τὸ Α σημεῖον , βάσις δὲ ὁ ΒΓ κύκλος , τέτμηται ἐπιπέδῳ διὰ τοῦ ἄξονος , καὶ πεποίηκε τομὴν τὸ | ||
ἡ ΖΗ : ἡ ΗΓ ἄρα ἄκρον καὶ μέσον λόγον τέτμηται τῷ Ε , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ |
συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις | ||
πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ |
, καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
: τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ . Τετμήσθω γὰρ ἡ ΒΓ δίχα κατὰ τὸ Ε σημεῖον , | ||
, ἐν ἀναλογίᾳ εἰσὶ τῇ ὑποκειμένῃ , δείξομεν οὕτως : Τετμήσθω γὰρ ἡ μὲν ΑΒ ἄκρον καὶ μέσον λόγον κατὰ |
ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
τοῦ ὑπὸ τῶν ΒΑΓ πρὸς τὸ ὑπὸ τῶν ΒΔ , ΑΓ λόγος ἐστὶ δοθείς . τοῦ δὲ ὑπὸ τῶν ΑΓ | ||
δευτέρα ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ , αἱ ΑΓ , ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι μέσον |
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
πρὸς κέντρα λακτίζων κατὰ τὴν ἐντεῦθεν παροιμίαν τοὺς ἰδίους πόδας αἱμάσσει . φησὶν οὖν , ἐάν μοι μὴ πεισθῇς , | ||
. ὑπὸ γοῦν τῆς ἀηθείας τε καὶ τρυφῆς ἀκάνθῃ περιτυχοῦσα αἱμάσσει τὸν πόδα ἐπ ' εὐτυχίᾳ τοῦ ῥόδου , καὶ |
καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
κειμένη τῷ Μαιάνδρῳ κατὰ τὸ πρὸς τῇ Φρυγίᾳ μέρος , ἐπέζευκται δὲ γέφυρα : χώραν δ ' ἔχει πολλὴν ἐφ | ||
σημεῖον , ἀπὸ δὲ τοῦ Α ἐπὶ τὸ κέντρον αὐτοῦ ἐπέζευκται ἡ ΑΒ , ἡ ΑΒ ἄρα κάθετός ἐστιν ἐπὶ |
τοῦ Φ τῷ τοῦ κύκλου ἐπιπέδῳ πρὸς ὀρθὰς ἀνεστάτω ἡ ΦΩ , καὶ ἐκβεβλήσθω ἐπὶ τὰ ἕτερα μέρη ὡς ἡ | ||
δίχα κατὰ τὸ Αʹ . καὶ ἐπεὶ εὐθεῖα γραμμὴ ἡ ΦΩ ἄκρον καὶ μέσον λόγον τέτμηται κατὰ τὸ Χ , |
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
] τὴν στροφὴν [ [ παύει ] ? τὴν [ ἀντιστροφὴν ] [ [ ὧδε ] ? : ἀλλὰ φαίνεται | ||
ῥυθμοὺς ἐμπεριλαμβάνουσα καὶ μήτε ἀκολουθίαν ἐμφαίνουσα αὐτῶν μήτε ὁμοζυγίαν μήτε ἀντιστροφὴν εὔρυθμος μέν ἐστιν , ἐπειδὴ διαπεποίκιλταί τισιν ῥυθμοῖς , |
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
σημεῖα τὰ Γ Δ : ὅτι , ἐὰν τὸ ἀπὸ ΑΔ καὶ τὸ λόγον ἔχον πρὸς τὸ ἀπὸ ΔΒ τὸν | ||
γωνίαν τὴν ὑπὸ τῶν ΕΑΔ , θέσει ἄρα ἐστὶν ἡ ΑΔ . . . Ἄλλως . Εἰλήφθω ἐπὶ τῆς ΒΓ |
