| οὖν τῷ ἀπὸ τῆς ΚΗ τετραγώνῳ ἴσον παρὰ τὴν ΒΚ παραβέβληται ὑπερβάλλον τῷ ἀπὸ τῆς ΚΛ τετραγώνῳ , τὸ ἄρα | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΜΖ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ , ΚΜ |
| παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ . | ||
| παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ |
| ἐλευθεριωτέρων εἰς χρόνον καθ ' ὁμολογίαν μέντοι , οὐ μὴν ῥητήν , οἷον δέκα ἢ εἴκοσι ἤ τινα ἄλλον ἀριθμόν | ||
| μεγάλῃ ἀνέστρεψε . ταῦτα προειπόντες ἐν τῷ πλήθει , καὶ ῥητήν τινα ἀποδείξαντες ἡμέραν , ἐν ᾗ τέλος ἔφησαν ἐπιθήσειν |
| συμμέτρων , καὶ τὰ ἑξῆς . Ἐὰν ῥητὸν παρὰ ῥητὴν παραβληθῇ , πλάτος ποιεῖ ῥητὴν καὶ σύμμετρον τῇ , παρ | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ , ἡ ἡμίσεια τῆς ἐλάσσονος μείζων |
| οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ | ||
| μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ . |
| τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ | ||
| λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ |
| καὶ τὸ τρίτον ὡσαύτως , μετὰ δὲ ταῦτα διὰ τὴν ὑποτομὴν ἐκπίπτειν τὸ δένδρον ὑπὸ τῶν πνευμάτων σαπέν : τότε | ||
| δὲ φεύγουϲι τὴν ἀποδοράν , δι ' ὃ μετὰ τὴν ὑποτομὴν βλεφαροκατόχῳ μυδίῳ , τουτέϲτι πρὸϲ τὴν περιφέρειαν τοῦ βλεφάρου |
| , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
| : τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
| , ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ | ||
| . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ |
| καλείσθω δὲ μέσης ἀποτομὴ δευτέρα . Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΙ , καὶ τοῖς μὲν ἀπὸ τῶν ΑΒ , ΒΓ | ||
| τὸ ἄρα ΔΘ μέσον ἐστίν . καὶ παρὰ ῥητὴν τὴν ΔΙ παράκειται πλάτος ποιοῦν τὴν ΔΖ : ῥητὴ ἄρα ἐστὶ |
| ἰσογώνιόν ἐστιν ἢ οὔ . ἔστω πρότερον ἰσογώνιον , καὶ παραβεβλήσθω παρὰ τὴν ΓΒ εὐθεῖαν τῷ ΕΗ παραλληλογράμμῳ ἴσον παραλληλόγραμμον | ||
| καὶ τῷ μὲν ἀπὸ τῆς Α ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω τὸ ΓΕ πλάτος ποιοῦν τὴν ΓΖ : ἀποτομὴ ἄρα |
| ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ | ||
| παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| ἀπλανῆ σφαῖραν ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ | ||
| ὄρει τρεφόμενον , καὶ ὄψει λαιμότομον , ἤγουν τὸν λαιμὸν τμηθεῖσαν , ἀπὸ τῶν ἐνταῦθα πεμπομένην πρὸς τὸ σκότος τῆς |
| ἐδείχθη δὲ καὶ ἡ ΓΑ ἀποτομή . Ἐὰν ἄρα εὐθεῖα ῥητὴ ἄκρον καὶ μέσον λόγον τμηθῇ , ἑκάτερον τῶν τμημάτων | ||
| , καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ . ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ . καὶ γεγονέτω ὡς |
| ἐστὶν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΧΑ πρὸς ΑΞ , καί ἐστιν ὡς ἡ ΟΞ πρὸς | ||
| μείζονα λόγον ἔχει ἤπερ πρὸς τὴν ΗΚ : καὶ ἡ ΧΑ πρὸς ΑΖ ἄρα μείζονα λόγον ἔχει ἤπερ ἡ ΘΚ |
| ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
| γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
| συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
| ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
| πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
| Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| ἐμπόριον καὶ πόλις Κελτική . Στράβων τετάρτῃ . Μαρκιανὸς δὲ Ναρβωνησίαν αὐτήν φησι . τὸ ἐθνικὸν Ναρβωνίτης ὡς Ἀσκαλωνίτης . | ||
| ἐμπόριον καὶ πόλις Κελτική : Στράβων δ . Μαρκιανὸς δὲ Ναρβωνησίαν αὐτήν φησι . τὸ ἐθνικὸν Ναρβωνίτης . . . |
| τὸ δὲ ἀπὸ τῆς ἐκ δύο μέσων πρώτης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων δευτέραν . τὸ | ||
| ἐκάλουν οἱ παλαιοὶ πᾶν τὸ ἐπὶ σημείῳ τινὶ καὶ τεκμηρίῳ παραβαλλόμενον : ἐκ μεταφορᾶς τῆς οἰωνοσκοπητικῆς . μὰ τὴν Δήμητραν |
| δυάδι αὐτοῦ λειπόμενα , πρόσω μὲν ὡς τὸ ἐκ τῶν ββ συγκείμενον , ὀπίσω δὲ ὡς τὸ ἐκ τῶν γγ | ||
| τῇ δγ καὶ εα : ἡ μὲν γὰρ δγ τῆς ββ ὑπερέχει τῇ δγ , ἡ δὲ ββ τῆς εα |
| ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
| κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
| αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
| , κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
| ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
| Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
| τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
| καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
| τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
| τὸ ἀπὸ τῆς ΑΤ πρὸς τὸ ὑπὸ τῶν ΑΤ , ΤΡ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΒΤ , ΤΓ | ||
| βάσις καὶ τὸ ΨΥ στερεόν . καὶ ἐπεὶ δύο αἱ ΤΡ , ΡΥ δυσὶ ταῖς ΑΛ , ΛΒ ἴσαι εἰσίν |
| τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
| αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
| καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
| ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
| τῆς δευτέρας συζυγοῦς διαμέτρου , ὡς δὲ τὸ ὑπὸ τῶν ΠΣ , ΣΑ , τουτέστι τὸ ὑπὸ τῶν ΓΣ , | ||
| δύσις ἡ Ρ , καὶ κείσθω τῇ ΡΝ ἴση ἡ ΠΣ [ καθ ' ὑπόθεσιν , καὶ ἔστω ἐπὶ τοῦ |
| ΒΔ διὰ τὸ ἴσην εἶναι ἑκατέραν τῶν ΒΕ ΕΑ τῇ ἐπιζευγνυούσῃ τὰ Δ Ε . ἔστιν δὲ καὶ ἡ πρὸς | ||
| αἱ ἐπὶ τὰς τομὰς ἀγόμεναι παράλληλοι ἔσονται τῇ τὰς ἁφὰς ἐπιζευγνυούσῃ . ἔστω γὰρ ἢ ὑπερβολὴ ἢ ἀντικείμεναι ἡ ΑΒ |
| τὸ Α σημεῖον , βάσις δὲ ὁ ΒΓ κύκλος , τέτμηται ἐπιπέδῳ διὰ τοῦ ἄξονος , καὶ πεποίηκε τομὴν τὸ | ||
| ἡ ΖΗ : ἡ ΗΓ ἄρα ἄκρον καὶ μέσον λόγον τέτμηται τῷ Ε , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ |
| δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς | ||
| οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης |
| ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
| ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
| σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
| μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
| τμημάτων , ποιήσουσι δὲ πάντως ὀρθογώνιον ἓν ἔχον τὴν μίαν πλευρὰν τὸ ἓν τμῆμα τῆς εὐθείας καὶ τὴν ἑτέραν θάτερον | ||
| ἐκείνους ἀντέχειν ὑπ ' ἀμηχανίας ἀνασκιρτῶντας καὶ τῇ προνομαίᾳ τὴν πλευρὰν τύπτοντας ὡς καθιξομένους τῶν δρακόντων , εἶτα ἀεὶ κενουμένου |
| . ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ | ||
| , ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ |
| λόφου τοῦ ὑψηλοῦ τὴν ἠλίβατον , ἤγουν τὴν μετέωρον καὶ ὀρθίαν , τουτέστι τὴν Ὀλυμπίαν , ὅπου παρέσχεν αὐτῷ , | ||
