| ἐὰν ἀπὸ παραδειγματίου μικροῦ βουλώμεθα τέλειον ποιῆσαι , τίνι λόγῳ μετοίσομεν τὰ ἀνάλογα πάντα ἀκριβῶς : ὁμοίως δὲ καὶ ἐὰν | ||
| αὐτῇ μεθόδῳ καὶ τὰ ἀπὸ τῶν μειζόνων ἐπὶ τὰ ἐλάσσονα μετοίσομεν : τῇ δ ' αὐτῇ μεθόδῳ καὶ ἐπ ' |
| δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
| τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
| , ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
| εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
| εὐλόγου γεννῶντες αὐτῶν τὰς διαφοράς , ἔπειτα προσάγοντες διὰ τοῦ κανόνος ταῖς ἀπὸ τῶν φαινομένων μαρτυρίαις , ἀλλὰ ἀνάπαλιν πρότερον | ||
| ὅλου χρῆσίς τε καὶ ἀνάκρισις γίνοιτο τῶν λόγων διὰ πεντεκαιδεκαχόρδου κανόνος . Μέθοδοι πρὸς τὴν διὰ μόνων τῶν ὀκτὼ φθόγγων |
| Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
| ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
| δὴ ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους , ὅσους ἄν τις ἐπιτάξῃ , ἐν τῷ τοῦ Α πρὸς τὸν Β λόγῳ | ||
| , ἵνα μὴ ἐκκεχολωμένῳ καὶ ζέοντι τῷ σώματι τοιοῦτον βρασμὸν ἐπιτάξῃ , μετὰ τροφὴν δὲ , ἵνα μήπως ὠμὴ ἐξελκομένη |
| τῶν Σεμνόνων , οἵτινες διήκουσι μετὰ τὸν Ἄλβιν ἀπὸ τοῦ εἰρημένου μέρους πρὸς ἀνατολὰς μέχρι τοῦ Συήβου ποταμοῦ , καὶ | ||
| ἐφεξῆς μοι λόγος δηλώσει . ἀπὸ δὲ τοῦ ἀγάλματος τοῦ εἰρημένου προελθόντι ὀλίγον κατ ' εὐθεῖαν ἄγαλμά ἐστι Διὸς οὐκ |
| καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
| κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
| . ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
| τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
| καὶ τούτων διττὸν ἑκάτερόν ἐστι : τοῦ γάρ τοι διωρισμένου ποσοῦ τὸ μέν ἐστι καθ ' αὑτό , τὸ δὲ | ||
| σημαίνουσιν . ὥστε ἢ φλέβα τέμνειν προσήκει , ἢ τοῦ ποσοῦ τῆς τροφῆς ἀφαιρεῖν . Συμβαίνει δὲ τοῦτο καὶ τοῖς |
| ὧν νοεῖται , οἷον ἀπὸ τοῦ κοινοῦ μεγέθους ἀνθρώπου κατὰ παραύξησιν ἐνοήσαμεν τὸν Κύκλωπα καὶ ἀπὸ τοῦ αὐτοῦ πάλιν κατὰ | ||
| : τὴν μέντοι τῶν μεταξὺ τμημάτων παράθεσιν καθ ' ὁμαλὴν παραύξησιν τῆς τῶν ἑξαμοιριαίων ὑπεροχῆς πεποιήμεθα μηδεμιᾶς ἐν αὐτοῖς ἀξιολόγου |
| μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
| ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
| ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι . | ||
| τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει |
| τὸ ἔγγιστα τοῦ ἀπείρου ὅτι εἵλκετο καὶ ἐπεραίνετο ὑπὸ τοῦ πέρατος . ἀλλ ' ἐπειδὴ κοσμοποιοῦσι καὶ φυσικῶς βούλονται λέγειν | ||