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
οὖν τῷ ἀπὸ τῆς ΚΗ τετραγώνῳ ἴσον παρὰ τὴν ΒΚ παραβέβληται ὑπερβάλλον τῷ ἀπὸ τῆς ΚΛ τετραγώνῳ , τὸ ἄρα | ||
τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΜΖ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ , ΚΜ |
πρὸς ΕΒ , ἡ ΓΖ πρὸς ΖΔ , αἱ δὲ ΑΕ , ΕΒ δυνάμει μόνον σύμμετροί εἰσιν , καὶ αἱ | ||
οὕτω μία τῶν πλευρῶν ἡ ΑΒ πρὸς μέρος αὐτῆς τὴν ΑΕ . ἐπεὶ οὖν ἡ ΑΒ πρὸς τὴν ΑΕ λόγον |
Ζ ἐπὶ τὸ Ε ἐπιζεύξαντες τὴν ΖΓΕ , ἕξομεν τὴν ΓΒ μέσην τῶν ΑΒ ΒΗ . καὶ ἡ ἀπόδειξις φανερά | ||
, ὅτι καὶ λοιπὸν τὸ ΑΒ πρὸς τὸ αὐτὸ τὸ ΓΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ . μετὰ γὰρ |
ἀλλήλων οἱ κύκλοι : ἐφάψεται ἄρα ὁ ΑΒ κύκλος τοῦ ΕΒΖ κύκλου . διὰ ἄρα τοῦ δοθέντος σημείου τοῦ Β | ||
τὸ ΓΑΔ πρὸς τὸ ΕΚΖ . εἶχε δὲ καὶ τὸ ΕΒΖ πρὸς τὸ ΕΚΖ διπλασίονα λόγον ἤπερ τὸ ΓΑΔ πρὸς |
ἐστὶν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΧΑ πρὸς ΑΞ , καί ἐστιν ὡς ἡ ΟΞ πρὸς | ||
μείζονα λόγον ἔχει ἤπερ πρὸς τὴν ΗΚ : καὶ ἡ ΧΑ πρὸς ΑΖ ἄρα μείζονα λόγον ἔχει ἤπερ ἡ ΘΚ |
ἴση δὲ ἡ μὲν ΩΦ τῇ ΨΧ , ἡ δὲ ΦΧ τῇ ΧΠ , ἔστιν ἄρα ὡς ἡ ΨΧ πρὸς | ||
, ἡ δὲ ΧΒ ὅλη διὰ τὸ ἴσην εἶναι τὴν ΦΧ τῇ ΦΘ τοιούτων ξδ κζ , οἵων καὶ ἡ |
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ | ||
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ |
ΣΠ τῇ ΥΘ ἐστιν ἴση , ἡ δὲ ΠΞ τῇ ΘΦ : καὶ ἡ ΥΘ ἄρα τῆς ΘΦ ἐστι μείζων | ||
ἐποίησεν ἐν τῷ αὐτῷ λόγῳ καὶ τὴν ΤΘ πρὸς τὴν ΘΦ . πᾶσα δὲ ἀνάγκη μήτ ' ἐκεῖνον εὑρίσκειν τὸ |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ | ||
μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ . |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
τὸ συμπέρασμα δῆλον . Ἔστω ἡ ΑΒ μονάδων ι : ἐτμήθη εἰς Ϛ καὶ δ . τῆς ὅλης τετράγωνον ρ | ||
, παραχρηστικῶς δὲ καὶ χορός : εἰ δὲ εἰς ἕνα ἐτμήθη καὶ μερικόν , ὑποκριταὶ ἁπλῶς ἐκαλοῦντο κοινῷ τῷ ὀνόματι |
καὶ τὸ τρίτον ὡσαύτως , μετὰ δὲ ταῦτα διὰ τὴν ὑποτομὴν ἐκπίπτειν τὸ δένδρον ὑπὸ τῶν πνευμάτων σαπέν : τότε | ||
δὲ φεύγουϲι τὴν ἀποδοράν , δι ' ὃ μετὰ τὴν ὑποτομὴν βλεφαροκατόχῳ μυδίῳ , τουτέϲτι πρὸϲ τὴν περιφέρειαν τοῦ βλεφάρου |