| πλαγία ἡ ΒΑ πρὸς ΓΔ , ἡ ΓΔ πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα ἡ πλαγία πρὸς τὴν ὀρθίαν |
| ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ | ||
| ٤٨ ١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ |
| δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ | ||
| τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν |
| ΘΠ τοῖς # δ , καὶ τῇ γενομένῃ διαστάσει τῆς ΘΠ τοῖς # μϚ ἴσην θῶμεν τὴν ΘΤ , καὶ | ||
| , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω τις περιφέρεια ἡ ΘΡ μείζων μὲν |
| τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١١ ١٠ ٥٠ ٢٢ ٥٦ ἡ ΘΜ ἤτοι τὸ πλάτος ٢ ٤٧ ٤٢ | ||
| ٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤ ٣٩ ٢٢ ٥ ١٤ Τοῦ ρζʹ . ἡ ΑΒ ٢ ٢٥ |
| Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
| ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ |
| ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
| Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| ١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧ | ||
| Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ |
| τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
| ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
| ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
| μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
| ٥٠ ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] | ||
| ٥ ٣٣ ١٨ ٤٠ ٢٥ τὸ ἀπὸ τῆς ΒΕ ١ ١٤ ٣ ٢ ١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ , |
| τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθῇ εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , διὰ δὲ τῆς διχοτομίας τῆς τὰς ἁφὰς ἐπιζευγνυούσης | ||
| διὰ τῆς συμπτώσεως ἀχθῇ τις εὐθεῖα παρὰ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν συμπίπτουσα ἑκατέρᾳ τῶν τομῶν , ἀχθῇ δέ τις ἑτέρα |
| τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣ | ||
| ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ |
| Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
| ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
| . ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
| τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
| πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
| ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |
| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| , ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ | ||
| ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα |
| ἡ ΔΚ τεσσάρων μονάδων τὸ ἀπὸ τῆς ΑΒ ١١٠ ١١٠ ٢٧ ١٠ ٤٩ τὸ ἀπὸ τῆς ΓΒ ٢ ٤٧ ٣٣ | ||
| . ἡ ΑΒ ٢ ٢١ ٣٥ ἡ ΑΔ ١ ٤٠ ٢٧ τὸ ἀπὸ τῆς ΑΒ ٥ ٣٣ ١٨ ٤٠ ٢٥ |
| ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
| . στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
| ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω | ||
| ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως |
| τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή | ||
| ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ |
| τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
| παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
| ἀπὸ τῆς τραπέζης . ἑώρακα δὲ καὶ αὐτὸς οὐκ ἐλάττω γηθυλλίδα γογγυλίδος καὶ τῆς στρογγύλης ῥαφανῖδος . ἱστοροῦσι δὲ τὴν | ||
| παρὰ Δελφοῖς τῇ θυσίᾳ τῶν Θεοξενίων , ὃς ἂν κομίσῃ γηθυλλίδα μεγίστην τῇ Λητοῖ , λαμβάνειν μοῖραν ἀπὸ τῆς τραπέζης |
| ٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ | ||
| ٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ |
| ἀντιπαρατείνουσα ταύταις ἡ Ναρβωνησία κεῖται . Πάλιν δὲ μετὰ τὴν Βελγικὴν πρόσεισιν ἐπ ' ἀνατολὰς συχνὸν ὅσον ἡ Γερμανία , | ||
| καταντικρὺ τῆς Κελτογαλατίας , παρά τε τὴν Λουγδουνησίαν καὶ τὴν Βελγικὴν μέχρι τῆς μεγάλης Γερμανίας ἐκτεινομένη . Οὐ γάρ ἐστι |
| κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας | ||
| ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ |
| ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
| ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
| τὸ Ζ : δι ' ἴσου ἄρα ἐστὶν ὡς τὸ ΑΗ πρὸς τὸ Γ , οὕτως τὸ ΔΘ πρὸς τὸ | ||
| ἐστὶ τῷ ΓΕ , λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΗ , ΗΒ ἴσον ἐστὶ τῷ ΖΛ . ῥητὸν δὲ |
| ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
| καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
| , τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
| τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
| ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι | ||
| ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢ |
| τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
| φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
| ἐπὶ τῆς . ΛΒ εὐθείας δείξομεν τὴν ΒΞ θερινὴν ἀκτῖνα προσπίπτουσαν ἐπὶ τὸ διὰ τῆς ΜΞΟ ἐπίπεδον ἔσοπτρον καὶ ἀνακλωμένην | ||
| πνέων ζέφυρος ἀπὸ δυσμῆς ἰσημερινῆς τὴν ὑπὸ τοῦ ἡλίου θερμότητα προσπίπτουσαν τοῖς ὄρεσιν ἀνακλωμένην ἐξέτραπεν εὐθὺς εἰς πεδίον καὶ ἀπέκαυσεν |
| ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς | ||
| τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη |
| ἀντιμεταγέτω βίᾳ τὸν τράχηλον . προστιθέσθω δ ' ἅμα τῇ κατατάσει καὶ τῇ ὑπεραιωρήσει : ἀνίεται γὰρ τὰ περικείμενα τῷ | ||
| τὴν δὲ μόχλευσιν πλάτος ἔχοντι μοχλῷ μοχλεύειν χρὴ ἅμα τῇ κατατάσει , ἐκ τοῦ ἔξω μέρεος ἐς τὸ ἔσω ἀναγκάζοντα |
| διὰ τῶν ΒΓ , ΔΕ . κύκλος ἄρα ἐστὶ τὸ ΚΛΜΝ ἐπίπεδον . καὶ ἐπεὶ τὰ Δ , Ε , | ||
| μεῖζόν ἐστι τὸ ΗΒ τοῦ Γ , συνεστάτω ἴσον τὸ ΚΛΜΝ , ὅμοιον δὲ τῷ Δ , ἵνα ᾖ τὸ |
| ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ , | ||
| τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , |
| . ψυχήν . . : . . . ἀφοσιούτω . καθαιρέτω , ὡς νῦν , ἢ ἀπαρχὰς προσαγέτω , ἢ | ||
| , ἃ καὶ κορήματα κλητέον . παῖς ἐκκορείτω παρακορείτω , καθαιρέτω , καλλυνέτω , σαιρέτω , κορήθρῳ ἢ καλλύντρῳ : |
| δὲ πλευρῶν τὴν μὲν ἐλαχίστην εἶναι σταδίων ἑπτακισχιλίων πεντακοσίων , παρήκουσαν παρὰ τὴν Εὐρώπην , τὴν δὲ δευτέραν τὴν ἀπὸ | ||
| δὲ πλευρῶν τὴν μὲν ἐλαχίστην εἶναι σταδίων ἑπτακισχιλίων πεντακοσίων , παρήκουσαν παρὰ τὴν Εὐρώπην , τὴν δευτέραν τὴν ἀπὸ τοῦ |
| . καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ | ||
| ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι |
| ἐφαπτομένας τῶν ἐπικύκλων τὰς ΖΘ , ΖΟ , ΖΗ : συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ὑπὸ ΓΖΗ , ΑΖΘ | ||
| τὸ Σ , ὅταν ἐπιζητῶμεν τὴν γινομένην αὐτῆς παράλλαξιν , συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ΑΖ , ΖΓ ὑπεροχὴν |
| μέσον τὸ ΓΕ . Ἡ πλευρὰ τοῦ . . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ | ||
| ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ ٢٨ ١٩ τὸ ΗΚ ١٦ ἡ δυναμένη αὐτό ٤ ΚΘ |
| καλῶϲ πέφυκεν ὁ Κλέων ἀφουλοῦν πρὸϲ τῷ καὶ τὴν οὐλὴν ὁμόχρουν ἐργάζεϲθαι . Πρόπτωϲίϲ ἐϲτι προπέτεια τοῦ ῥαγοειδοῦϲ χιτῶνοϲ ἐκ | ||
| διαιρεθῇ μηνοειδὴς , ἢ στρογγύλη τὸ σχῆμα , κοιλότερον , ὁμόχρουν ἢ ὑπόλευκον . ὑπόσφαγμα δὲ λέγουσιν , ὅταν ὑπὸ |
| τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ | ||
| ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω |
| αὐτῆς τὸ οἰκοδομούμενον . τίς δὲ ἡ αἰτία τοῦ τὴν σπάρτην ἐξηρτημένην ἑαυτῆς τὴν μόλιβδον ἔχουσαν τῇ οἰκοδομικῇ συμβάλλεσθαι πρὸς | ||
| : ἤγουν τὴν ἀγαπῶσαν φίλει . Τὸν λίθον πρὸς τὴν σπάρτην κατὰ τὴν Δωρικὴν παροιμίαν ἄγοντες . Τὸν πόκον περικείρεσθαι |
| τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ | ||
| ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ |
| , οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον | ||
| ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς |
| καὶ εἴδει , οἷον ὅταν ὀρθὴν λέγωμεν ἢ ὀξεῖαν ἢ ἀμβλεῖαν ἢ ὅλως εὐθύγραμμον ἢ μικτήν : δίδοται καὶ λόγῳ | ||
| πύργοι ἐν αὐτῇ κατασκευάζονται τὴν μὲν ὀξεῖαν , τὴν δὲ ἀμβλεῖαν γωνίαν ποιοῦντες τὰς προσηκούσας πρὸς τὸ τεῖχος : οὕτω |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| τῇ ὑπὸ ΕΓΖ , τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ , τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ : | ||
| περὶ τὸ ΓΕΗ ὀρθογώνιον κύκλος τξ , ἡ δὲ ὑπὸ ΕΓΗ γωνία , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ |
| ٤٢ ἡ ΓΔ ٤ ἡ ΓΖ ٣ ٣٩ ٥٠ ٣١ ٢١ ἡ ΒΗ ١ ٩ ٣٢ ἡ ΑΗ ٤ ٥٩ | ||
| ἡ ΖΗ ٢ ٣٠ ١٩ ٣٦ ἡ ΑΖ ١٠ ٣٥ ٢١ ٤ Ταύτην τὴν ῥητὴν λάμβανε , ἣν ἐξέθου ἐν |
| ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ | ||
| καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς |
| εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
| τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
| ٤٠ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ | ||
| ٢٢ ١٠ ٢٠ τὸ ὑπὸ ῥητῆς καὶ τῆς ΑΔ ١ ٤٥ ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ταύτης ἡμίσεια |
| τῇ ὑπὸ ΘΗΧ ἐστιν ἴση . παράλληλος ἄρα ἐστὶν ἡ ΕΧ τῇ ΗΘ . πεποιήσθω δή , ὡς ἡ ΠΗ | ||
| ἐστὶν ἡ ΔΧ τῇ ΧΖ , ἴση ἄρα καὶ ἡ ΕΧ τῇ ΖΗ : ὥστε καὶ ἡ ΓΗ ἴση τῇ |
| ἡ ΖΝ ١ ٢٦ ٤١ ٤٠ ٣٢ Τὸ ΓΕ ٥ ٥١ ١٨ ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ | ||
| . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ ΒΓ τὸ καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ |
| . κατὰ πρόσληψιν δὲ καλεῖ ὁ Ἀριστοτέλης τὴν πρότασιν τὴν ἰσοδυναμοῦσαν συλλογισμῷ τὴν δύο ὅρους ἐνεργείᾳ ἔχουσαν καὶ ἕνα [ | ||
| να , εἰ μὲν ἡ προτεθεῖσα καταφατικὴ εἴη , τὴν ἰσοδυναμοῦσαν ἀποφατικὴν εἶναι καὶ κατὰ τὸ κατηγορούμενον : οὐδὲν δὲ |