| τε ἀπείρου καὶ τοῦ πέρατος , κρατούσης ἀεὶ τῆς τοῦ πέρατος ἰδέας τοῦ ἀπείρου καὶ περιοριζούσης αὐτὴν ἐν ἑαυτῇ : |
| τὰς πρακτικὰς τὸ πρακτικόν . Τούτων οὕτως ἐχόντων εἴπωμεν τὴν ὑποδιαίρεσιν τοῦ θεωρητικοῦ . καὶ ἐνῆν μὲν προτάξαι θάτερον θατέρου | ||
| αὐτοῦ καὶ τῶν κατ ' αὐτὸ ἀρετῶν ἤδη εἰρηκώς , ὑποδιαίρεσιν δὲ τοῦ λόγου ἔχοντος ποιεῖ καὶ φησί : Καὶ |
| , τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
| καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
| δὲ πρὸς ἄρκτον ἡ Μαιῶτις ὑπέρκειται λίμνη , τὴν περίμετρον ͵θ οὖσα σταδίων , ἧς τὸ στόμα Κιμμερικὸς καλεῖται Βόσπορος | ||
| λίμνης , εἰς ἣν τρέχει ὁ Τάναϊς ποταμὸς , στάδια ͵θ , μίλια ασʹ . Ἔστι δὲ τὸ στάδιον ἔχον |
| τοῦ ἀριθμοῦ καὶ τοῦ λόγου δεῖξαι ὅτι καὶ ποσὰ καὶ διωρισμένα , ἐπὶ μὲν τοῦ ἀριθμοῦ ὁμολογουμένως λαβὼν ὅτι ποσὸν | ||
| ' αὐτὴν ἀσφαλείας ἀμελεῖν μήτε τὰ τῇ φύσει τεταγμένα καὶ διωρισμένα συγχεῖν ἢ τὸν φυσικὸν εἱρμὸν διασπᾶν . ὅθεν , |
| τῷ κανόνι καταμετρήσεως ἐπιλογιζόμενοι τὸ τοιοῦτον , ἀλλὰ διά τινων σεληνιακῶν ἐκλείψεων . τὸ μὲν γὰρ πότε ἴσην ὑποτείνει γωνίαν | ||
| οὐδὲν διημάρτηται ἐν τῷ τὰς ἀποδείξεις τὰς διὰ τῶν Ϛ σεληνιακῶν ἐκλείψεων , τουτέστιν περί τε τὸν λόγον τῶν ξ |
| . Τὸν δὲ περίπατον πρὸς τὸ γνῶναι τὸν τόπον τοῦ μερισμοῦ καὶ τὸν ἐπιμερίζοντα ἐν ταῖς τῶν χρόνων ἐναλλαγαῖς οὕτως | ||
| ἀκατάστατον τοῦ τόνου μὴ ἔχεσθαι αὐτὸ τοῦ κατὰ τὰ ἐπιρρήματα μερισμοῦ . τὰ γὰρ τοιαῦτά φησιν ὀξύνεσθαι , ἀναιμωτί , |
| τὰ ἀπὸ ΓΕ καὶ τρία τὰ ἀπὸ ΖΕ ἴσα ἐστὶν δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου τοῦ | ||
| χαραγμάτων : πέντε καὶ πέντε δέκα γὰρ , καὶ πέντε δεκαπέντε , ὅπως ἀναβιβάζονται ταῦτα τὰ γραμματίτζια μέχρι τῶν ἐνενήκοντα |
| , οὐδὲν αἰσθητὸν διάφορον ποιούσῃ παρὰ τὰ ἐκ τῶν γραμμῶν συναγόμενα , ἵνα μὴ πλείοσι σελιδίοις χρήσηται . Εἰ γάρ | ||
| ἐκ τοῦ αὐτοῦ χωριζόμενα δύο ἐστί , τὰ εἰς ταὐτὸ συναγόμενα καὶ ἀλλήλοις παρατεθειμένα οὐκ ἂν εἴη δύο . ἔχει |
| δ ' ἐν τῇ δευτέρᾳ δέλτῳ μετὰ ταῦτα καιροῦ διδόντος ἐπισκεψόμεθα . Ἦν ποτε χρόνος , ὅτε φιλοσοφίᾳ σχολάζων καὶ | ||
| μεσημβρινοῦ τῇ προηγουμένῃ , ταύτας δέ , ἃς εἰλήφαμεν , ἐπισκεψόμεθα , πόσους τε κατὰ τὴν ἐξ ἀρχῆς θέσιν ἀπεῖχεν |
| τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
| κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
| τοῦ φυτοῦ , ἔξωθέν τε τοῦ ϲώματοϲ ἐπιτιθέμενα καὶ εἴϲω λαμβανόμενα . Μῶλυ ἢ βήϲαϲα . Μῶλυ , ὅ τινεϲ | ||
| ϲυνήθη τροφήν . τὰϲ μέντοι πρώταϲ ἡμέραϲ βραχύτερα ἔϲτω τὰ λαμβανόμενα καὶ ὑγρότερα καὶ μηδὲν γλίϲχρον ἔχοντα : ἔϲτω δὲ |
| τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
| ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
| . εἰκονολογίαν . τὸ δι ' εἰκόνος καὶ δι ' ὑποδείγματός τι δηλοῦν : γνωμολογία δὲ ὡς τὸ “ δεινὸν | ||
| μερόπων ἀνθρώπων Ἀτρεῖδαι ; . ψιλῶς . τὸ μὴ ἐπὶ ὑποδείγματός φησι . προσπαίζων . τουτέστιν ὁ φιλόσοφος ὡς παιδιᾷ |
| ὥστε τοῖς πλείστοις τῶν μαθηματικῶν ἴσους δοκεῖν , ἡμερῶν ἕκαστον τξεʹ δʹʹ , ἀκριβέστερον δὲ ἐπισκοπουμένοις τὸν μὲν τοῦ μήκους | ||
| , καὶ τοῦ τετάρτου καὶ πέμπτου [ ] ἐνιαυτοῦ ἡμερῶν τξεʹ , τοῦ δὲ ἕκτου τρεισκαιδεκαμήνου , τοῦ δὲ ἑβδόμου |
| οὐκ ἐλαχίστης . παρακολούθημα λέγει ὅτι οἱ μὲν διαγώνιοι τοῦ διαγράμματος μονάδες εἰσίν : ἐν μὲν γὰρ τῇ ἀρχῇ ἁπλῆ | ||
| πρᾶγμα τὸν πολυπλασιασμὸν ὑπηγόρευσεν , ὥσπερ ἐν ἁρμονικῇ μεταβολῇ τοῦ διαγράμματος ὅλου συνεπιτεινομένου τῷ πρώτῳ τῶν ἀριθμῶν . Ὁ μὲν |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| ἀπὸ τοῦ ἑνὸς πρὸς τὸ πλῆθος σχέσιν δηλοῖ . Κατὰ ἀποτομήν φησι κατὰ προσηγορίαν : ἡ γὰρ προσηγορία δίκην ὁρισμοῦ | ||
| καὶ πρὸς ἣν ἥδε λόγον ἔχει δοθέντα λόγον ἔχει πρὸς ἀποτομήν . . ὅτι ἔστιν τι δοθὲν σημεῖον , ἀφ |
| πλάτους ἐξ ἀνάγκης πλάτος ἔχουσιν , ὥστε μηδὲν εἶναι μῆκος ἀπλατές , διὰ δὲ τοῦτο μηδὲ γραμμήν . Εἰ δὲ | ||
| τοῖς ἄκροις ἐπιπροσθεῖ . τί ἐστι περιφερὴς γραμμή ; μῆκος ἀπλατές , πρὸς ὅπερ ἀφ ' ἑνὸς σημείου τῶν ἐντὸς |
| τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
| . Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
| πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
| τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
| βοῶν περιαρόσει : χωρὶς δὲ τῶν δημοσίᾳ δοθέντων κατὰ κεφαλὴν ἕκα - στος ἀνδρῶν τε καὶ γυναικῶν , ὅτε μάλιστα | ||
| [ ἂν . εἴ τινα . ν γὰρ τὸ . ἕκα ] - στος . ηγεῖται ʃ ἀπὸ κοινοῦ τὸ |
| γʹ καὶ ἀντιστροφὰς τοσαύτας καὶ ἐπῳδόν . καλεῖται δὲ ταῦτα ἑπτὰς ἐπῳδική . ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ | ||
| τρεῖς καὶ ἀντιστροφὰς τοσαύτας καὶ ἐπωιδόν . καλεῖται δὲ ταῦτα ἑπτὰς ἐπωιδική . ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ |
| ' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
| ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
| λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
| τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
| καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ | ||
| τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου |
| γὰρ βραδύτερον ἐξολιϲθαίνει καὶ χαλεπώτερον ἐμβάλλεται διὰ τὴν πυκνότητα τῶν ὑπεροχῶν τε καὶ κοιλοτήτων . πάϲχει μὲν οὖν ἔϲτιν ὅτε | ||
| μέσου , ἀλλὰ τοσούτῳ ἔλαττον , ὅσῳ τὸ ὑπὸ τῶν ὑπεροχῶν ἐστιν : ἦν δὲ ἡ ὑπεροχὴ μονάς : ἅπαξ |
| πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [ | ||
| οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος |
| ἴϲχεται : κἢν μὴ ἰηθῇ ἡ γυνή , ἐϲ πολλὰϲ περιόδουϲ ἀντιπερίειϲι ἡ ἀναγωγή : μετεξετέρῃϲι δὲ καὶ ἀπερράγη τὰ | ||
| κοτύλην καθ ' ἑκάϲτην ἡμέραν καὶ πάλιν ἀφιϲτάμην ἐπὶ β περιόδουϲ καὶ ἅμα ἥ τε νόϲοϲ διελέλυτο καὶ τὸ ϲῶμα |
| τῆς τῶν στρατηγῶν ἀθροίσεως : τέλος γὰρ τὸ τάγμα τὸ ὁποιονοῦν λέγεται εἴτε ἀρχόντων ἢ στρατηγῶν εἴθ ' ἑτέρων τινῶν | ||
| [ ἄν τι προσείποις ] [ ὀρθῶς οὐδ ] ' ὁποιονοῦν [ τι . Οὐκ ] ? εὐκαταφρόνητόν [ ] |
| τὸ συναχθὲν ἀπὸ τοῦ πολλαπλασιασμοῦ τῶν ὡρῶν καὶ τῶν προκειμένων ὡριαίων τῇ ἡλιακῇ μοίρᾳ μερίσῃς περὶ τὸν ιεʹ . ἐὰν | ||
| καιρικῶν ὡρῶν τοῦ μεταξὺ διαστήματος τοσαῦτα δωδέκατα ἀφαιροῦσιν ἀπὸ τῶν ὡριαίων : οὕτω γὰρ καὶ ποιῶμεν ἕως τῆς δωδεκάτης ὥρας |
| τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
| μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
| τὴν ὕπαρξιν ἐπ ' ἴσης προσεμαρτύρησαν . τοσαύτης οὖν καὶ ἀδιακρίτου στάσεως οὔσης περὶ τῆς τῶν αἰσθητῶν ὑποστάσεως , πῶς | ||
| ὅπου μὲν διακεκριμένης , ὅπου δὲ ἀδιακρίτου , καὶ αὐτῆς ἀδιακρίτου μενούσης . Εἰ δὲ ὅλως καὶ διάκρισιν αὐτὴν ὀνομάζομεν |
| παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
| εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
| τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
| ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
| ͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
| ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
| ζ . Γίνεται οὖν ὁ ἐνιαυτὸς κατ ' αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ | ||
| ἐστιν ἡμερῶν τξε ἐννεακαιδεκάτων ε . Πλεονάζουσι δὲ αὗται τῶν τξε δʹ ἡμέρας οϚʹ . Δι ' ἣν αἰτίαν οἱ |
| μέσοι οὔτε πλείους οὔτε εἷς ἀνάλογον ἐμπίπτουσιν . οὔκ ἄρα διαιρεθήσεται ὁ τόνος εἰς ἴσα . Αἱ παρανῆται καὶ αἱ | ||
| δίκαιον μιᾷ τῶν δικαιολογικῶν ὑποπίπτει καὶ κατ ' ἐκείνην γε διαιρεθήσεται , ὡς ἂν ἐγχωρῇ , τοῖς κεφαλαίοις . Τὸ |
| κατὰ τρυφεροῦ τινος λίαν , ὥστε πάλιν διὰ τὴν πολλὴν σύννευσιν | διαστρέφεσθαι τὴν ῥάχιν ἢ τὸν τράχηλον [ κατακλιτέον | ||
| τρέπειν καὶ ὡς χορὸν ἀνακυκλεῖν τὴν τῶν λόγων παλιμπέτειαν καὶ σύννευσιν ὡς εἰς μέσον καὶ τὴν ἀρχὴν ἀπὸ τέλους τινός |
