φθάσαι τὴν κίνησιν τοῦ ῥαπίζοντος τὴν θρύψιν τοῦ ἀέρος , ὥσπερ ἂν εἰ σωρὸν ἢ ὁρμαθὸν
5287421 ἐσωτατω
χρὴ ὑπώσαντα τὴν κεφαλὴν τοῦ ξύλου ὑπὸ τὴν μασχάλην ὡς ἐσωτάτω μεσηγὺ τῶν πλευρέων καὶ τῆς κεφαλῆς τοῦ βραχίονος ,
, καὶ εἶθ ' οὕτως προστίθεται . ἐντιθέσθω δὲ ταῦτα ἐσωτάτω περὶ τὸ στόμιον τῆς μήτρας . Ἄλλο . Κηκίδων
5286074 διφαλαγγιαν
. Ὅτι Ἀγησίλαος πλῆθος ἱππέων βουλόμενος τοῖς πολεμίοις παραδεῖξαι εἰς διφαλαγγίαν τοὺς πρωτοστάτας τῶν ἱππέων τάξας ὑπέταξεν ὄνους τε καὶ
μέρη καθ ' ἑαυτὰ παρέρχεσθαι , δύο μέρη ποιεῖν εἰς διφαλαγγίαν . Εἰ δὲ μηδὲ δύο χωροῦσιν , κατὰ ἓν
5282684 ἐπιδεσιν
, τῷ αὐτῷ τρόπῳ ἰητρεύουσιν : οὐ γὰρ οἴονται τὴν ἐπίδεσιν τὴν ἔνθεν καὶ ἔνθεν , καὶ τὴν ἀνάψυξιν τοῦ
, τῷ τρόπῳ τῶν ὀθονίων ἐπὶ πᾶσι τοῖσι τοιουτέοισι τὴν ἐπίδεσιν ποιέεσθαι , ἐκ μέσου τοῦ ὀθονίου ἀρχόμενον ὡς ἐπὶ
5280816 ἐντομην
δέκα σταδίων , κατάντης δὲ καὶ κρημνοῖς συγκλειόμενος εἰς στενὴν ἐντομήν , ἅπας δὲ τραχὺς καὶ φαραγγώδης , ἔτι δὲ
τὰ μὲν διὰ τὴν ἐν τῇ ῥάχει αὐτῶν ὀπὴν καὶ ἐντομήν , δι ' ἧς φθέγγονται , τὰ δὲ διὰ
5279527 ὑπερεχομενην
δὲ ἴσῳ μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην , ἡμιολίων τε καὶ ἐπιτρίτων διαστημάτων λόγους ἀναδέξασθαι ,
αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν πρός
5275270 ἀποκαταστῃ
. ὅτε δέ ἐστιν ὁ Κρόνος κύριος τοῦ ἔτους καὶ ἀποκαταστῇ εἰς τὸν κατὰ πῆξιν αὐτοῦ τόπον καὶ διαμετρήσει τοῦτον
καὶ τῶν μελῳδιῶν . Εἰ δὲ ἐπὶ τὸν οἰκεῖον τόπον ἀποκαταστῇ καὶ ἔχει λόγον εἰς τὸ ἔτος καὶ ὑπάρχει ἐπίκεντρος
5270883 μηνοειδους
τε καὶ τοξεύουσαι θαμινὰ ἀνέκοπτον . καὶ κατήρειψέ τι τοῦ μηνοειδοῦς , ὑγροτέρου καὶ ἀσθενεστέρου ἔτι ὄντος ἅτε νεοδμήτου .
- σιν ἀνακαμπτούσης : αὔξεται μὲν γὰρ ἀπὸ τῆς πρώτης μηνοειδοῦς ἐπιλάμψεως ἄχρι διχοτόμου ἡμέραις ἑπτά , εἶθ ' ἑτέραις
5268735 χελωνιοις
, ἵνα μὴ διολισθαίνῃ τὸ ἅμμα , ἢ τὸ βέλτιον χελωνίοις προσηλωμένοις , ὥστε δίχα ἐγκοπῆς ἑνωθῆναι τὸ ἔργον καὶ
τὸ χελώνιον μεδίμνας χωρεῖν πέντε . ὁ Ἀγαθαρχίδης δὲ τοῖς χελωνίοις χρῆσθαι † πλήοις † ὡς ὀροφώμασι τῶν καλυβῶν .