٥٠ ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] | ||
٥ ٣٣ ١٨ ٤٠ ٢٥ τὸ ἀπὸ τῆς ΒΕ ١ ١٤ ٣ ٢ ١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ , |
πονέειν ὀσφύν . Τρίτῃ πόνος τραχήλου , κεφαλῆς , κατὰ κληῗδα , χεῖρα δεξιήν : διὰ ταχέων δὲ γλῶσσα ἠφώνει | ||
ὑπὸ τὰς φρένας ᾖ τὸ ἄλγημα , ἐς δὲ τὴν κληῗδα μὴ σημαίνῃ , μαλθάσσειν δεῖ τὴν κοιλίην , ἢ |
τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ ἀπὸ τοῦ Ι ἐπὶ τὸ Α | ||
. ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω ἡ ΚΙ , καὶ τετμήσθω ἡ ΖΗ τῇ ΒΓ ὁμοίως κατὰ |
τοῦ τος τὰ δὲ διὰ τοῦ εος , ἃ καὶ συναίρεσιν ἐπιδέχονται , τρεῖς σοι τούτων κανόνας προτίθεται , τὸν | ||
τειχέοιν καὶ κατὰ συναίρεσιν τειχοῖν . ὦ τείχεε καὶ κατὰ συναίρεσιν τείχη . Πληθ . Τὰ τείχεα καὶ κατὰ συναίρεσιν |
ἐπιτηδείους ἐγκρίνειν μοχλείας , τὴν κατ ' ἴπωσιν καὶ κατὰ περίσφαλσιν , τὴν μὲν κατ ' ἴπωσιν ἔτι μενούσης τῆς | ||
παραλαμβάνεται , τό τε κατ ' ἴπωσιν καὶ τὸ κατὰ περίσφαλσιν : πρωτοστατεῖ δ ' ἡ ἴπωσις ἐπιμενούσης τῆς τάσεως |
ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ | ||
παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ |
καὶ τὸν βίον ἀναγκασθῆναι [ ] παθεῖν εἰς τοῦτο [ προήκοντα ] [ ] ὥστε , εἰ ἔδυ [ ὁ | ||
] τουτέστιν εἰς Μακεδονίαν μεταβιβάζειν τὴν δύναμιν . εἰς τοῦτο προήκοντα ] οὐκ εἶπεν οὕτως ἔχοντα , ἀλλ ' οὕτω |
τῇ εὐθείᾳ τὸ βάρος ὥστε ἠρεμεῖν : λέγω δὴ ὅτι ἐκβληθεῖσα ἡ ΑΒ εὐθεῖα συμπεσεῖται τῇ πρότερον ἐναπειλημμένῃ . εἰ | ||
γενέσθαι . ὁμοίως δὲ καὶ ἀπὸ τῆς χολῆς , ἥτις ἐκβληθεῖσα καὶ ἀνατιναγεῖσα πρὸς τὸ τῶν πολεμίων μέρος ἧτταν τούτων |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας , αὐτὴ δι ' ἑαυτῆς ἀνακλασθήσεται . ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ , ὄμμα δὲ | ||
παράλληλος ἤχθω ἡ ΖΗ . λέγω , ὅτι ἡ ΖΗ ἀνακλασθήσεται πρὸς ἴσην γωνίαν μεταξὺ τῶν Ε , Θ . |
, τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς | ||
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς |
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