| συγγενῆ τῶν θνητῶν πλάνην , ἀπατῷτο ἂν ἴσως περὶ τὴν ποσότητα τῆς ὕλης , ὅποτε τεχνιτεύοι : τότε μὲν ὡς | ||
| περιεχούσης . ἓξ δὲ σημαινόμενα τοῦ ἔχειν : λεγόμεθα γὰρ ποσότητα ἔχειν , ὡς δίπηχυ ἢ τρίπηχυ μέγεθος , λεγόμεθα |
| , ὅπως ἀπὸ τῶν διεζευγμένων ποιήσωσιν ἐφεξῆς τρία τετράχορδα , συστήματος ὀνόματι περιέλαβον τὸ συνημμένον , ἵν ' ἔχωσι πρόχειρον | ||
| ἐπὶ τῷ τέλει τῆς μὲν στροφῆς κορωνίς . τοῦ δὲ συστήματος παράγραφος . 〛 τῶν μέχρι νῦν ὄντων ποιητῶν . |
| πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
| ∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
| σημαινόμενον , ἐξ οὗ καὶ ἐκλήθησαν , αὕτη δὲ τρία σημαινόμενα ἔχουσα καὶ μὴ δυναμένη ἐξ ἑνὸς ὀνομάζεσθαι ἀπὸ τῆς | ||
| γὰρ τρόπον , οἶμαι , ἐν γεωμετρίᾳ καὶ διαλεκτικῇ τὰ σημαινόμενα ποικιλίαν ἑρμηνείας οὐκ ἀνέχεται , μένει δ ' ἀμετάβλητος |
| τὴν γένεσιν ὑπάρχειν * * , καὶ ἐπὶ ἑτέρας γενέσεως ἐκθήσομαι . Ἀδριανοῦ δʹ Ἀθὺρ λʹ , τὰ ἀπὸ Αὐγούστου | ||
| πρὸς τῶν οἰκείων ἀγορευόμενον . διόπερ τὰς ὑπὲρ αὐτοῦ μᾶλλον ἐκθήσομαι ἀπολογίας ἀπὸ τῶν Ἀριστοκλέους τοῦ Περιπατητικοῦ , ὃς ἐν |
| Μουσικῇ εἰσαγωγῇ σαφηνιοῦμεν . τὰ νῦν δὲ ὡς ἐν ἐπιδρομῇ θεωρητέον ἐπ ' ἀριθμῶν τοὺς εἰρημένους λόγους . ἵνα τοίνυν | ||
| γὰρ εὐδαίμονα τὸν βασιλέα 〚 λέγουσιν 〛 ἔχουσιν . ἔτι θεωρητέον τὰ ἐναντιώματα ἢ πρὸς τὰ ὑφ ' αὑτοῦ λεγόμενα |
| τὸν τρόπον τοῦτον ποιεῖσθαι . Ἔτι δὲ τῆς προκειμένης ἐξαρθρήσεως καταρτισμοῦ τρόπον τοιοῦτόν τινα ὑπογέγραφεν : ἀρκέσειε δ ' ἂν | ||
| ἐξαρθρήσεων αὐτῷ συγγραφέντα , δεόντως ἐπιλαβὼν καὶ τὰ περὶ ὤμου καταρτισμοῦ , ὃ κατὰ τὸ παρὸν ἐπέταξας μεταδοῦναί σοι . |
| τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
| . ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
| : καὶ τῆς ἐπὶ τοῦ διὰ τοῦ κατὰ κορυφὴν κύκλου παραλλάξεως τοῦ ἡλίου διακρινομένης εἰς τὴν πρὸς τὸν ζῳδιακὸν κατὰ | ||
| κ , ἅ ἐστιν ἔγγιστα ιε , τῆς κατὰ μῆκος παραλλάξεως . ἔστιν δὲ καὶ κατὰ προχείρους σύμφωνα ἔγγιστα . |
| ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
| Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
| ' ἐπεὶ ὁ μὲν τόδε , ὁ δὲ τόδε , ζητούμενά ἐστι διὰ τὸ πρὸς ἄλληλα διαφέρεσθαι . ὅμως καὶ | ||
| τί τὸ μέσον ζητεῖται . καὶ τὰ διαλεκτικὰ δὲ προβλήματα ζητούμενά τινα ὄντα καὶ αὐτὰ τῇ τῶν ζητουμένων διαιρέσει τῇ |
| σημανέων τὸ πρὸς θάλασσαν αὐτῆς , τῆς Σκυθικῆς χώρης ἐς μέτρησιν . Ἀπὸ Ἴστρου αὕτη ἤδη ἡ ἀκταίη Σκυθική ἐστι | ||
| οὔσης πρῶτον ὑποθέμενοι τὴν τῶν πηχῶν διαφορὰν ἑξῆς καὶ τὴν μέτρησιν αὐτῶν ὑποτάξομεν : τὰ γὰρ γεγραμμένα ἡμῖν εἴτε ἐπὶ |