5259731 φλεβοτομῳ
ἔπειτα , ἐὰν ἐξ οὐλῆϲ ἡ ἔξω ϲυνδρομὴ γένοιτο , φλεβοτόμῳ ἢ ϲκολοπίῳ ἐκ τῶν ἔνδοθεν με - ρῶν διαιροῦμεν
, πρὸϲ δὲ τὴν ἐπιφάνειαν μηδόλωϲ ὁρμήϲει , τὸ τηνικαῦτα φλεβοτόμῳ ἢ πτερυγοτόμῳ τὸ μέϲον ϲῶμα τοῦ κανθοῦ διελεῖν χρὴ
5257718 Βελγικην
ἀντιπαρατείνουσα ταύταις ἡ Ναρβωνησία κεῖται . Πάλιν δὲ μετὰ τὴν Βελγικὴν πρόσεισιν ἐπ ' ἀνατολὰς συχνὸν ὅσον ἡ Γερμανία ,
καταντικρὺ τῆς Κελτογαλατίας , παρά τε τὴν Λουγδουνησίαν καὶ τὴν Βελγικὴν μέχρι τῆς μεγάλης Γερμανίας ἐκτεινομένη . Οὐ γάρ ἐστι
5252457 σταγονα
ψύξας ἐπίβαλλε τὰ λοιπὰ προλειωθέντα μετ ' ὄξους : κατὰ σταγόνα δ ' ἐπίβαλλε , ἵνα μὴ ἀναβάλῃ : καὶ
εὐώδηκαὶ γὰρ τοῦτο αὐτῶν ἔοικεν ἐγγεγράφθαικαὶ κηρίον ὀρέγει τῇ χειρὶ σταγόνα λεῖβον δι ' εὐνομίαν τῶν μελιττῶν . ὅταν γὰρ
5242576 διεσεις
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου
5239535 ἀποφατικην
ἔχοντα τὴν μείζονα καθόλου ἀποφατικὴν τὴν δ ' ἐλάττονα μερικὴν ἀποφατικήν . Τούτῳ γὰρ οὔτε παντί . πᾶν γὰρ ἐνδεχόμενον
καὶ ἓξ συλλογιστικοί , οἱ μὴ ἔχοντες τὴν ἐλάττονα ἀναγκαίαν ἀποφατικήν . καὶ τούτων δ ἀτελεῖς , οἱ ἔχοντες τὴν
5237862 ἀνῃειν
, μᾶλλον δὲ οὐ μόνος , ἀλλὰ μετὰ τοῦ ξίφους ἀνῄειν τοῦ συμμεμαχημένου καὶ τὸ μέρος συντετυραννοκτονηκότος , πρὸ ὀφθαλμῶν
τοῦ προκειμένου τὸν λόγον ἐξάγοντα , οὕτως συνέβη . ὡς ἀνῄειν ἐπὶ τοὺς βωμοὺς οὗ τοῖς Αἰθίοψίν ἐστιν ἡ φρουρὰ
5233795 δοξοκοπιαν
ἀξίωμα περιεποίησεν πρὸς τὸν ἑξῆς βίον καὶ τὴν τερατείαν καὶ δοξοκοπίαν ὧν ἐρῶν ἐτύγχανεν . ἐπεὶ δ ' οὖν ἐδέδετο
γε ἕξιν ἐποιστικὴν ἔχεις , εἰ καὶ διὰ δειλίαν ἢ δοξοκοπίαν ἢ τοιοῦτό τι κακὸν ἀπέχῃ τῶν ὁμοίων ἁμαρτημάτων .