οἱ δὲ Περὶ φύσεως , Διόδοτος δὲ ἀκριβὲς οἰάκισμα πρὸς στάθμην βίου , ἄλλοι Γνώμον ' ἠθῶν , τρόπου κόσμον | ||
εἶπεν , ὅπερ ἐκεῖνοι ὑπολαμβάνουσιν ὡς ὁμολογούμενον οὗτος εἰπών . στάθμην δὲ λέγουσι τὸ ἄνω τῆς πλάστιγγος , ἀπὸ τούτου |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
μάταιον : παρὰ τὸ ἅλς ἁλός ἅλιον , ὡς πτύξ πτυχός πτύχιον , οἱονεὶ τὸ εἰς θάλασσαν ῥιπτόμενον καὶ ἀφανιζόμενον | ||
ἔχει τὸ κ καὶ ἀρσενικῶς λέγεται . Σημειωτέον τὸ πτύξ πτυχός καὶ νύξ νυχός , ὃ κατὰ πλεονασμὸν τοῦ τ |
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
ἐφαπτομένας τῶν ἐπικύκλων τὰς ΖΘ , ΖΟ , ΖΗ : συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ὑπὸ ΓΖΗ , ΑΖΘ | ||
τὸ Σ , ὅταν ἐπιζητῶμεν τὴν γινομένην αὐτῆς παράλλαξιν , συγχρώμεθα τῷ εἶναι ὡς τὴν τῶν ΑΖ , ΖΓ ὑπεροχὴν |
: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , | ||
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ |
, καὶ ἐπιζευχθεῖσα ἡ ΚΔ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΒΑ ἐκβληθείσῃ κατὰ τὸ Μ : λέγω ὅτι ἐστὶν ὡς ἡ | ||
καὶ ἐπιζευχθεῖσα μὲν ἡ ΔΛ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΓΒ ἐκβληθείσῃ κατὰ τὸ Η , τῇ δὲ ΒΓ πρὸς ὀρθὰς |
τὰ ἑπόμενα τῶν μερῶν αὐτοῦ δεδειγμένην τῆς τῶν ἀπλανῶν σφαίρας μετακίνησιν . δεδόσθω γὰρ ἐπὶ τοῦ δεδειγμένου σχήματος ἡ ΕΖ | ||
φέρεσθαι , συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς |
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ | ||
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ |
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς | ||
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ |
τὸ ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΓΒ , τὸ ὑπὸ ΚΖΕ πρὸς τὸ ὑπὸ ΘΖΔ . ἤχθωσαν γὰρ διὰ τῶν | ||
τὸ ἀπὸ ΑΓ πρὸς τὸ ἀπὸ ΒΓ , τὸ ὑπὸ ΚΖΕ πρὸς τὸ ὑπὸ ΘΖΔ . Ἐὰν τῶν ἀντικειμένων δύο |
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
ἐν μοναρχίᾳ . χὡπόταν ] λάμβανε κἀντεῦθεν τὸ τηρέοντι κατὰ συνεκδοχήν . ὁ σφοδρὸς καὶ πολὺς δῆμος : λέγει δὲ | ||
ἤγουν τὸν Πολυνείκην τῶν προσμόρων καὶ τῶν πλησιοθανάτων καλεῖ κατὰ συνεκδοχήν : ἢ βάζει τῶν προομόρων ὑπάρχειν , ἤγουν τῶν |