| μετενεγκεῖν . Καὶ ταῦτα μὲν τὰ κατὰ τῆς πρώτης ἐπιγραφῆς ἀπορούμενα καὶ αἱ τούτων λύσεις . σὺ δὲ σημείωσαι , | ||
| μοι τέλος , τότε κἀκεῖνα διευκρινῆσαι τὰ παρὰ τοῖς πολλοῖς ἀπορούμενα , τί ποτ ' ἐστὶν ὃ ποιεῖ τὴν μὲν |
| παρὰ τὸν τότε δρόμον τῆς σελήνης , ἵνα ποιήσωμεν ὥρας ἰσημερινάς , ταῖς γινομέναις ὥραις ἕξομεν τὸν τῆς ἀκριβοῦς συζυγίας | ||
| ' ἀνατολικωτάτου τὰς τοῦ ἡμικυκλίου μοίρας ρπ καὶ ιβ ὥρας ἰσημερινάς : ὥστε συνάγεσθαι τὸ ἐγνωσμένον αὐτῆς μῆκος σταδίων , |
| ΑΒΓ ὅλῳ τῷ ΔΕΖ ἐστὶν ὅμοιον . ηʹ . Θέσει δεδομένων τῶν ΑΒ ΑΓ , ἀγαγεῖν παρὰ θέσει τὴν ΔΕ | ||
| Ἕρμαρχος ζῇ . “ Ἐκ δὲ τῶν γινομένων προσόδων τῶν δεδομένων ἀφ ' ἡμῶν Ἀμυνομάχῳ καὶ Τιμοκράτει κατὰ τὸ δυνατὸν |
| χρεία γένηται καὶ τοῦ πρὸς Σαλομῶντα τὸν ἀρχίητρον γεγραμμένου ἡμῖν συντάγματος , δηλώσας ἑτοίμως λήψῃ , θαυμάσεις δὲ πάνυ δεξάμενος | ||
| οὖν ἡμῖν δυνατὸν ἦν περὶ τὴν νόησιν τοῦ περὶ σφυγμῶν συντάγματος , ταῦτα συνεισηνέγκαμεν . τὸ δὲ ἐν πολλοῖς ἰδιοτροπώτερον |
| . ῥηθήσεται δὲ καὶ πρὸς τὸν οὕτως ἀποροῦντα περὶ τοῦ μαθηματικοῦ ἀριθμοῦ τἀληθῆ , ὅτι πᾶς μὲν ὁ λαμβανόμενος καὶ | ||
| μαθηματικοῦ καὶ φυσιολογικοῦ καὶ θεολογικοῦ . καὶ περὶ μὲν τοῦ μαθηματικοῦ ἔστιν εἰπεῖν ὅτι οὐ δοξάζει ὁ Πλάτων τοῦτο μὴ |
| τὸ ιγʹ , ι : τοσοῦτον ἡ πλευρὰ ἑκάστη τοῦ ὀκταγώνου . Ἐὰν δὲ εἰς τετράγωνον θέλῃς ἐγγράψαι ὀκτάγωνον , | ||
| ιβʹ , γίνονται ε : τοσοῦτόν ἐστιν ἡ πλευρὰ τοῦ ὀκταγώνου , ἡ δὲ διάμετρος ιβ . Πάλιν δὲ προστιθῶ |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
| τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
| ὅτι Οἰνοπίδης [ . , ] εὗρε πρῶτος τὴν τοῦ ζωιδιακοῦ λόξωσιν καὶ τὴν τοῦ μεγάλου ἐνιαυτοῦ περίστασιν , Θ | ||
| : Λαγωός , Προκύων . ἐν δὲ τῶι βορείωι τοῦ ζωιδιακοῦ κύκλου . βόρεια : Καρκίνος , Λέων , Παρθένος |
| τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
| ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
| πλῆρες αἰσθητοῦ σώματος κατὰ τὴν ἁφήν . τὴν μὲν οὖν στιγμὴν οὗτοί γε ἀποφεύξονται , θέα δὲ ἕτερον ἀπορώτερον , | ||
| καὶ τὸ ὅλον ἀμερές ἐστιν . ὥστε ἢ κατὰ μίαν στιγμὴν τοῦ σώματος ἔμψυχον ἔσται τὸ ζῶον , εἰ πᾶσαι |
| , μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
| δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
| κἂν ἄνισοι αἱ βάσεις ὦσιν . ὅτι δὲ καὶ τοῦτο πολύπτωτόν ἐστι τὸ θεώρημα καὶ δυνατὸν τὰς βάσεις τὰς τῶν | ||