5233464 μισθωσιν
μὴ πρὸς ἄλλο δέ τι παράδειγμα σκέψησθε ἢ πρὸς τὴν μίσθωσιν , εἰ δοκεῖ ὑμῖν ἀκόλουθον εἶναι τῷ τὴν τέχνην
τοῖς μεμαρτυρημένοις , ἐναντία δ ' ἣν ἀνέγνων ὑμῖν ἄρτι μίσθωσιν , τῇδε τῇ διαθήκῃ : οὐδὲν δὲ τῶν πεπραγμένων
5230620 μενουσαν
ἐὰν ἀφέλῃς πάντα τὰ συμβεβηκότα αὐτοῖς καὶ εὕρῃς οὐδὲν ἧττον μένουσαν τὴν ἀντιστροφήν , ἐπίστασο ὅτι καθ ' αὑτὸ γέγονεν
ταῖς αὐτοῦ πλάναις . Πανταχοῦ δ ' αὐτός ἐστι : μένουσαν οὖν ἔχει τὴν πλάνην . Ἡ δὲ πλάνη αὐτῷ
5218149 προσδιωρισμενην
: οὔτε γὰρ ἐπὶ τῶν προσδιωρισμένων , ὥστε πᾶσαν τὴν προσδιωρισμένην πρότασιν κατηγορηθῆναί τινος ὥσπερ τὴν ἀπροσδιόριστον , ἐπεὶ μὴ
αὐταῖς κυριωτέρου : ἑκατέρα γὰρ ἐκείνων τῶν ἀντιφάσεων ἔχει καθόλου προσδιωρισμένην πρότασιν , ἡ μὲν τὴν πᾶς ἡ δὲ τὴν
5216295 πλατος
. Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής :
. Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ
5211150 παραυξησιν
ὧν νοεῖται , οἷον ἀπὸ τοῦ κοινοῦ μεγέθους ἀνθρώπου κατὰ παραύξησιν ἐνοήσαμεν τὸν Κύκλωπα καὶ ἀπὸ τοῦ αὐτοῦ πάλιν κατὰ
: τὴν μέντοι τῶν μεταξὺ τμημάτων παράθεσιν καθ ' ὁμαλὴν παραύξησιν τῆς τῶν ἑξαμοιριαίων ὑπεροχῆς πεποιήμεθα μηδεμιᾶς ἐν αὐτοῖς ἀξιολόγου
5204630 ἀντιδιῃρημενα
τε ὑπὲρ αὐτό , ὡς τὸ ἔμψυχον , καὶ τὰ ἀντιδιῃρημένα αὐτῷ ὡς τὸ φυτόν . ἔξω δὲ λέγεται ταῦτα
ἕκαστα τὸ καθόλου ἑπόμενον οὔτε μὴν ἡ διαίρεσις ἐκθεμένη τὰ ἀντιδιῃρημένα ἀνάγκην ἐπάγει τινὰ διὰ τῆς ἐκθέσεως ἑνὶ τῶν ἀντιδιῃρημένων
5202922 Θαψακον
μήκη τίθησιν , εἴθ ' ὡς ἂν γωνίαν ποιοῦντα κατὰ Θάψακον , ἀλλ ' ὅτι γε οὐ παράλληλον οὐδέτερον τῷ
πορείαν ποιεῖσθαι : ὁδοιπορήσας δ ' ἡμέρας εἴκοσι παρεγενήθη πρὸς Θάψακον πόλιν , ἣ κεῖται παρὰ τὸν ποταμὸν τὸν Εὐφράτην
5195476 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
5191928 ροʹ
χωρίον στάδιοι ξʹ . [ Ἀπὸ Λύρναντος εἰς Φάσηλιν στάδιοι ροʹ : ] ὑπὲρ τῆς πόλεως ὄρος μέγα ὑπέρκειται .
, Σελήνῃ τλϚʹ Ϛʹ . Ἀφροδίτη ἔτη βʹ : Κρόνῳ ροʹ , Διὶ ξηʹ , Ἄρεϊ πεʹ , Ἡλίῳ ρζʹ
5189510 βλαστησιν
ἀὴρ ἐπιγένηται μαλακὸς καὶ ὑγρὸς καὶ θερμός , ἐξεκαλέσατο τὴν βλάστησιν : ὅθεν καὶ οἱ πρόδρομοι . καὶ προελθὼν τάδε
γένεσις : ὡς τά γ ' εὐθὺς ἀνατρέχοντα πρὸς τὴν βλάστησιν ἀσθενῆ καὶ ἄκαρπα γίνεται , καθάπερ ἐπὶ τῶν σπερμάτων

Back