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ | ||
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ |
ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
μοχλεῖαι , ἐπὶ δὲ τῆς ὀπίσω καὶ ἡ κατ ' ἴπωσιν καὶ ἡ κατὰ περίσφαλσιν . τοὺς δὲ τρόπους τῶν | ||
καὶ ἡ κατὰ περίσφαλσιν , καὶ ἡ μὲν κατ ' ἴπωσιν μενούσης τῆς τάσεως , ἡ δὲ κατὰ περίσφαλσιν ἀνεθείσης |
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν | ||
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν |
ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
τὸ ἀπὸ τῆς ΕΖ ἴσον ἐστὶν τοῖς ἀπὸ τῶν ΕΓ ΓΖ , ἔστιν δὲ καὶ τὰ ἀπὸ τῶν ΕΑ ΑΖ | ||
: ἔστιν ἄρα καὶ ὡς ἡ ΑΕ βάσις πρὸς τὴν ΓΖ βάσιν , οὕτως τὸ ΑΒ στερεὸν πρὸς τὸ ΓΔ |
δὴ παράλληλοι αἱ ΑΒ , ΔΕ , ἀλλ ' ἐκβαλλόμεναι συμπιπτέτωσαν κατὰ τὸ Π , καὶ ἡ ΓΟ ἤχθω παρὰ | ||
μὴ ἔστωσαν δὴ παράλληλοι αἱ ΑΚ , ΕΖ , ἀλλὰ συμπιπτέτωσαν κατὰ τὸ Κ , καὶ ἡ ΓΔ παρὰ τὴν |
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ | ||
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι |
δεσμός . σχῆμα δὲ τοῦ ὑποθήματος κατὰ πύργον μάλιστα ἐς μύουρον ἀνιόντα ἀπὸ εὐρυτέρου τοῦ κάτω : ἑκάστη δὲ πλευρὰ | ||
, καλυπτούσης τὰ ἄκρα τῶν ἠπείρων ἑκατέρωθεν καὶ συναγούσης εἰς μύουρον σχῆμα , καὶ τρίτου τοῦ μήκους καὶ πλάτους τοῦ |
, καὶ τέτμηται δίχα ἡ γωνία ἡ ὑπὸ ΚΗΑ τῇ ΗΛΜ εὐθείᾳ , βάσις ἄρα ἡ ΚΛ τῇ ΛΑ ἴση | ||
αἱ ΝΞΗΟΠΡ , ΚΣΤ , παρὰ δὲ τὴν ΑΓ αἱ ΗΛΜ , ΚΟΦΙΧΨΩ . λέγω , ὅτι ἐστίν , ὡς |
καὶ τῆς ἐπὶ τὸ βεζη καὶ ἔτι τῆς ἐπὶ τὸ βαδγ , ἀλλὰ κατ ' ἐπιστροφὴν μίαν τὴν ἐπὶ τὸ | ||
ἀποκαταστήσεται τῇ τε εἰς τὸ βεζη καὶ τῇ εἰς τὸ βαδγ , καὶ δύο ἐπιστροφαῖς ἐπικαταστήσεται , τῇ τε εἰς |
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ | ||
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ |
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
ὄσσοισιν ὁρωμένῳ ἀπροτίοπτος , ὃς περὶ πᾶν γαίης τε καὶ ἀτρυγέτου διὰ πόντου ὦκα διηνεκέως δινεύμενος οὐκ ἀπολήγει . Τοῦ | ||
βραδύν . Γενοίμαν αἰετὸς ὑψιπέτας , ὡς ἂν ποταθείην ὑπὲρ ἀτρυγέτου γλαυκᾶς ἐπ ' οἶδμα λίμνας . Ἔοικεν οὐ ψευδαγγελήσειν |
πάντες ὅσοι πώποτε ] σημείωσαι , ὑπερβατὸν δέ ἐστι κατὰ παρένθεσιν , ὅ ἐστιν ἐπεμβολή . ἢ ἐγὼ πάσχειν ] | ||