| κἂν ἄνισοι αἱ βάσεις ὦσιν . ὅτι δὲ καὶ τοῦτο πολύπτωτόν ἐστι τὸ θεώρημα καὶ δυνατὸν τὰς βάσεις τὰς τῶν |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| τὸ δίκην ὑπέχειν ἀγώγιμον εὐθὺς ἐποίησεν , καὶ παραβὰς τὸ διωρισμένον ἐκ τοῦ νόμου δικαστήριον , ἄκριτον τοῖς ἐπαιτιασαμένοις παρέδωκεν | ||
| τοῖς οὖσι συμβεβηκότα . ἀντὶ τοῦ τὸ συνεχὲς καὶ τὸ διωρισμένον : ταῦτα γὰρ αὐτοῖς συμβέβηκεν . ὅπερ ἐστὶ νοητῶν |
| ζητουμένην εἰκάδα τοῦ μηνός , γίνονται ἡμέραι λθ . ταύτας μερίζομεν παρὰ τὸν ζʹ , πεντάκις ζ λε . λοιπαὶ | ||
| κύκλων λαμβάνομεν τὸ ἐμβαδὸν τοῦ τετραγώνου καὶ ποιοῦμεν ἑνδεκάκις καὶ μερίζομεν παρὰ ιδ , καὶ ἔσται τὸ στερεὸν τοῦ κυλίνδρου |
| , οὐδὲν ὄντας πρὸς τὴν γεωγραφίαν : οὐ γάρ ἐστιν οἰκήσιμα ταῦτα τὰ μέρη διὰ ψῦχος , ὥσπερ ἐν τοῖς | ||
| ἐπέκεινα , εἰς ἃ ἐκτοπίζει τὴν Θούλην , οὐκέτ ' οἰκήσιμα . τίνι δ ' ἂν καὶ στοχασμῷ λέγοι τὸ |
| ὃ πάλιν ἐστὶν ἄτοπον . Οἱ δὲ καὶ δι ' ὑποδειγμάτων πειρῶνται τὸ ἀξιούμενον παραμυθεῖσθαι . ὥσπερ γάρ , φασίν | ||
| τε ἀγκῶνος καὶ καρποῦ καὶ σφονδύλων κυφώσεως παραπλησίως διὰ τῶν ὑποδειγμάτων σοι ἐκτέθειται , μετ ' ὃν τρόπον [ ταὐτῶν |
| τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
| λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
| τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ | ||
| προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ |
| τοῖς ῥηθεῖσιν ἀρκεσθησόμεθα , περὶ δὲ τοῦ καλουμένου ἠλέκτρου νῦν διέξιμεν 〛 . τῆς Σκυθίας τῆς ὑπὲρ τὴν Γαλατίαν κατ | ||
| δὲ τῶν Ἀσωποῦ θυγατέρων καὶ τῶν Αἰακῷ γενομένων υἱῶν νῦν διέξιμεν . Ὠκεανοῦ καὶ Τηθύος κατὰ τοὺς μύθους ἐγένοντο παῖδες |
| ἐννοημάτων σύλληψις , οἷον „ ζῷον „ : τοῦτο γὰρ περιείληφε τὰ κατὰ μέρος ζῷα . ἐννόημα δέ ἐστι φάντασμα | ||
| συντάξεως πέντε βίβλους τοῦ συγγραφέως τούτου , καθ ' ἃς περιείληφε τὰς Ἀγαθοκλέους πράξεις , οὐκ ἄν τις δικαίως ἀποδέξαιτο |
| τοῦ ἐννάτου , καὶ κύριον τῆς δευτέρας τὸν κύριον τοῦ πέμπτου ἀπ ' αὐτοῦ τοῦ ζῳδίου , καὶ κύριον τῆς | ||
| δὲ τὴν γένεσιν τοῦ κόσμου 〛 ἀπὸ πυρὸς καὶ τοῦ πέμπτου στοιχείου . Πλάτων τὸν ὁρατὸν κόσμον γεγονέναι παράδειγμα τοῦ |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν παρὰ ῥητὴν παραβληθῇ , πλάτος ποιεῖ ῥητὴν καὶ σύμμετρον τῇ , παρ | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ , ἡ ἡμίσεια τῆς ἐλάσσονος μείζων |
| . φωνή ἐστιν ἡ γινομένη καθ ' ὁρμὴν τοῦ ἡγεμονικοῦ ἐκτεινομένου καὶ συνεκτείνοντος τὸ πνεῦμα τὸ διὰ φάρυγγος μέχρι τοῦ | ||
| τοῦ μηροῦ κεφαλῆς , καὶ τοῦ μὲν σκέλους τῇ κατατάσει ἐκτεινομένου , τοῦ δὲ πάσχοντος κατ ' ἀνατροπὴν ὑπτίου σχηματιζομένου |
| ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς | ||
| τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν |
| , τὸν δὲ ἐξ ἀρχῆς προεισενηνεγμένον τοῦ ὁμαλοῦ μήκους ὁμοίως εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμούς , ἐὰν μὲν ἐν τοῖς | ||
| φαινομένης , ἐπὶ τὴν φαινομένην διάστασιν τῶν τῆς ἐπουσίας μοιρῶν εἰσενεγκόντες εἰς τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφορὰς ἐπισκεψόμεθα |
| , ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
| κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
| ἐπὶ τῷ τῆς Ἀθηνᾶς νόμῳ : προσληφθείσης γὰρ μελοποιίας καὶ ῥυθμοποιίας , τεχνικῶς τε μεταληφθέντος τοῦ ῥυθμοῦ μόνον αὐτοῦ καὶ | ||
| τὴν τοῦ ποδὸς δύναμιν φυλάσσοντα σημεῖα καὶ τὰς ὑπὸ τῆς ῥυθμοποιίας γινομένας διαιρέσεις : καὶ προσθετέον δὲ τοῖς εἰρημένοις , |
| αὐτὰ φαίνεται καὶ ἀποφαίνει τὸ ἀποτέλεσμα συμφώνως αὐτοῖς γινόμενον . ρξβʹ . Οὐ πρόδηλα αἴτιά ἐστιν ὅσα οὐκ ἐξ ἑαυτῶν | ||
| Θὼθ ἕως τῆς ιγʹ τοῦ Μεχὶρ ρξγʹ καὶ ἔξωθεν προσέθηκα ρξβʹ , ὁμοῦ τκεʹ : ταύτας ἀπέλυσα ἀπὸ Κριοῦ ἀνὰ |
| , ἐλατήριον , μέλι . Ἐν τοῖσι ποδαγρικοῖσιν ὀδυνήμασι τὰ ἀφιστάμενα ἁλὶ καταπλάσσειν ὕδατι φύροντα λεῖον , καὶ μὴ λύειν | ||
| ἥσυχον καὶ ἀγύμναστον μετιόντων βίον τά τε οὖρα τοῦ συμμέτρου ἀφιστάμενα χρώματος χωροίη ἂν πρὸς τὰ λευκὰ βραχυτάτην τοῦ θερμοῦ |
| ' ἕκαστον ἐξαρθρήσεως τρόπον τὴν παρακολουθοῦσαν ἐν τῇ πηρώσει χωλείαν ἐκτέθειται . καὶ ἐπὶ ὤμου δὲ τὸ παραπλήσιον ἱστορῶν οὕτως | ||
| . τισὶν γὰρ φύσει τὸ τοῦ ὤμου ἄρθρον , καθάπερ ἐκτέθειται , συνεχῶς ἐκπίπτειν [ ] χωρὶς τῶν ἔξωθεν αἰτιῶν |
| , ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
| ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
| φαίνεται , ἂν ἐπινοήσωμεν αὐτὸν διπλασίονα γενόμενον , εἰς δύο διαιρουμένου ἑκάτερον αὐτοῦ τῶν μερῶν ποδιαῖον φανήσεται . Ὥστε εἰ | ||
| τοῦ βιβλίου διαίρεσιν . εἰς τέσσαρα τοίνυν ἐναργῶς αὐτοῦ τμήματα διαιρουμένου τὸ μὲν πρῶτόν ἐστι περὶ τῶν ἀρχῶν τοῦ ἀποφαντικοῦ |
| τῆς πληθοποιοῦ δυάδος . Οὐκοῦν ὅλην φέροντες τὴν οἱανδήποτε λεγομένην ἀντιδιαίρεσιν εἰς μίαν ἀνοίσομεν ἐκείνην ἀρχήν , τὴν πληθοποιόν , | ||
| ἀδιάκριτον , ἐν δὲ τῷ διακεκριμένῳ κατὰ διορισμόν τινα καὶ ἀντιδιαίρεσιν ἤδη προβεβλημένην , ἐν δὲ τῷ μέσῳ δῆλον ὅτι |
| καὶ τὰ λοιπὰ ια λη ἀφαιροῦμεν πάλιν ἀπὸ τῶν τοῦ ἀφέτου οε . καὶ τὰ λοιπὰ ξγ γʹ ἔγγιστα λέγομεν | ||
| ὑπαντήσεις καὶ ἀναιρεῖν καὶ σῴζειν ἐπειδὴ καὶ αὗται τῷ τοῦ ἀφέτου τόπῳ ἐπιφέρονται . οὐ πάντοτε μέντοι τούτους τοὺς τόπους |