ᾗ τις οὐ μολίσκει , ἵν ' ᾖ ἀμολγῷ κατὰ παρένθεσιν τοῦ γ : „ ἐν νυκτὸς ἀμολγῷ „ , |
καλῶς μοι : τὸ δὲ ὤμοι οὐκέτι τοῦ ὦ τὸν περισπασμὸν ἐφύλαξενἀπ . ' ἀντωνυμιῶν ῥήματα οὐ παράγεται : πῶς | ||
. ἆρα καὶ ἄρα διαφέρει : ὁ μὲν γὰρ κατὰ περισπασμὸν ἀπορηματικός , ὅτε ἀποροῦντες λέγομεν , ἆρά γε τέλος |
ἐφύλαξε τὸ ο , οἷον υἱέος : εἰκότως οὖν ὡς παραλλάξαν παρ ' αὐτοῖς κατὰ τὴν γενικὴν τῶν ἑνικῶν παρήλλαξε | ||
δηλοῖ δὲ περὶ αὐτοῦ τὸν τρόπον τοῦτον : ἀγκῶνος ἄρθρον παραλλάξαν μὲν ἢ πρὸς πλευρὴν ἢ ἔξω , μένοντος τοῦ |
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
, ἐπειδὰν κάθαρσιν ἐπεσχημένην προκαλεῖσθαι θέλωμεν ἢ μύσιν ὑστέρας ἢ συστολὴν ἐπανορθῶσαι : σκευάζονται δὲ καὶ οὗτοι διὰ μέλιτος , | ||
Ἐρασιστρατείων συντιθείς , ὅσοι τὸν σφυγμὸν ἔφασαν εἶναι διαστολὴν καὶ συστολὴν ἀρτηριῶν τε καὶ καρδίας , ὑπὸ ζωτικῆς τε καὶ |
περίκειται καὶ λίαν ὑψηλὴ καὶ τὸ ἱερὸν καὶ τὸ ὕδωρ ἀπολαμβάνουσα ἐν κοίλῳ τόπῳ καὶ βαθεῖ . τὰς μὲν οὖν | ||
κύκλον δεδομένον τῷ μεγέθει τὸν ΔΑΓ διῆκται εὐθεῖα ἡ ΒΓ ἀπολαμβάνουσα τμῆμα τὸ ΒΑΓ δεχόμενον γωνίαν δοθεῖσαν τὴν ὑπὸ τῶν |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
δυάδι αὐτοῦ λειπόμενα , πρόσω μὲν ὡς τὸ ἐκ τῶν ββ συγκείμενον , ὀπίσω δὲ ὡς τὸ ἐκ τῶν γγ | ||
τῇ δγ καὶ εα : ἡ μὲν γὰρ δγ τῆς ββ ὑπερέχει τῇ δγ , ἡ δὲ ββ τῆς εα |
Τὸ αʹ ἰαμβικὸν δίμετρον ἀκατάληκτον . ἔχει δὲ συνεκφώνησιν ἤτοι συνίζησιν τὸ αʹ κῶλον τῆς αʹ στροφῆς . Τὸ βʹ | ||
τὸ ἕβδομον δακτυλικὸν πενθημιμερές . τὸ ὄγδοον χοριαμβικὸν ἡμιόλιον , συνίζησιν ἔχον εἰς τὸ Θρηϊκία , διὰ τὸ ἡμιόλιον εἶναι |
τῇ ὑπὸ ΔΖΕ γωνίᾳ . ἔστιν δὲ καὶ ἡ ὑπὸ ΑΖΓ γωνία τῇ ὑπὸ ΒΖΕ γωνίᾳ : ὅλη ἄρα ἡ | ||
καὶ ἐπεζεύχθωσαν αἱ ΔΚ ΚΒ ΚΕ ἐπεὶ οὖν τὸ ὑπὸ ΑΖΓ μετὰ τοῦ ἀπὸ ΖΚ ἴσον ἐστὶν τῷ ἀπὸ ΑΚ |
κράτημα καὶ ἀνάτασιν , τοῦ δὲ κατάγματος κατὰ κράτημα καὶ κατάτασιν , πρῶτον δὲ καταρτιζέσθω τὸ ἐξάρθρημα , καὶ τότε | ||
κατὰ διάτασιν , ἔσθ ' ὅπῃ δὲ κατὰ κράτημα καὶ κατάτασιν ἢ κατὰ κράτημα καὶ ἀνάτασιν . μετὰ δὲ τὴν |
Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
τουτέοισι πνεῦμα ἅλις ξὺν τόνῳ διέρχεται , καὶ οἱ κατὰ γαστροκνημίην πόνοι ἐν τουτέοισι γνώμης παράφοροι . Τὰ κατὰ μη | ||
γίνεται , κατά τε τὸ πυγαῖον , κατά τε τὴν γαστροκνημίην , καὶ κατὰ τὴν ὄπισθεν ἴξιν . Οἷσι δ |
٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ | ||
٤٨ ١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ |
: τὸ ἄρα ἀπὸ ΓΞ ἴσον ἐστὶ τῷ τε ἀπὸ ΞΕ καὶ τῷ ὑπὸ ΓΕΔ . ἡ ἄρα ΓΔ δίχα | ||
Ἔστω γὰρ οἴκησις πρὸς τῷ Ε , καὶ ἐπιζευχθεῖσα ἡ ΞΕ ἐκβεβλήσθω : τῆς ἄρα Ε οἰκήσεως τὸ κατὰ κορυφὴν |
ΔΗΒ , ἡ δὲ ὑπὸ ΒΑΖ , ἐὰν ἐπιζευχθῇ ἡ ΕΒ , τῇ ὑπὸ ΒΕΖ , τουτέστιν τῇ ὑπὸ ΒΓΗ | ||
ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ , κάθετοι δ ' ἤχθωσαν ἀπὸ μὲν |
τὴν ἰπωτρίδα κατὰ τοῦ ὑβώματος πρὸς τὴν κατ ' ἴπωσιν μοχλείαν . ἔνιοι δὲ καὶ διπλῆς καιρίας ὑποθέντες μεσότητα τῷ | ||
ἀπὸ γὰρ τῶν ἁπλῶν ἐπὶ τὴν ὀργανικὴν κατήντηκεν κατάτασιν καὶ μοχλείαν , ἥτις βιαιοτέρας ἀνάγκας ἔχει καὶ πρὸς τῶν ἄλλων |
καρπὸν δὲ καὶ ἀγκῶνα ἀπόχρη διαναγκάζειν , καρπὸν μὲν ἐς ἰθὺ ἀγκῶνος , ἀγκῶνα δὲ ἐγγώνιον πρὸς βραχίονα ἔχοντα , | ||
ἑαυτῆς τὸν ἡνίοχον : καὶ ἐπιστήμονα μὲν ἔχουσα κατ ' ἰθὺ φέρεται , μὴ δέ , ὡς ἔτυχε πολλάκις . |
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι | ||
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ |
δυνατοῦ , ὥστε καὶ πλείστοις συμπλέκεσθαι , μετὰ δὲ τὴν συμβολὴν ὑπὸ δύο ἡττωμένου . φασὶ γὰρ τὸν Ἡρακλέα θέντα | ||
καὶ ὀχυρώματι προστρεχόντων χρεία διανυκτερεῦσαι ἢ προσεδρεῦσαι αὐτοῖς ἢ τὴν συμβολὴν μέχρις ἑσπέρας παρατείνεσθαι , καὶ ἀναγκαῖόν ἐστιν ἐπιφέρεσθαι δαπάνην |
Μεγασθένης μῆκος μὲν ἐπέχειν τὴν πόλιν καθ ' ἑκατέρην τὴν πλευρήν , ἵναπερ μακροτάτη αὐτὴ ἑωυτῆς ᾤκισται , ἐς ὀγδοήκοντα | ||
, ἢ τὰ πτερά . ἐμπεφύασι : ἀνεβλάστησαν . παρὰ πλευρήν : τῶν πλευρῶν . ἑκάτερθεν : ἀμφοτέρωθεν , ἐν |
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
καὶ τῆς Κελτικῆς . ἔστι δ ' ἔνθεν μὲν εἰς Νάρβωνα μίλια ἑξήκοντα τρία , ἐκεῖθεν δὲ εἰς Νέμαυσον ὀγδοήκοντα | ||
ἐκ δὲ θατέρου τῇ τε Ἰβηρικῇ καὶ τῇ Κελτικῇ κατὰ Νάρβωνα καὶ Μασσαλίαν , καὶ μετὰ ταῦτα τῇ Λιγυστικῇ , |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |